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I. SUPPLEMENTARY INFORMATION ON THE PROCESSING OF EPIDEMI-

OLOGICAL AND MOBILITY DATA

A. Mobility Data

To get an idea of the mobility trends in the population in the time period covered by the

present study we present in Fig. S1 data taken from two different sources. In Fig.S1(a) we

average the data taken from ref. [1] for the 24 districts that make up Greater Buenos Aires

(GBA). The data was obtained by Google from cell phones of individuals who consented to

have their location activated. In Fig. S1(b) we take the data from the SUBE (acronym for

“Unique Electronic Ticket System”, in Spanish) [2]. In this case the data corresponds to the

Buenos Aires Metropolitan Area (AMBA, a bigger area that includes the GBA we studied

here and the city of Buenos Aires or CABA) and consists of the computation of all the daily

trips made by individuals in different means of transport. At the baseline the total number

of transactions was around 3,500,000 for bus, 750,000 for train and 500,000 for subway. The

subway runs only within CABA and not in Greater Buenos Aires. Population in AMBA is

around a 50% greater than that of GBA.

Boths sets of curves indicate that, within the studied period (beginning of June - end of

November) there were no sharp changes. If anything, the data suggest a gradual relaxation

of the strict measures taken at mid March. In particular, in Fig. S1a) (that only includes

GBA data) mobility trends show less variation between June and November than between

march and June.

B. Incidences from reported data

In order to study the time evolution of COVID-19 epidemic in Greater Buenos Aires we

analyzed the number of confirmed cases as a function of the Symptom-Onset-Date (SOD).

There is a variable percentage of unreported SODs for different districts, with an average of

27.6% missing SOD along the GBA in the studied period. In order to obtain this information,

we estimated it from the First-Sampling-Date (FSD) (one of the two dates is always recorded

except for around 1% of the cases). To compute the incidences of Fig. 1 (GBA, see main

text) and Fig. S2 (each district of GBA) we proceeded as follows:
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1. We estimated the probability distribution of the difference between the FSD and the

SOD (see Fig. S3).

2. We considered each confirmed case in the GBA, and when the SOD was missing we

generated it from the FSD subtracting a random time weighted using the distribution

of Fig. S3,

3. We repeat step 2) 100 times obtaining 100 different curves for each district correspond-

ing to different random generations of the missing data.

4. We computed the incidences considering the population of each district according to

2010 census corrected by a multiplying factor 1.136 in order to estimate the population

growth up to June 2020 (see section II.A in main text).

5. We finally smeared the data with a square window of three days.

C. Seroprevalence studies

There are several serological surveys carried out in the region of AMBA during 2020

in order to estimate the prevalence of SARS-CoV-2 antibodies in the population. There

are two studies conducted by state agencies that cover extended areas including downtown

areas and peripheral neighbourhoods. One performed in CABA between on September 8th

and October 18th where 2024 samples were taken giving a prevalence of 10.1% [3] and the

other carried out in AMBA (excluding CABA) during October and November where 452

positive results were obtained giving a prevalence of 11.6% [4]. In other study conducted in

popular neighbourhoods of GBA between July 16th and December 1st a mean prevalence

of 13.1% was obtained but with strong variations among different neighbourhoods [5]. In

particular in five neighbourhoods of La Matanza district (Palito, Los Ceibos, Las Antenas,

22 de Enero, and 17 de Noviembre) prevalences of 9.3%, 10.1%, 29.1%, 23.9% and 56.7%

were obtained respectively. The strong heterogeneity in the prevalence values in nearby

neighbourhoods with similar characteristics was highlighted by the authors as a phenomenon

to be explained [5]. On the other hand, the huge differences obtained for the prevalence in

the slums Barrio Padre Mugica (CABA) in June (53.4%) [6] and Villa Azul (Quilmes, GBA)

in July (14.8%) [7] has been attributed to differences in the health policy implemented in
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each case[7].

D. Estimation of the under-reporting factor in the GBA

The incidences estimated from confirmed reported data in section I B are a lower bound

to the incidences that would be obtained from the (unknown) actual cases of COVID-19.

