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Demonstration of exterm3 

An example of the deconvolutional treatment implemented in the preprocessor application 
“exterm3” is demonstrated in this document.  


Other files are assigned as follows.


Example: Si (NIST SRM640d) / Rigaku MiniFlex 600-C (←)
Powder diffraction data of Si powder (NIST SRM640d) were collected with a powder diffractometer 
(Rigaku MiniFlex 600-C) with a silicon-strip X-ray detector (Rigaku D/teX Ultra-2).  A shield tube 
(Canon Electronic Devices, A-21 Cu, normal focus) was used as the X-ray source.  The scan rate of 
the measurement was .  All the data were collected within . Further details about the 
sample preparation and measurement conditions are described in “00memo.txt” file in the 
“20191111-001” folder.  


Overall intensity profiles of the observed data and the data treated with exterm3 are shown in  
Figure 1.  


File name

00memo.txt Measurement condition

00raw.csv Raw experimental data

01dct.csv Deconvolutionally treated data

cntmn.cfg Configuration file for treating off-center Ni K emissions from Cu-target X-ray tube

dct.cfg Main configuration file for exterm3.py

xray.cfg Configuration file for spectroscopic profile of source X-ray

axial.py Python code for treatment of axial-divergence effect

cntmn.py Python code for treatment of off-center Ni K emissions from Cu-target X-ray tube

dct_common.py Python code for common subroutines used in other Python codes

equatorial.py Python code for treatment of equatorial aberration

exterm3.py Main Python code

trnspr.py Python code for treatment of sample-transparency effect

xray.py Python code for treatment of spectroscopic profile of source X-ray

10∘ min−1 15 min
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Figure 1    Overall intensity profiles of Si (NIST SRM640d) data collected with Rigaku MiniFlelx 600-C, 
and the deconvolutionally treated (DCT) data.


The Lorentzian that corresponds to the hypothetical Cu  peak to be convolved was set to slightly 
larger value (0.0003) than that used in the deconvolution process (0.000286).  The values of the 
Lorentzian widths for deconvolution/convolution treatments are indicated in one of the configuration 
files “xray.cfg” for the exterm3 application.  Fluctuation of the background intensity profile 
appears near the lower edge of the data treated with exterm3.  The Cu  peaks, separated from Cu 

 peaks at the higher diffraction angles are removed or reduced by the treatment as can be seen in 
Figure 1.


Figure 2 shows the changes of the Si 111, 422, and 533 peak profile on the deconvolutional treatment.  
The information values of the peak positions at 22.5ºC for Cu  X-ray, , listed in 
the NIST SRM640d certificate are indicated by arrows in each of the figures.  


Figure 2    Si 111, 422, 533 profiles of the raw data and the deconvolutionally treated data (DCT).  The 
information value about the diffraction angle, listed in the SRM640d certificate, is indicated by an 
arrow on each panel.  


The peak locations of 111, 422, and 533-reflections appear to be coincided within  with the 
expected locations.  The observed 422 peak is shifted by  from the expected location, and it is 
naturally assigned to the sample-transparency effect (Figure 3.2 (b)).  The observed 533 peak profile 
(Figure 3.2 (c)) is almost symmetric, and it is naturally caused by the unusually narrow open angle 
( ) of the Soller slits used for the measurement.   The data treated by the deconvolutional method 
do not show significant change in the 533 peak profile.  
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The background profile of the data are shown in Figure 3.  The series of small   peaks and step 
like structures caused by the  -absorption edge have been removed or reduced by the 
deconvolutional treatment.  


Misplaced  emission peaks, observed for Panalytical (§1) and Philips (§2) X-ray tubes have not 
been found in the data collected with an X-ray tube of Canon Electronic Devices. 


Figure 3    Background profiles of the raw data (Rigaku MiniFlex) and the deconvolutionally treated (DCT) 
data. 


