SUPPLEMENTARY MATERIAL
Study population 
Our study population included all tuberculosis (TB) cases registered in the Peruvian National Tuberculosis Program (NTP) from two of Lima’s four health districts, Lima Ciudad and contiguous health center catchment areas of Lima Este between January 1, 2005 and December 31, 2007. In total, patients from 31 health establishments were included from Lima Ciudad, covering a population of approximately 1.4 million people, and from 25 health establishments from Lima Este, covering a population of approximately 500 000 people. Under Peruvian NTP guidelines, TB patients are diagnosed and treated at health centers determined by the location of their home residence(1). 

Data collection

We collected clinical information from TB registration records that are maintained in each health center and laboratory information from a web-based laboratory information system (e-Chasqui)(2). The TB registration records provided patient-level information including age and sex, home address, treatment start date, sputum smear status, history of anti-tuberculosis treatment, known household contact with multidrug-resistant (MDR) cases, and HIV infection. Two study nurses independently entered health center data into an electronic database and a third study nurse resolved any discrepancies. Laboratory records included the results of each sputum smear and culture and the drug resistance profile if drug susceptibility testing (DST) was performed.   

Information on spatial location

Based on the home addresses, study nurses identified the precise location of homes on high-resolution Google Earth maps generated for each health center catchment area. The locations were marked in Google Earth 4.0 (Google Inc, 2007) to produce the geocodes used in our analysis. In 995 out of 11 711 (8.5%) cases where addresses could not be unambiguously located using the high-resolution spatial maps, study nurses resolved the location through field excursions.

Information on drug-resistant status

In Peru, only a subset of TB cases receive sputum culture and DST. Peruvian guidelines indicate that sputum culture and DST should be performed for patients at increased risk of MDR TB (e.g., history of anti-tuberculosis treatment and known household contact with MDR cases) or when first-line treatment fails(1). DSTs were performed in the district reference laboratories of Lima Ciudad and Lima Este and in the national reference laboratory (Instituto Nacional de Salud). The district laboratories performed DST for first-line drugs using the direct Griess method for smear-positive samples from patients at high risk of MDR TB(3, 4), and the indirect proportions method on Löwenstein-Jensen media for all other samples. The national reference laboratory used the indirect proportions method on MB7H10 agar plates(5). Smear-negative and paucibacillary sputa from high-risk patients, including health care workers, HIV-positive patients, and children, were sent directly to the national reference laboratory for culture and indirect DST using BACTEC460TB  (Becton-Dickinson, NJ)(6). Those who did not receive DST or were not MDR after DST were classified as non-MDR.

Data analysis

Main analysis

In the exploratory data analysis, kernel smoothing was first used to map the spatial point pattern for all TB cases and then for the subset of cases with detected MDR TB. The quartic kernel function was used, with the kernel width parameter selected to minimize the mean square error for each smoothed surface(7, 8). To compare the spatiotemporal distribution of TB patients with and without MDR, we first used Ripley’s spatial K function to estimate the spatial clustering of MDR and non-MDR cases and to detect any temporal change in clustering(9). The K function is defined as the average number of cases within a circle of radius r from an arbitrary event, divided by the overall density of cases in the whole study region. The K function takes the following form:
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 is the area of the study region, n is the total number of events in the study region, and x is the average number of events in all spatial circles of radius r. This estimate must account for edge effects to prevent underestimating the K function because of the omission of cases occurring outside the study region. Specific values of the K statistic at each given radius r are consistent with spatial randomness, clustering, or regularity for that particular spatial domain. Ripley’s K function has been used to study the pattern spatial clustering among cases of infectious diseases(10, 11). To estimate the statistical uncertainty of the K function, we generated the same numbers of cases, distributed them in the study region with complete spatial randomness, and then computed the corresponding K function. This simulation process was repeated 200 times to obtain a 95% simulation envelope. 

The interpretation of the K statistic, however, is not straightforward, as it is a measure of both the effect of any spatial aggregation of the population (i.e., any spatial pattern of underlying population density) and anything else that may cause TB to be clustered (e.g., the spatial transmission of TB). In order to account for the influence of the underlying population density, previous spatial studies of TB have aggregated data by administrative blocks (e.g. census tract or ZIP code) since information on population density was often available only at these gross administrative levels. One potential limitation of this aggregated analysis is that the sensitivity for detecting TB outbreaks is less than it would have been if individual-level data was used(12, 13). Therefore, in addition to estimating the K statistics for MDR and non-MDR TB separately, we also computed a modified D statistic:
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 represents the K statistic of non-MDR TB. The D statistic allows us to naturally filter out the effect of population density and thus we were able to utilize the highest possible level of resolution (i.e. individual-level spatial information) for the purpose of our analysis. However, this statistic also needs to be interpreted carefully. A value of D statistic compatible with “randomness” suggests a similar spatial pattern of MDR and non-MDR TB, but can be the result of either similar clustering or similar randomness in the spatial distribution of the two types of cases. The D statistic conveys information on both the direction of the difference of spatial distribution between the two groups and the spatial range of the difference. Differences in spatial distribution of MDR and non-MDR cases could have arisen through several mechanisms. First, risk factors for acquired resistance (e.g., quantity and quality of health services) might have different spatial distribution compared to those for non-MDR TB (e.g., crowding). Second, the transmissibility of resistant TB and non-MDR TB might change differentially over time due to the presence of fitness costs associated with drug-resistance conferring mutations(14). Third, the topology of social contacts underlying the transmission of the two pathogen phenotypes might differ. To estimate the uncertainty of the D function, we randomly assigned the labels of MDR and non-MDR while keeping the numbers of the two groups the same as observed. The D function was then computed and the random re-labeling process was repeated 200 times to obtain the 95% simulation envelope.