An estimation of the under-reporting factor, fU , defined as the quotient between reported

and actual incidences, is needed in order to compare the data with simulation results, and

to have a criterion to accept or discard possible epidemiological scenarios simulated with our

model. The reciprocal factor k = 1/fU accounts for the number of actual cases that exist

for each reported one. Under-reporting may be originated in asymptomatic cases or in those

with a mild symptomatology, and also in inefficiency of the detection system. The under-

reporting factor may vary from place to place and in the course of the epidemic. In any case

its estimation is difficult due to the impossibility of quantifying precisely the missing cases.

A rough estimation of under-reporting is usually obtained as the quotient between sero-

prevalence and accumulated incidence. This gives values for k around 3 and 4 taking the

values of prevalence mentioned in the previous section, with exception of the case of the

slum Padre Mugica. There, the housing conditions led to a huge outbreak in May 2020 and

a value of k ≈ 10 was estimated [6]. A similar value (k ≈ 10.3) was estimated in Brazil,

where an extended study along the country was conducted during May and June 2020 [8]. In

this case, the authors of the study attributed the large value of k to the controversial man-

agement of the pandemic by the national government, that restricted testing to individuals

with severe symptoms during the early stages of the pandemic.

A more accurate estimation of k should take into account that negative results have

been obtained in serological surveys among people who had previously been diagnosed as

confirmed cases of COVID-19 [4, 7]. In particular, in the extended study of Ref. 4 it was

found that 4.8% of the sampled people had previously been diagnosed as confirmed cases,

but only 42% of them were positive for the antibody test. Probably, the 11.6% of the whole

sample that was positive for the antibody test is also a fraction, f+, of all the cases present

in the sample. If we assume that this fraction f+ is approximately the same as the fraction

(f+D=0.42) that gives positive for the antibody test among confirmed (detected) cases of
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COVID-19, we may obtain an estimation of the total amount of the cases, NC :

f+D = 0.42 ∼= f+ =
N+

NC

=
0.116P

NC

(1)

where P is the total population, N+ is the total amount of people estimated as seropositive

(11.6%), and NC is the total amount of cases that can be estimated from Eq. 1 as NC
∼=

0.276P . This gives, if we call ND the number of previously diagnosed cases:

k =
NC

ND

∼=
0.276P

0.048P
= 5.6 (2)

If this estimation is repeated taking the data from Ref. 4 but including only the districts

belonging to the GBA the same estimation k ∼= 5.6 is obtained.

In a different approach followed in Ref. 9 a lower bound estimation for k is obtained

by using the proportion of detected vs deceased cases in a given district. The idea was

to compute this fraction for health workers (assuming that they are frequently and closely

monitored and there are few missing cases), and compare it with the same proportion for

the whole population. Following this approach a value of k = 2.6 was estimated for Buenos

Aires Province.

In summary we will assume that plausible average-values for k in the GBA in the studied

period (June-November 2020) are between 3 and 6.

5



II. SUPPLEMENTARY INFORMATION ON THE MATHEMATICAL MODEL

AND ITS PARAMETRIZATION

In this section we give some details about the contact rates in the hierarchical model

described in section II.B, and some extra information about the parameters taken for the

model.

A. Effective contact rates in the hierarchical model

In our model, each active individual j at the level l is associated to a given group νl,j, and

interacts homogeneously with all the other active individuals belonging to the same group.

The rate of infection of a susceptible individual j is given by expression (1) of the main text,

W j
inf =

L∑
l=1

βl
Nνl,j(I1) +Nνl,j(I2)

Nνl,j − 1

whereNνl,j = Nl is the total number of individuals in group νl,j, andNνl,j(I1) andNνl,j(I2) are

the number of individuals in states I1 and I2 respectively. However, since at a given time we

consider that only a fraction fC of individuals actually participates in the infection dynamics,

we define an effective contact rate, βeff
l,j , such that the contribution to the probability of

infection of a susceptible individual j by the other members of group νl,j is given by

βeff
l,j

(
Nνl,j(I1) +Nνl,j(I2)

Nact
νl,j
− 1

)
(3)

where βeff
l,j is the number of contacts that individual j has per unit of time with other indi-

viduals of group νl,j and the factor (Nνl,j(I1) + Nνl,j(I2))/(Nact
νl,j
− 1) is the probability that

the contact occurs with an infected individual, since Nact
νl,j
− 1 is the number of active indi-

viduals in group νl,j except individual j. Throughout this work, contact, refers to infectious

contact, a contact such that if one individual is infectious and the other susceptible, the

later becomes infected.

