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In this supplementary, the methodology to estimate the age-specific con-
firmation rate is first described, followed by a section on the cross-validation
and equivalence testing. Age-specific confirmation rate was estimated using
an auto-regressive (AR) model, which required dividing the tested individu-
als into age groups (total n=38 of two-year age bins); all individuals above 74
years were collapsed into the latest age bin. Model cross-validation to find
the minimum number of syndromic cases that need to be tested required
matching two distribution, the equivalence of which was assessed using a
two-one-sided test (TOST).

1 Autoregressive model

For each country, we run an autoregressive AR(1) process to estimate sero-
logical confirmation with age. This requires grouping the individuals into
age groups and assumes that the confirmation proportion in one age group
depends on the previous age group.

The probability that a syndromic fever-rash case is confirmed as measles
by IgM testing for a given age group, P can be estimated as,
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logit(Pm¢%5s) ~ Normal(logit(PT<5'%), 5,,) (1)

age+1 age
The logit is used as the link function, and un-informative priors are em-
ployed for both o, and P (first age group). The analogous equation
was used, independently, to estimate rubella serological confirmation with
age.



The model was fit in R [1] using the Gibbs sampler package “jags” [2]
and “runjags” [3]. Two independent chains were run, with 10000 samples
and a burn in period of 1000. Convergence was verified using the Gelman
and Rubin’s convergence diagnostic [4].

2 Cross-validation

To validate our model outputs, we employed a repeated random sub-sampling
validation design. We take all tested individuals, N, into consideration and
assume a proportion of them are not tested, U, while we have test results
for the remaining, 7" (N = T+ U). We then run our auto-regressive model
on the tested individuals T only, estimate the results for the ones assumed
untested U, and compare how the age distribution of all cases in N compares
to the truth. It is important to note here that we have to assume the test
results of individuals N the truth (“gold standard”).

If most individuals are tested, we expect both distributions to be fairly
similar and conversely if very few individuals are tested, we would have a
low power to properly estimate the age distribution. Assessing if the distri-
butions are similar enough (i.e. equivalent) is discussed in more detail in the
next section. To estimate the minimum proportion that needs to be tested
to obtain good estimates (i.e. equivalence in the age distributions), we it-
erate through different number of individuals tested with a simple bisection
method:

1. Choose the number of individuals assumed untested U and the number
of individuals tested T

2. Run the auto-regressive model on individuals 7" to estimate the age
specific sero-confirmation rate. This step is run multiple times (n =
100), randomly choosing different individuals as 7" and U.

3. For each auto-regressive model above, we estimate test results for the
assumed untested individuals U. This is done also multiple times (n =
100).

4. A median age distribution is collated from all the repeats and equiva-
lence is tested using TOST (See below).

5. Check the p-value of the TOST. If below 0.05,



(a) Check for convergence, if the “step size” is small enough (see be-
low), then the algorithm finishes (exits).

(b) Otherwise the number of individuals 7" is reduced.

If the p-value of the TOST is above 0.05, the number of individuals T
is increased.

6. go back to step 2

A step is considered small enough if the absolute difference in individuals
tested between this iteration and the previous < 1% of N. T is reduced
or increased using a bisection method, which at each iteration reduces the
step size (i.e. the amount the size - number of individuals in the 7" group - is
increased or decreased is smaller after each iteration). At step 5, if the p-value
is below 0.05, we assume the two distributions are equivalent, therefore we
can decrease the number of individuals tested T'. Conversely, if the p-value is
above 0.05, we assume the two distributions are not equivalent, and therefore
we need to increase the number of individuals tested T'. The method is run
until it converges (i.e. exits) or reaches a maximum of 50 iterations; this
maximum was never reached in our simulations.

3 Equivalence testing

When trying to compare two distribution, the most commonly used statistical
test, Kolmogorov-Smirnov (K-S), takes the null hypothesis as one distribu-
tion being drawn from the other one (the reference distribution). Therefore
rejecting the null hypothesis mean they two distributions are different. How-
ever, failure to reject the null does not mean that the two distributions are
the same/equivalent in the sense we need it for this work. See the figure S1
for two age distributions which are not equivalent in the sense we would like,
but with a K-S test we fail to reject the null (note that for a K-S test the
cumulative distributions were used).

We therefore use a two-one-sided test (TOST) approach, with the goal of
assessing that the two distributions are equivalent (i.e. “similar enough”),
[5]. This methodology assumes that the distributions are different, and thus
rejecting the null hypothesis means that the two distributions are equivalent,
it has been used in the past in pharmacokinetics to compare different treat-
ments [6, 7]. It however requires specification of an “equivalence criterion” -
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Figure S1: Two age distributions which we consider different, but with a
Kolmogorov-Smirnov test we fail to reject the null. We therefore require an
alternative test.

what is the condition for the two distributions to be considered equivalent.
We defined two different measures of equivalence, which we called D1 and
D2 equivalence.

The first definition of equivalence, D1, is taken as the error in the estima-
tion of cases across all age classes below 5% of the total number of cases. The
aim with this definition is making sure that all age bins have approximately
the same number of cases. It can be calculated with the following equation,

S |CL — C| < 0.05N 2)

where C, is the real number of cases at age a among all tested individuals
N and C¢" is the estimated number of cases at age a.

The second definition of equivalence we considered, D2, is taken as the cu-
mulative number of cases up to the age bin where 80% of all cases are present
have a discrepancy below 10%. The aim with this definition is to focus on the
younger age classes, where most cases occur. We call this equivalence more
programmatic, as measles and rubella vaccination programs target young in-
dividuals. Since the age bins are two years wide, and we only consider the
first few age groups, a discrepancy of 5% would have been too restrictive,
and thus we chose 10%.



First, we need to find the age bin where 80% of cases among tested
individuals N are, a,, such that,

S0 =080, (3)

where ag is the first age bin, n is the last age bin and a,, is the age bin up
to which 80% of all cases are contained. We can then formulate a discrepancy
below 10% in cumulative number of cases between our estimate and the data
as:

13 C, -3 <013 C, (4)

where C, and C" are as above, but the sums are only between the first
age bin and a,,.
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