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Border Screening Model
For our model to run computationally, we break down the model description given in the papers main body into a form easily transferable into computer code. This takes the following form:
Non_fliers = 0
Border_detected = 0
Non_detected = 0
For  do
	Sample   from , 
If  , do
No_fly_count += 1
		Else if  , do
			If weighted_coin_flip(), do
				If weighted_coin_flip(), do
					Border_detected += 1
		Else do
			Non_detected += 1
	Fliers = n – Non_fliers
	Detection_ratio = Border_detected / Fliers
	Return Detection_ratio
Where we use the function weighted_coin_flip(), defined to return the value True with a probability , to simulate the random process of a symptomatic case being screened and subsequently detected. Note that we do not need to consider whether non-symptomatic persons undergo screening, as they will not be detectable, and this will just add processing time. 


Calculating incubation parameters for Ebola and influenza
In the referenced papers (Nishiura et al., 2009; Pettey et al., 2017), the authors state that a gamma distribution was used to fit incubation period in both cases. However, in the Pettey paper only the mean and the 95th percentile was given, while in the Nishiura paper only the mean and the variance was given.
To obtain shape and scale parameters from these values, we used two different methods for each of the different types of stated values. For both cases we applied the following formula:


For the influenza parameters, where the mean and variance (hence standard deviation) was given in the text, this was a simple case of entering the values into the formulas. For the Ebola parameters however (where only the mean and the 95th percentile was given), this was done using Python to create a range of values for the standard deviation. From here, a range of values for the shape and scale parameters were then calculated using these formulas; one for each value in the range of standard deviations. A gamma distribution was then created from each pair of shape and scale parameters using pythons SciPy package. Each of these distributions was then assessed for the value of the 95th percentile, and the distribution which gave a value closest to the reported value in the paper was then selected, and the corresponding parameters recorded.

Calculating incubation parameters for COVID-19
In table 1 of the referenced paper (Linton et al., 2020), it is given that the mean and standard deviation for the incubation period of infected persons (obtained from 158 recordings of cases which include Wuhan resident) were 5.6 and 2.8 respectively. We can then transform these values to obtain the lognormal parameters for this distribution. Our parameterisation requires the values , which are obtained through the formulas (see https://en.wikipedia.org/wiki/Log-normal_distribution):





Full results from Influenza, SARS and Ebola modelling


	Disease name
	Incubation distribution
	Exposure time range (time before flight)
	Flight time range
	Calculated border screening success rate

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 72)
	Uniform (3, 5)
	4.60E-05

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 72)
	Uniform (7, 9)
	0.000111

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 72)
	Uniform (11, 13)
	0.000215

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 168)
	Uniform (3, 5)
	0.002125

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 168)
	Uniform (7, 9)
	0.004405

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 168)
	Uniform (11, 13)
	0.006745

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 336)
	Uniform (3, 5)
	0.009934

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 336)
	Uniform (7, 9)
	0.020002

	Ebola
	Gamma (shape: 8.27054, scale: 1.51139)
	Uniform (0, 336)
	Uniform (11, 13)
	0.030287

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 72)
	Uniform (3, 5)
	0.010119

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 72)
	Uniform (7, 9)
	0.02239

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 72)
	Uniform (11, 13)
	0.034457

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 168)
	Uniform (3, 5)
	0.027762

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 168)
	Uniform (7, 9)
	0.05589

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 168)
	Uniform (11, 13)
	0.084148

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 336)
	Uniform (3, 5)
	0.032959

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 336)
	Uniform (7, 9)
	0.060928

	SARS
	Weibull (shape: 2.59, scale: 5.8)
	Uniform (0, 336)
	Uniform (11, 13)
	0.099513

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 72)
	Uniform (3, 5)
	0.118067

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 72)
	Uniform (7, 9)
	0.228719

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 72)
	Uniform (11, 13)
	0.347704

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 168)
	Uniform (3, 5)
	0.115599

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 168)
	Uniform (7, 9)
	0.231476

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 168)
	Uniform (11, 13)
	0.348121

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 336)
	Uniform (3, 5)
	0.115613

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 336)
	Uniform (7, 9)
	0.235614

	Influenza
	Gamma (shape: :4.7556, scale:0.3007)
	Uniform (0, 336)
	Uniform (11, 13)
	0.346128