So, comparing the term for level l in 3 with Eq.(1) of main text, we obtain that βeff
l,j , is

related with the contact parameters βl by the expression:

βeff
l,j = βl

Nact
νl,j
− 1

Nl − 1
. (4)
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Since, on average, the number of active individuals is fCNl, for Nl >> 1, βeff
l,j ≈ fCβl. But

there will be fluctuations: in the groups where the active fraction of individuals is higher, so

will be the effective contact rate. In summary, there are two types of heterogeneity in the

contacts that the model accounts for: on one hand, there is a sharp distinction between an

average fraction fC of individuals who participate in the contacts and another 1− fC that,

due to the care or isolation, does not. The individuals who participate in level l contacts,

they do so with an average rate 〈βeff
l 〉 ≈ fCβl . On the other hand, within different groups

of the same level, Nact fluctuates, and hence the effective rate βeff
l .

B. Parametrization of the model

We have proceeded as follows: first we have chosen the values for σ1, σ2, γ1, γ2, fC , Ni

and Iini. Then, the choice of the contact rate parameters, βi, is conditioned to reproduce

the rate of rise observed in the data for GBA incidence. The parameter tini is determined

after the calculations have been carried out and defines what instant of the simulation is

considered as June 1st, discarding an initial equilibration time.

Latency and contagion times

In our model the state of each individual is a different stochastic variable, so each indi-

vidual can remain in a latency or infective state for a different time, given by a probability

distribution. The choice of two latency states, E1 and E2, with constant rates, σ1 = σ2

(Fig. 2 and Table 1, main text), implies that once infected, the probability that the individ-

ual will become infective after a time t is given by the probability distribution of Fig. S4.

A very similar distribution has been obtained in Ref. 10 (Fig. 3A) from clinical data of

infector-infectee pairs in South-Korea. The distribution of Fig. S4 also resembles the typical

incubation period distribution [11] assuming contagion begins one or two days before symp-

toms onset. We have taken σ1 = σ2=2/(3 days) which gives a mean latency time < t >= 3

days, compatible with an incubation period of 4-5 days [11, 12]. In section III we check that

taking parameters compatible with larger incubation periods (that also have been reported)

does not affect the conclusions of the work [13].

States I1 and I2 are infectious states. When an individual is in any of these states, they

can infect others. Therefore, the time that an individual remains in the infectious states

of the model does not depend only on the clinic but on social factors. In Fig. S5 the red
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curve represents the probability that an individual is able to infect other people assuming

that they are contagious from the day before symptoms onset until the first sample is taken,

when probably isolation is recommended by health authorities. Since probably this advice

is not taken until the result of the PCR test, this probability should be taken as a lower

bound. Otherwise, the model accounts for all cases and not only the reported ones. Mild

symptomatic or asymptomatic individuals probably infect others for a longer time being

undetected although infectivity probably decreases over time. In fact, since the beginning

of the pandemic there has been a lot of discussion about the duration of contagion in

individuals with different symptoms [11, 14–18]. But there is some consensus that contagion

occurs basically during the first week of the onset of symptoms and that it is very rare

for it to occur beyond 10 days [17, 18]. In summary we perform most of calculations with

parameters corresponding to an average infectivity time of 7 days (blue curve, Fig. S5) and

take 5 and 10 days as lower and upper bounds.

Size and structure of the system: Ni.

The system to be simulated is a typical GBA-district of 300,000 inhabitants that, in most

scenarios considered here, is composed by 15 neighbourhoods of 20,000 inhabitants (n2E4

neighbourhoods) that in turn are made up of 10 neighbourhoods of 2,000 individuals (n2E3

neighbourhoods). Several internal structures for the n2E3 neighbourhoods were considered.

All the houses were taken of the same size (N1 = 4) in most of calculations, but in section III

we check that taking a distribution of house-sizes corresponding to the GBA does not modify

the main results of the work.