The lost intensities caused by the “spill-over” and “pass-through” effects are automatically recovered 
by default in the current version of exterm3 application.  The application can also offer the data of 
intensity correction and the first to fourth-order cumulants of the instrumental aberration functions, as 
optional outputs as “cumulants_xxx.csv” (comma separated values) file for each of the 
instrumental aberrations.  The reported values are “ , , , , , ”, where 

 is the apparent diffraction angle,  is the ratio of the observed intensity to the hypothetical 
value expected for an infinitely wide and thick specimen, and  is the -th order cumulant of each 
aberration function and the “reduced cumulants” for the -th order cumulant, , (Ida et al., 2018c) 
are defined by 


.	 (3.1)


Figure 4 shows the relative intensities affected by the “spill-over” and “pass-through” effects.  It is 
confirmed that the Si 111 peak is not affected by the spill-over, and the intensity loss caused by the 
pass-through effect is less than 1% at the highest angle, while exterm3 automatically recovers the 
lost intensity by default.  


Figure 4    Relative intensities that remain from the spill-over and pass-through effects, offered as optional 
output from exterm3. 


Figure 5 shows the first-order cumulant  of each aberration function, which is identical to the 
average peak shift.  The deconvolutional treatment with exterm3 automatically corrects the average 
peak shift caused by those aberrations.  It would not be easy to model or correct the peak shift, 
particularly for the component caused by the equatorial aberration about CSI-SSXD data, because the 
appearance of the spill-over effect is complicated for mathematical formulation, while the current 
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version of exterm3 numerically evaluates the values of cumulants, based on the exact geometrical 
relation (Ida, 2021).  


Figure 5    The first-order cumulants (average peak shift) of axial-divergence, equatorial, and sample-
transparency aberrations and total peak shift. 


Figure 6 shows the square root of the second-order cumulant  (standard deviation) of each 
aberration function, which can directly be related to the instrumental broadening.  The deconvolutional 
treatment with exterm3 do not change the values of even-order cumulants, while non-
deconvolutional part of the treatment, that is, the treatment about the truncation effect of the finite 
thickness of the sample, may change the even-order cumulants.  One should know the values of the 
second-order cumulants anyway, if the treated data are used for peak profile analyses.  It would not be 
easy to model the instrumental broadening, particularly for the component caused by the equatorial 
aberration about CSI-SSXD data, either.  


Figure 6    The square roots of the second-order cumulants (instrumental broadening) of axial-divergence, 
equatorial, and sample-transparency aberrations and total peak broadening. 


Figure 7 shows the values of the reduced third-order cumulant  of each aberration function, 
which may be related to the asymmetric deformation of peak profile caused by the instrumental effect.  
The deconvolutional treatment with exterm3 automatically removes the effect.  It is not necessary 
for the users of exterm3 to know the values of the odd-order cumulants.  It would not be easy to 
model the asymmetric deformation of peak profile caused by the instrumental effects, particularly for 
the component caused by the equatorial aberration about CSI-SSXD data.


Figure 7    The reduced third-order cumulants (asymmetric profile deformation effect) of axial-divergence, 
equatorial, and sample-transparency aberrations and total peak broadening. 


 


Figure 8 shows the reduced fourth-order cumulant  of each aberration function, which may be 
related to the sharpness of the instrumental broadening profile.  The deconvolutional treatment with 
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exterm3 do not change the values of even-order cumulants, while non-deconvolutional part of the 
treatment, that is, the treatment about the truncation effect of the finite thickness of the sample, may 
change the even-order cumulants.  One should know the values of the fourth-order cumulants, if the 
treated data are used for peak profile analyses with a model incorporating the second and fourth-order 
cumulants of the instrumental effect.  It would not be easy to model the sharpness of the instrumental 
broadening profile, particularly for the component caused by the equatorial aberration about CSI-
SSXD data.  


Figure 8    The reduced fourth-order cumulants (symmetric profile deformation effect) of axial-divergence, 
equatorial, and sample-transparency aberrations and total peak broadening. 


(←)
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