
TECHNICAL APPENDIX 

Model Equations 
The model is formulated as the following system of ordinary differential equations: 

   

( )

( ) ( )

( )

( ) ( )

( )

( )

1

P S A

P S A

P
P

S
S P S S

A
S P A A

A A S S

I I IdS N S S
dt N

I I IdE S E
dt N
dI E I
dt

dI p I I
dt

dI p I I
dt

dR I I R
dt

ρ
α λ

ρ
λ ζ α

ζ κ α

κ γ α

κ γ α

γ γ α

+ +
= − −

+ +
= − +

= − +

= − +

= − − +

= + −

,                                      (Eq A1) 

where S denotes susceptible to infection, E exposed to infection (infected) but not yet infectious, IP 
infectious but pre-symptomatic, IS symptomatically infected, IA asymptomatically infected, and R recovered 
with lifetime immunity to reinfection. Rates, denoted by Greek letters, and there inferred values are given in 
Table 2 of the main paper. 

The parameter ρ  takes a value between 0 and 1 and represents the proportion of infected individuals with 
symptoms who continue to engage in sexual activity and therefore can continue to transmit infection. In this 
study we assigned ρ  the value 0 on the assumption that the severity of symptoms is such that sexual 
activity is highly unlikely. This parameter therefore does not appear in Table 2 of the main paper and is not 
included in the steady state equations below. 

In order to reduce the number of parameters that must be fitted to outbreak data we assumed that the 
recovery rates for asymptomatic and symptomatic infection, ( Aγ  and Sγ , respectively)  are equal. This 
allowed us to further assume that: 

 ( )1S A S SI I p p= − ,                                                               (Eq A2) 

where Sp  is the proportion of those with pre-symptomatic infection that  go on to develop symptomatic 
infection. 

The steady-state solution of this system of ODEs was solved in Mathematica® (Wolfram Research, Inc., 
Champaign, IL, USA) yielding the following: 
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.         (Eq A3) 



Under the assumption expressed in Eq A2 above, IA can be expressed as a function of IS and therefore 
does not appear in Eq A3. 

Fitting 

Poisson Noise 
As described in the main text, we assessed robustness by generating 1,000 alternate datasets. These were 
generated using a parametric bootstrap, where the observed monthly incidence totals were taken as the 
means of Poisson random variables for each month and new datasets were generated by simultaneously 
sampling from each month’s distribution using the MATLAB routine poissrnd. The transmission model was 
then fitted to each of these revised datasets using the multistart routine in MATLAB, with 100 iterations and 
the optimisation function lsqcurvefit. Initial parameter values for each multistart iteration were sampled from 
the predefined fitting constraints given in Table 2 of the main text. In Figure A1, we show the 95% 
confidence intervals around data points under this procedure, along with the original data and an example 
bootstrapped epidemic curve. Figure A2 shows the distributions for all model parameters obtained by fitting 
the model to the simulated datasets, and Figure A3 shows the distribution for the total duration of infection 
obtained by summing the durations in E, IP and IS. 

 
Figure A1. Outbreak data, 95% confidence intervals and example dataset obtained from parametric 
bootstrap procedure. 



 
Figure A2. Distributions of model parameters obtained by fitting the model to simulated datasets.  

 
Figure A3. Distribution of total duration of infection obtained by summing the durations in E, IP and 
IS. 



Simulated Outbreaks 
We used a mixture modelling approach [1] to approximate the simulated distribution of outbreak sizes, with 
a lognormal component describing the self-limiting outbreaks and a normal component describing 
outbreaks that “took-off”. As the simulated outbreak data was discrete and our model continuous, we first 
converted our model to a probability mass model, with values given by the cumulative probability between 
(non-negative) integer outbreak sizes: 
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where the parameter p is the mixture proportion attributed to the log-normal term, andl lµ σ  are the 

lognormal mean and standard deviation respectively, while andn nµ σ  are the normal mean and standard 
deviation respectively. The log-likelihood for this model is then simply  