Initial number of infected individuals introduced in the system, Iini

At the beginning of the simulation Iini infected individuals are randomly introduced

among the different neighbourhoods of the system (in section III B 2 the origin of these

infected individuals is discussed). For most simulations performed we took Iini around 150

which leads to an average of 10 and 1 initial infecteds per n2E4 and n2E3 neighbourhoods

respectively. This is consistent with the fact that, at the beginning of the studied period,

the disease was quite widespread within each GBA district. However, due to fluctuations

and to the fact that there is a probability that an initial infected individual recovers before

infecting anybody, there will be a variable number of n2E3 neighbourhoods without infecteds

at the beginning of the epidemic spread. So, taking low values for the probability contact

rates among individuals from different n2E3 and n2E4 neighbourhoods lead, in general, to

8



an heterogeneous spread in the district.

Contact rate parameters, βi

These parameters, together with the Ni, define the contact structure of the system. For

the determination of the βi in each structure considered we proceeded as follows: we first

make a choice for β1. Then, we determine the other βi regarding that (i) they fulfil the

condition β1 > β2 > β3 >> β4 >> β5 that we think was valid for the region and time

studied and leads to poorly connected localities and neighborhoods, and (ii) the rate of rise

and fall of the incidence of Fig.1 is well reproduced.

We also explore β3 & β4 & β5 but in this case the structure is washed out, the system

behaves as an homogeneous mixture, and it is not possible to reproduce the slow fall of the

incidence curve.

Determination of the contact rate at home, β1: It is the number of contacts that an

individual has per unit of time with other household members. In principle, it could be

estimated from the household Secondary Attack Rate (SAR), but there are not SAR mea-

sures in Argentina and the values estimated from different studies in other countries covers

a very broad range [19]. The large dispersion in the reported SAR values is due to many

factors beyond the characteristics of the epidemic spread, such as the type of study and the

conditions of its execution. Low values of SAR are usually obtained from studies carried

out within the framework of programs where the index case is isolated from other household

members. We used values for β1 corresponding to large SAR values since we are assuming

that the fraction that participate of the contagion process do so without adequate hygienic

measures. On the other hand, contact tracing, which may have had an impact on reducing

SAR was particularly difficult to implement in the GBA region [20] and, in any case, it only

affected the reported cases that are a minority fraction of the actual cases in the studied

region. For most of our simulations we took β1 = 1.5γ ∼ 0.2141/day. For a household of size

4, using our model with βl=0 for l > 1, we obtained that the probability that a susceptible

individual in the household would become infected was 51%. To compute this probability we

include all infections (not only secondary ones). If we restrict the time window for contagion

to seven days (as in the study of Ref. 21) the probability of becoming infected reduces to

27%. These numbers seem plausible when analysing the results obtained in the study of

637 households in Bnei Brak (Israel) [22] and 101 households in Tennessee and Wisconsin

(USA) [21], and the conditions in which they were made. In sensitivity analyses in section
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III we also perform calculations with β1 = γ ∼ 0.1431/day and β1 = 2γ ∼ 0.2861/day, which

gives values of 36% and 62% respectively for the probability of becoming infected and 19%

and 35% for the corresponding ones in a reduced time window of 7 days.

It is important to highlight that the parameters involved in the model are not inde-

pendent. There are different set of parameters that produce equivalent descriptions of the

system as is noted in section III.
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III. ROBUSTNESS OF THE RESULTS AND CONCLUSIONS

We here check the robustness of our results under changes in the model parameters and

model assumptions.

A. Changes in the model parameters

In Table I we summarise the relevant information of the cases studied . All the scenarios

correspond to a system of 300,000 inhabitants. Scenarios 1 to 5 are the ones presented in

Table 2 (main text) where we observed (i) the effect of changing the structure from a set of

well mixed houses to a more complex hierarchical one ( scenarios 1 and 2, respectively), that

impacts in how the incidences fall after the peak, (ii) the effect of considering a high degree of

heterogeneity at the beginning of the spread (low Iini, scenario 3), that gives fluctuations in

the obtained incidences comparable with those observed for different districts of GBA, and

(iii) the effect of changing the fraction, fC , of individuals that participate of the contagion

process (scenarios 4 and 5) that defines the predicted value of the under-reporting factor

(1/k). We concluded that fC should be lower than 0.5 in order that the model does not give

incidence values unjustifiably much larger than those estimated from epidemiological data

(see section I D); this excludes scenario 5 from the possible cases. The analysis also pointed

to scenarios 2 and 3 as the more plausible ones. The purpose of the additional scenarios

presented here (6 to 14) is to show that this “plausibility” is not restricted to a particular

combination of parameters, but there is a broad spectrum of them. Some features are kept

fixed to simplify the analysis of the results: all scenarios correspond to 4-members household

living in neighbourhoods of 2,000 individuals (n2E3 neighbourhoods) which are connected

with each other forming neighbourhoods of 20,000 individuals (n2E4 neighbourhoods) that

are very weakly connected.

