Supplementary Material
Supplementary Table S1. Summary of data used to construct Figure 3. The classification accuracy from the top performing algorithm on a distinct dataset within each research paper is included (n=67). If multiple distinct datasets were used in a single research paper, the top performing algorithm from each dataset was reported. Where papers did not include classification accuracy, data were not used, likely resulting in the underreporting of more recent research that are likely to provide F1-score, precision or recall values instead. Classification accuracy was selected given it is the metric most used in older research and allowed for a longer comparison period

	Feature Extraction
	Classes
	Accuracy (%)
	Dataset Size
	Year
	Reference

	Manual
	8
	69
	50
	1986
	(Guyer et al. 1986)

	Manual
	6
	82.3
	300
	1989
	(Petry and Kühbauch 1989)

	Manual
	7
	90
	350
	1990
	(Shearer and Holmes 1990)

	Manual
	8
	81.9
	50
	1993
	(Gerhards et al. 1993)

	Manual
	10
	74
	100
	1995
	(Woebbecke et al. 1995)

	Manual
	3
	54.9
	54
	2000
	(El-Faki et al. 2000)

	Manual
	3
	62.2
	54
	
	

	Manual
	6
	96.7
	240
	2000
	(Burks et al. 2000a)

	Manual
	5
	93
	200
	2000
	(Burks et al. 2000b)

	Manual
	2
	91
	587
	2002
	(Åstrand and Baerveldt 2002)

	Manual
	6
	96.7
	240
	2005
	(Burks et al. 2005)

	Manual
	4
	89.2
	510
	2006
	(Neto et al. 2006)

	Manual
	3
	75.4
	18
	2006
	(Gebhardt et al. 2006)

	Manual
	3
	70
	18
	
	

	Manual
	3
	69.7
	18
	
	

	Manual
	20
	91
	400
	2007
	(Du et al. 2007)

	Manual
	3
	82.7
	18
	2007
	(Gebhardt and Kühbauch 2007)

	Manual
	3
	80.4
	18
	
	

	Manual
	3
	75.9
	18
	
	

	Manual
	20
	92.6
	1200
	2008
	(Wang et al. 2008)

	Manual
	10
	90
	150
	2009
	(Backes and Bruno 2009)

	Manual
	5
	86.6
	2325
	2009
	(Lin 2009)

	Manual
	3
	75.9
	107
	
	

	Manual
	2
	100
	18
	2009
	(Wu and Wen 2009)

	Manual
	32
	79.7
	2048
	2010
	(Cope et al. 2010)

	Manual
	3
	86.4
	286
	2011
	(Golzarian and Frick 2011)

	Manual
	2
	97.5
	139
	2013
	(Giselsson et al. 2013)

	Manual
	3
	90.4
	866
	2014

	(Larese et al. 2014)

	Manual
	3
	95.1
	3464
	
	

	Manual
	7
	95.8
	2438
	2014
	(Dyrmann and Christiansen 2014)

	Manual
	2
	92.9
	66
	2014
	(Herrera et al. 2014)

	Manual
	8
	84.4
	160
	2015
	(Latte et al. 2015)

	Manual
	2
	99.1
	474
	2015
	(Kazmi et al. 2015a)

	Manual
	2
	97.8
	474
	2015
	(Kazmi et al. 2015b)

	Convolutional
	22
	86.2
	10413
	2016
	(Dyrmann et al. 2016)

	Convolutional
	3
	93
	866
	2016
	(Grinblat et al. 2016)

	Convolutional
	3
	96.9
	3464
	
	

	Convolutional
	4
	99.1
	15336
	2017
	(dos Santos Ferreira et al. 2017)

	Convolutional
	44
	99.5
	43472
	2017
	(Lee et al. 2017)

	Convolutional
	44
	97.7
	2816
	
	

	Convolutional
	4
	92.9
	820
	2017
	(Tang et al. 2017)

	Manual
	2
	92.1
	30955
	2017
	(Zheng et al. 2017)

	Convolutional
	2
	98.7
	1100
	2018
	(Suh et al. 2018)

	Convolutional
	2
	98.93
	11786
	2019
	(Kounalakis et al. 2019)

	Convolutional
	8
	95.7
	17509
	2019
	(Olsen et al. 2019)

	Convolutional
	1
	99
	7282
	2019
	(Yu et al. 2019)

	Convolutional
	1
	99
	7282
	
	

	Convolutional
	1
	99
	3005
	
	

	Convolutional
	31
	99.6
	31147
	2019
	(Zhang et al. 2019)

	Manual
	8
	92.3
	1600
	2019
	

	Manual
	2
	95
	396
	2020
	(Alam et al. 2020)

	Convolutional
	8
	98.1
	17509
	2020
	(Hu et al. 2020)

	Convolutional
	12
	98
	93130
	2020
	(Peteinatos et al. 2020)

	Convolutional
	4
	97.6
	17800
	2020
	(Yu et al. 2020)

	Convolutional
	4
	96.51
	7200
	2020
	(Jiang et al. 2020)

	Convolutional
	2
	97.8
	6000
	
	

	Convolutional
	2
	99.37
	800
	
	

	Convolutional
	2
	98.93
	400
	
	

	Convolutional
	4
	98.9
	462
	2021
	(Ahmad et al. 2021)

	Convolutional
	6
	94
	16500
	2021
	(de Camargo et al. 2021)

	Manual
	2
	97.5
	2400
	2021
	(Chen et al. 2021)

	Convolutional
	12
	97.8
	5544
	2021
	(Farkhani et al. 2021)

	Convolutional
	2
	97
	30160
	2021
	(Hussain et al. 2021)

	Manual
	2
	96
	1
	2021
	(Islam et al. 2021)

	Convolutional
	3
	94.7
	5400
	2021
	(Khan et al. 2021)

	Convolutional
	4
	94
	10180
	2021
	(Zhang et al. 2021)

	Convolutional
	2
	97.7
	1106
	2022
	(Subeesh et al. 2022)
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