0

( ) log( ,( ))
N

x

L Y x P x
=

=∑                                                       (Eq A5) 

where ( )Y x  is the number of simulated outbreaks of size x . Maximum-likelihood fits of this model to the 
simulated data were computed using the MATLAB routine fminunc, which is an unconstrained optimisation 
procedure. However, we first transformed the variance parameters and mixture parameters by using log 
and logit transforms respectively to ensure that estimates for variances and the mixture component 
probability p were constrained to positive values and the [0,1] range, respectively. We also added a small 
noise term (1e-7) to each probability term to avoid log(0) errors. Fits to the simulated data were in general 
very good but the approach was unable to capture the exact point at which at which the outbreak 
component should become zero (an immune proportion of 0.747 as derived from the largest R0 estimate). 
Thus we used the mixture models to determine the outbreak probability only for immune-proportions 
between 0 and 0.7, with values 0.75 and above taken to be 0 in accordance with the identified herd 
immunity threshold. Examples of the mixture fits are shown in Figure A4 and illustrate that the mixture 
probabilities accurately describe the probability of outbreaks occurring. The fits to the lognormal component 
are uniformly good but while the normal component captures the mean and variance of the data well, it is 
unable to accommodate the left-skewness of the outbreak component. However, as estimation of the 
mixture components were the primary focus here, we viewed this as acceptable. 



 
Figure A4: Fits of mixture components, with column 1 showing the lognormal fit to the non-
outbreak component and column 2 showing the normal fit to the outbreak component. Column 3 
shows the fit of the cumulative distribution to the data, indicating the accuracy of the mixture 
components. The rows differ by the assumed proportion immune as indicated in panel titles. 

Sensitivity Analysis 
Partial rank correlation coefficients (PRCC) [2] were calculated to assess the relative importance of the 
fitted parameters with respect to the goodness of the fit and epidemic potential; mean square error (MSE) 
and R0 were the respective outcomes in this analysis. SaSAT software [3] was used to generate 10,000 
parameter vectors by the method of Latin hypercube sampling (LHS) [4]. Uniform distributions were 
specified for all parameters with the same upper and lower bounds used in the fitting process. The model 
was run for each parameter vector and the MSE and R0 calculated for each. PRCCs were then calculated 
in SaSAT for parameter sets yielding MSE < 500 (n = 2,285), MSE < 300 (n = 681) and MSE < 100 (n = 
39). The results are summarised in Table A2 below. 

  



Table A2: PRCCs and importance ranking for model parameters with respect to MSE and R0 

Parameter MSE < 500 MSE < 300 MSE < 100 
PRCC 
(rank) 

p-value PRCC 
(rank) 

p-value PRCC 
(rank) 

p-value 

MSE       
N -0.085 (9) <0.001 -0.378 (10) 0.328 0.069 (9) 0.723 
λ -0.838 (1) <0.001 -0.415 (1) <0.001 -0.129 (7) 0.504 
ζ 0.089 (7) <0.001 -0.054 (8) 0.160 0.400 (3) 0.032 
κ 0.436 (2) <0.001 0.322 (3) <0.001 0.559 (1) 0.002 
γ 0.114 (5) <0.001 0.098 (5) 0.011 -0.059 (10) 0.761 
pS 0.155 (4) <0.001 0.085 (7) 0.028 0.416 (2) 0.025 
pI 0.431 (3) <0.001 0.363 (2) <0.001 0.070 (8) 0.719 
Einitial -0.090 (6) <0.001 -0.143 (4) <0.001 0.213 (5) 0.268 
IP,initial 0.086 (8) <0.001 -0.047 (9) 0.222 0.395 (4) 0.034 
IS,initial -0.001 (10) 0.947 -0.092 (6) 0.017 0.179 (6) 0.354 
       
R0       
N 0.053 (6) 0.012 -0.213 (6) <0.001 -0.388 (5) 0.038 
λ 0.992 (1) <0.001 0.874 (1) <0.001 0.547 (4) 0.002 
ζ -0.018 (7) 0.384 0.040 (8) 0.306 -0.347 (6) 0.065 
κ -0.878 (2) <0.001 -0.805 (2) <0.001 -0.678 (1) <0.001 
γ -0.381 (4) <0.001 -0.376 (5) <0.001 -0.322 (7) 0.088 
pS -0.579 (3) <0.001 -0.623 (3) <0.001 -0.573 (3) 0.001 
pI 0.085 (5) <0.001 0.409 (4) <0.001 0.638 (2) <0.001 
Einitial 0.010 (9) 0.633 -0.038 (9) 0.329 -0.305 (8) 0.108 
IP,initial 0.009 (10) 0.669 -0.040 (7) 0.300 -0.146 (9) 0.449 
IS,initial -0.018 (8) 0.385 -0.015 (10) 0.703 -0.056 (10) 0.772 
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