Scenarios 6 and 7 have the simplest possible structure inside the n2E3 neighbourhoods

(i.e., each n2E3 group consists of 500 families). The main difference between both cases is

that in scenario 7 the n2E3 neighbourhoods are more weakly connected than in scenario 6.

This causes the incidence of case 6 to fall faster after the peak than that of scenario 7 (Fig.

S6), as we observed for scenarios 1 and 2. However, here it is evident that the difference is

related exclusively to the ratio of contact rates within n2E3 neighbourhoods and between
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different n2E3 neighbourhoods (β3/β2). We checked that by changing the relationship β3 vs

β2, any intermediate behaviour for the fall of the incidences can be obtained. In scenarios 2,

8, and 9 a greater level of complexity is added with respect to case 7: the n2E3 neighbour-

hoods have an internal structure beyond the house. Houses are connected in groups of 5

(case 2), 10 (case 8) or 50 (case 9). For scenarios 8 and 9, incidences (not shown) present an

agreement as good as for scenario 2 (panel a2) of Fig. 5, main text). For this to be possible,

it was necessary to decrease the values of β2 (and also β3 in scenario 9), that is to say that

the greater availability of susceptible individuals in the second level for these cases can be

offset, basically, by a decrease of the corresponding contact rate.

In the following scenarios (10 to 14) we kept fixed the structure of case 2 and study the

effect of changing a single parameter in each case. In scenarios 10 (11) we check the effect of

considering a greater (lower) value for β1. In scenario 10, the same incidence behaviour than

in case 2 was reproduced by lowering β3. In scenario 11, to achieve the rate of rise observed

in the data, it would have been necessary to raise the other β-values. But, increasing β2

and β3 does not seem very plausible, as gives β1 ∼ β2 ∼ β3, and increasing β4 or β5 leads

to a more rapid fall in the incidence as was observed in cases 1 or 6. In this case, it was

possible to reproduce the observed incidence behaviour (for a reasonable set of contact rates)

increasing the value of Iini.

In scenario 12, tlat was increased by 50%. As is well known, an increase in the latency time

decreases the growth rate of the epidemic [23]. Therefore, to obtain the expected growth

rate it was necessary to raise the contact rates, which gave a higher R(0) ∼ 1.6.

In scenario 13 (14) an increase (decrease) of tinf is considered. To reproduce the observed

epidemic growth rate it was necessary to increase (decrease) the contact rates relative to the

recovery rate, γ, which gives higher (lower) values of R(0) ∼ 1.65 (1.35).

It is important to note that beyond the fact that we think the more plausible values for

β1, tlat and tinf , are 1.5γ, 3 days, and 7 days respectively, we have proven that a different

value in each one of these parameters does not change the possibility of reproducing the

observed features of epidemiological data by modifying other parameters within an equally

plausible range.

The time evolution of incidences for scenarios 8 to 14 are not shown, as the behaviour is

quite similar to those of scenarios 2 and 7, nearly approaching the one of GBA incidence. In

fact, the objective of these simulations was to prove that this could be obtained for a variety

12



of cases. Other result obtained from the studied scenarios concerns the value of R(0), that

is a good approximation to the R0 of the system. We observed that in scenarios 1 to 12 it

fluctuates around 1.5 within an approximately range 1.3 − 1.7. However, fluctuations are

more related to stochasticity (at the beginning of the epidemic spread) than to the different

structures and parameters explored.

We have also performed simulations for 150 < Iini < 300 finding that for Iini up to

250 a reasonable agreement can be obtained with the epidemiological data by changing the

beta within a plausible range. For Iini values greater than 250 it is no longer possible to

approximate the epidemiological data within a reasonable range of the model parameters.

