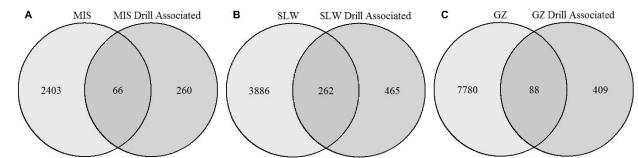
1 **Title:** Environmentally clean access to Antarctic subglacial aquatic environments

2

- Authors: Alexander B. Michaud^{1,†,*}, Trista J. Vick-Majors^{1,2}, Amanda M. Achberger^{3,§}, Mark L.
 Skidmore⁴, Brent C. Christner^{3,5}, Martyn Tranter⁶, John C. Priscu^{1,*}
- 5
- 6 Affiliations:
- ⁷ ¹Department of Land Resources and Environmental Sciences, Montana State University,
- 8 Bozeman, MT, USA
- 9 ²Department of Biological Sciences, Michigan Technical University, Houghton, MI, USA
- ¹⁰ ³Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- ⁴Department of Earth Sciences, Montana State University, Bozeman, MT, USA
- ⁵Department of Microbiology and Cell Science, Biodiversity Institute, University of Florida,
- 13 Gainesville, FL, USA
- ⁶Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK
- 16 *Correspondence to: <u>a.b.michaud@gmail.com</u> and <u>jpriscu@montana.edu</u>
- 17
- 18 Present Address:
- 19 [†]Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
- 20 [§]Department of Oceanography, Texas A&M University, College Station, TX, USA
- 21


22 Supplemental Material

23

Supplemental Table 1. ATP and cell concentrations from the three drilling sites; data used forFigure 4.

		McMurdo Ice Shelf				Whillans Subglacial Lake				Whillans Grounding Zone			
		ATP		Cells		ATP		Cells		ATP		Cells	
Timepoint	Port	(pM)	error (pM)	(ml^{-1})	error (ml^{-1})	(pM)	error (pM)	(ml^{-1})	error (ml^{-1})	(pM)	error (pM)	(ml^{-1})	error (ml^{-1})
T0	1	1.108	0.044	5991	918	0.572	0.020	1851	ND	0.058	0.010	458	ND
	8	0.128	0.001	181	82	0.027	0.001	361	ND	0.092	0.010	40	ND
	9	ND	ND	ND	ND	0.020	0.004	288	ND	ND	ND	ND	ND
T1	1	0.488	0.014	3976	534	ND	ND	ND	ND	0.260	0.023	243	ND
	8	0.023	0.002	327	115	0.046	0.003	337	ND	0.073	0.045	204	ND
	9	ND	ND	ND	ND	0.019	0.001	272	ND	ND	ND	ND	ND
T2	1	0.329	0.035	3399	770	ND	ND	ND	ND	0.095	0.014	418	ND
	8	0.021	0.005	109	101	ND	ND	ND	ND	0.010	0.008	148	ND
	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										-			
Α	MIS	MI	S Drill Associ	ated	в	SLW	SLW Drill	Associa	ted C		GZ GZ	Drill A	ssociated

28 29

- Supplemental Figure 1. Operational taxonomic units in sub-ice habitats and drill water from the McMurde Lee Shelf (A) Whilene Subshelf (B) and Whilene Crown ding Zone (C)
- 30 McMurdo Ice Shelf (A), Whillans Subglacial Lake (B), and Whillans Grounding Zone (C).