To explore the temporal change of spatial clustering between MDR and non-MDR cases, we divided our cases into six-month intervals and computed the spatial K statistic and D statistic within each period. To maximize the statistical power, we also pooled across the period-specific K function (i.e., weighted average of all period-specific K function with the weights determined by the number of cases in each period) to obtain an aggregated K function of MDR and non-MDR cases and, correspondingly, an aggregated D function. The uncertainty of the aggregated D function was estimated by random re-labeling of MDR and non-MDR cases within each period and computing the corresponding aggregated D function. 

We also estimated the spatiotemporal K statistic to investigate the spatiotemporal clustering of cases: 
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is the total time span, n is the total number of events in the study region over the total time span, and x is the average number of events in a cylinder of radius r and length 2t. The K(r,t) function is a temporal extension of K(r) function. Similarly the spatiotemporal D function can be estimated by: 
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The 95% simulation envelope of the spatiotemporal D function was also obtained by random re-labeling of MDR and non-MDR cases.

Subgroup analysis

In the subgroup analysis, we compared the spatial distribution of MDR and non-MDR cases among two groups: 1) those without previous TB treatment and 2) those with previous TB treatment. Under the assumption that TB patients without previous treatment actually were cases of primary drug resistance, the analysis from these patients allowed us to investigate differences in the transmission of MDR and non-MDR TB. Any differences detected may reflect different durations of infectivity between MDR and non-MDR source cases, different inherent transmissibility of MDR and non-MDR disease, and different patterns of social contact between cases of non-MDR and primary MDR TB. 

Sensitivity analysis

Among 11 711 TB cases, 1187 (10.1%) received drug susceptibility testing (DST) and 376 (3.2% of all cases, 31.7% of tested cases) were classified as MDR. Since not all study participants received DST, the measured prevalence of MDR (3.2%) in our study is an underestimate of the true prevalence of resistance in this population. A 2006 drug resistance survey in these districts of Lima, conducted at the same time as the eligibility period for our study, found proportions of MDR of 11.4% (95% CI: 6.3-16.5%) in Lima Ciudad and 17.4% (95% CI: 12.1-22.7%) in Lima Este(15). Furthermore, the submission of sputum specimens to the central laboratory for culture and DST may itself have a spatial association if physicians seeing a new TB patient from a presumably high-MDR area were more likely to send a specimen for DST. Therefore, those receiving DST are not likely to be a random sample of all study participants.   

To probe for the presence of geographically differential utilization of DST, we estimated the probability of receiving DST conditional on TB and that of MDR conditional on DST at the health center level. Under the scenario of differential utilization of DST in the presence of geographically similar prevalence of MDR, the health centers with overtesting (i.e., those with higher estimated probability of DST conditional on TB) will appear to have lower prevalence of MDR among tested cases. We also examined if there was spatial heterogeneity in DST by mapping the spatial density of DST conditional on TB using generalized additive modeling with thin plate regression splines(16); the smoothing parameters were selected by generalized cross-validation(17). The result suggested substantial spatial heterogeneity in DST (Figure 5B). We further mapped the spatial density of MDR conditional on DST using generalized additive modeling. Under the scenario of differential utilization of DST in the presence of geographically similar prevalence of MDR, the areas with overtesting (i.e., peaks in the map of DST conditional on TB) will appear to have lower prevalence of MDR among tested cases (i.e., troughs in the map of MDR conditioning on DST). 

As a worst-case scenario, we assessed the influence of the bias from geographically differential utilization of DST on our results, if it did exist. Under this scenario, among those who did not receive DST, those who were from the high DST density areas were less likely to be true cases of MDR compared to those from the low DST density areas. Therefore we reassigned a fraction of the patients without DST as MDR to make the district-specific prevalence of MDR compatible with that observed in the 2006 drug resistance survey. This reassignment was done by sampling (without replacement) those without DST using a probability weight calculated as the inverse probability of receiving DST at a given location; the probability of receiving DST came from the mapped spatial density of DST conditional on all TB. This approach preferentially reassigned non-MDR cases to MDR status in areas where DST was less likely to have been ordered by the physician. Since there are many more non-MDR cases than MDR cases, the reclassification approach will affect the estimated spatial aggregation of MDR cases more than that of non-MDR cases, making it more difficult to observe relatively increased spatial aggregation among MDR cases.
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