The results shown test different hierarchical structures for fixed system size of 300,000

individuals. We have also checked the robustness of our conclusions for other structures at

the same size, and for some structures at system sizes of 500,000 and 1,500,000 people (not

shown).

B. Validation of some model assumptions

1. Immunity acquisition assumption

We have assumed that, after infected, individuals acquire lasting immunity that protects

them against re-infection and disease during the period of our study (6 months). Even

there is enough evidence that infection with SARS-CoV-2 provided 80-90% protection from

reinfection up to 7 months [24], protection is not 100%, and some individuals may reinfect

and spread this infection. To estimate how this could affect our results we have made an

estimation of the order of magnitude of the effect using the deterministic model outlined

in Fig. S7. The model assumes that once infected for the first time, a fraction fAI of

the population acquires immunity while a complementary fraction may be re-infected any

number of times. It is assumed that when re-infected, individuals behave and experience the

disease in the same way as subjects infected for the first time. The dynamic of the model is

13



described by the following set of differential equations:

ds

dt
=− λs

de1

dt
=λs− σ1e1,

de2

dt
= σ1e1 − σ2e2

di1
dt

=σ2e2 − γ1i1,
di2
dt

= γ1i1 − γ2i2

dr

dt
=fAIγ2i2

ds′

dt
=(1− fAI)γ2i2 − λs′ + γ2i

′
2

de′1
dt

=λs′ − σ1e
′
1,

de′2
dt

= σ1e
′
1 − σ2e

′
2

di′1
dt

=σ2e
′
2 − γ1i

′
1,

di′2
dt

= γ1i
′
1 − γ2i

′
2

where s, ej, ij, r, s
′, e′j, and i′j are the fraction of individuals in the classes S, Ej, Ij, R, S’, E′j,

and I′j respectively. The incidence is computed by: Inc(t) = λ(s+ s′). In Fig. S8(a) it could

be seen that the magnitude of the effect is small. Even when there is a fraction of individuals

that could be infected many times, it does not happen for these model parameters. Only a

43% of individuals that enter S ′ class lead to new infections. In Fig.S8 (b) it is shown that

the rate of rise of incidence is almost the same for both values of fAI while the curve falls

down a bit slower for fAI = 0.80. It can also be seen from the figure, that the effect could

be partially absorbed by considering a lower fraction of active individuals. We mean that

if fAI = 0.80 is taken, but fC=0.21, a similar description is obtained than when fC=0.25

and the possibility of re-infection is neglected. We therefore do not expect the results of our

study to be qualitatively modified by the inclusion of re-infections in the hierarchical model.

2. Consideration of a growing influx of infections from CABA

We analyse here the implications and plausibility of this assumption. We discuss first the

probable origin of the infected individuals originally introduced into the system. The spread

of COVID-19 begins in the GBA in March from the entry of cases imported from abroad

and had a very slow development at the beginning due to the severe restrictions imposed.

Two factors probably contributed to the increase in the circulation of the disease observed

in early June: 1) the increase in mobility that was continuous and sustained from March

14



to June and facilitated the spread of cases that already existed in the GBA; 2) the entry of

infections from CABA. It is likely that a fraction of individuals had brought the infection

from CABA to GBA, since many people from the GBA districts commute to work in the

city of Buenos Aires; on the other hand, it is very difficult to estimate the magnitude of this

effect during the period of restrictions, and to know if it played a relevant role. This effect

of imported infections, if any, probably increased during the month of May since incidences

in CABA grew strongly since 1st May (see Fig. S9) and could have dragged the growth seen

in GBA from June. If this was the case, it is logical to assume that the effect continued

during the following months.

To estimate the impact of this effect (which was not considered in the previous results) we

have carried out simulations in which, instead of starting with a number of initial infected,

Iini, we daily change the state of a number Nout of individuals from S to I, assuming they

have cought the infection outside the district. We take this number proportional to the

incidence in CABA as is schematized in Fig. S9, assuming that the number of people who

travel daily to CABA remained approximately constant over time, and that the probability

of them becoming infected is proportional to the circulation of the disease in CABA. The

constant of proportionality taken is such that by June 1, 90 infected had entered; at the

end of June, 300, and the total number of infections entering from CABA during the whole

period analised here added to 1,310. We first performed a simulation taking the parameters

of scenario 2; the results are shown in Fig. S10(a). The introduction of an increasing number

of infections from outside the district increases the value of the incidence at the peak in a

factor 1.33 with respect to the original scenario 2, and the curve drops sharply after the

peak (heterogeneous spread is lost). We then repeat the simulation in identical conditions

but taking β4 = β5 = 0. In this case the incidence evolution is very similar to that of

scenario 2 (See Fig. S10(b)). We conclude that the considered entry of infections from

outside the district plays the same role that the contacts between individuals from different

neighbourhoods in scenario 2. From our analysis, we cannot conclude which picture is closer

to what really happened.

In summary, if we assume that the initial infected individuals, Iini, considered in the

simulations presented in the main text, originate in infections caught in CABA basically

in May, the additional assumption that this income of infections continues in an increasing

rate does not change the conclusions of our work.
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On the other hand, the infections caught outside the district, Nout(t), are probably not

randomly distributed in the system, as considered. Probably individuals from some neigh-

borhoods were more likely to work in CABA. If this was the case, we do not expect the

results of the simulations shown in Fig.S10(a) to differ so much with the ones of scenario 2.

Probably renormalizing all the βi would be enough to account for the effect.

3. Consideration of GBA household size distribution

In order to verify that having taken a fixed size equal to 4 for the households does not

modify the conclusions of the work, we carried out simulations for a structure like the one

in scenario 2, but taking a distribution of households like the one reported for the GBA [25]

(see table S1).

The allocation of households made up of active and inactive individuals was carried

out randomly taking into account that the resulting distributions for the entire district

respect the proportions of the table S1). However, within each neighborhood there may be

fluctuations (as also happens in reality). It is not obvious how to modify the probability

contact rate between the individuals in the household depending on the size of the household.

We have carried out simulations with two criteria:

a) Assuming that the probability contact rate for an individual, j, within household,

(W j
H), is the same independently of the household size.

W j
H = β

(a)
1

Nν1,j(I1) +Nν1,j(I2)

Nν1,j − 1
(5)

b) Assuming that the probability contact rate for an individual within household increases

proportionally to the household size

W j
H = β

(b)
1

(
Nν1,j(I1) +Nν1,j(I2)

)
(6)

In the case of households with a fixed size equal to 4, Ec. 6 is reduced to Ec. 5 if we take

β
(b)
1 = β

(a)
1 /3. Then we will use: in a) β1 = 0.214 1/day and in b) β1 = 0.07 1/day, so that

both cases give the same W j
H for households of size 4 as in scenario 2. For all the other

parameters we take the same values as in scenario 2.

The incidences obtained for case b) are extremely similar to those of scenario 2. The only

difference to mention is that in case b) the incidences corresponding to diverse samples tend
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to show more stochastic variations between each other. This is to be expected due to the

greater spatial heterogeneity in this case.

The incidences obtained for case a) are slightly lower than those of scenario 2 and, for

some samples, the rate of rise of the curve is lower and the position of the peak is shifted to

the right. The agreement with the incidences of scenario 2 is recovered by slightly changing

the βi: increasing β2 and β3 by 10% and reducing β4 by 14%.

In summary, given the small effect observed in these tests we have carried out, we do not

expect that taking into consideration the size distribution of the households will change any

of the conclusions of the study. Only a slightly greater heterogeneity in the spread of the

disease could be expected.
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Supplementary Tables S1-S2

TABLE S1. Household size distribution taken for the simulations discussed in this section. The

distribution corresponds to that reported in the 2010 census for Greater Buenos Aires [25] except

that here we assign a size equal to 6 to the larger households.

Household size 1 2 3 4 5 6

Percentage 15% 22% 21% 20% 11% 11%
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Supplementary Figures S3-S10
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Fig. S3. Probability that the first Sampling is taken a time t after the onset of symp-

toms. A total of 272,894 cases where both the SOD and the FSD are recorded in the interval from

June 1st and November 30th in the GBA region were used to construct this histogram. The thin

line is to guide the eye.
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Fig. S4. Latency time distribution. Probability that an individual becomes infectious in the

time interval (t, t + dt) since the infection, given by the model for σ1 = σ2 = 2/tlat. It can be

computed analytically by p(t) = 4t/t2lat exp (−2t/tlat).
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Fig. S5. Estimations of the probability that an individual is contagious during a time

t. The stepped (red) curve is computed from the data of Fig. S3 assuming that an individual is

contagious from the day before symptoms onset until the first sample is taken. The other curves

are obtained from the model for γ1 = γ2 = 2/tinf for different values of tinf and are given by

(1 + 2t/tinf) exp (−2t/tinf).
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Fig. S6. Incidences as a function of time for two scenarios. Simulated (blue) and reported (red)

daily cases per 100,000 inhabitants as a function of time for the hierarchical structure of scenario

6 (a) and scenario 7 (b), see Table S1. In both cases, the structure is the same, and individuals

have the same average number of contacts with their neighbours inside the n2E4 neighbourhoods

(β2 + β3). However, the n2E3 neighbourhoods are more weakly connected (lower β3) for scenario

7 than for scenarios 6. Simulations are compared with reported cases (red) in Argentina’s Greater

Buenos Aires, where t=0 corresponds to the 1st June 2020. In order to approach the simulation

incidences, the data were multiplied by a constant factor k = 4.7 for scenario 6, and k=4 for

scenario 7. The green curve (right y-axes) shows the simulated R(t) computed with Ec.(2) (main

text).
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Fig. S7. Deterministic model where only a fraction fAI of the infected individuals

acquire lasting immunity. When fAI=1, the model reduces to the one used to compute the

curves of Fig. 4 (main text): individuals in the susceptible (S) class are infected at a rate λ entering

a chain of exposed (Ei) classes where they are not infectious. They then move along the chain to

the infectious classes (Ii) and finally recover, entering the immune class R. However, when fAI < 1,

a fraction 1−fAI of individuals who were infected for the first time, enter an S’ class (when leaving

I2 class) where they may become re-infected at the same rate λ of susceptible individuals in S class.

Re-infected individuals do not acquire immunity, they perform a closed loop where they may be

re-infected any number of times. σ1 = σ2 = 2/tlat, γ1 = γ2 = 2/tinf . The force of infection is the

only time dependent rate: λ = β(i1 + i2 + i′1 + i′2), where ij and i′j are the fraction of individuals

in classes Ij and I′j respectively (j = 1, 2).
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Fig. S8. Incidences vs time predicted by the deterministic model of Fig. S7. Incidences

(in daily cases per 100,000 population) where obtained for R0=1.45, tinf=7 days, tlat=3 days,

and two different values of the fraction of the population that acquires immunity (fAI). (a) Time

evolution of the system from an initial condition (t=0) with s=0.9999, and i1=0.0001 for fAI=1

(violet) and fAI=0.80 (orange). Incidences are multiplied by a factor fC= 0.25, assuming the

model describes the spread among a fraction fC of active population. The violet curve is the same

than in Fig. 4 (main text) multiplied by fC . (b) The same than (a), but the orange curve has been

multiplied by a factor fC=0.21 and has been shifted 5 days leftwards, so that both curves reach

the maximum at the same time.
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Fig. S9. Inward flow of infected individuals from CABA. CABA (cyan) and GBA (red)

incidences vs time. A flow of infected individuals introduced in the system, Nout(t) (black, right

y-axis), is used to simulate a hypothetical entry of infections from CABA to a typical GBA-district.

Incidences (in cases per day per 100,000 inhabitants) are plotted as a function of the symptom

onset day, where time = 0 corresponds to 1st June. The steep slope of CABA incidences starts

around 1st May, a month before than in GBA.
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Fig. S10. Scenarios with an inward flow of infected individuals from CABA. Simulated

(blue) and reported (red) daily cases per 100,000 inhabitants as a function of time for a non-

isolated district. Differently from previous cases, we start with no infected individuals. At time t,

the epidemiological state of a number Nout(t) of randomly chosen active individuals was switched

from S to I1. Nout(t) is the function plotted in Fig. S9. Panel (a) shows the incidence obtained

for parameters corresponding to scenario 2 (except Iini), where the data were multiplied by a

factor k=6 in this case. We used the same parameters in panel (b), excluding contacts between

individuals from different neighbourhoods (β4 = β5 = 0). In this case, the data were multiplied by

k = 4 (very similar to the k=4.5 used in scenario 2).
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