Supplemental Material 1: Methods for *in situ*-produced ³⁶Cl cosmic ray exposure dating

Basaltic whole rock samples were processed at CEREGE, Aix-en-Provence, France, for *in situ*-produced ³⁶Cl cosmic ray exposure (CRE) dating, following the method described in Schimmelpfennig et al. (2011). We first took bulk rock aliquots for analyses of the major and trace element concentrations at the Service d'Analyse des Roches et des Minéraux (SARM, Nancy, France) (Tables S1 I & II). These analyses later allow estimating the contribution of the capture of low-energy neutrons on ³⁵Cl to the production of ³⁶Cl, which is difficult to constrain (Schimmelpfennig et al. 2009). Regarding our samples, this reaction contributes to only ~ 3% to ~21% to the total ³⁶Cl production due to their relatively low Cl concentrations (10-84 ppm, Table II in the main text). Samples were crushed and sieved to obtain a grain size fraction of 250-500 µm. They were then shaken in a HF/HNO3 acid mixture to remove atmospheric ³⁶Cl and potential Cl-rich contaminants (Schimmelpfennig et al. 2009). This first dissolution removed about 40% of the initial samples weight. A 2 g aliquot of the rinsed and dried sample grains was then sent to SARM for major elements concentrations analysis by ICP-OES (Table S1 II), in order to analyse the major element concentrations, including Ca, K, Ti and Fe, which are the target elements for spallogenic/muogenic ³⁶Cl production. Finally, a ³⁵Cl-enriched spike (~99%) was added for isotope dilution (Ivy-Ochs et al. 2004) and totally dissolved the samples in a HF/HNO3 acid mixture. The further steps strictly followed those described in Schimmelpfennig et al. (2011). ³⁶Cl/³⁵Cl and ³⁵Cl/³⁷Cl ratios were measured by isotope dilution accelerator mass spectrometry (AMS) at the French AMS national facility ASTER after normalization to the inhouse standard SM-CL-12, using an assigned value of 1.428 (\pm 0.021) x 10–12 for the ³⁶Cl/³⁵Cl ratio (Merchel *et al.* 2011) and assuming a natural ratio of 3.127 for the stable ratio ³⁵Cl/³⁷Cl. After correction for the average number of atoms of the three chemistry blanks processed during the joint preparation of the samples from Jomelli et al. (2017, 2018), the ³⁶Cl and Cl

concentrations were calculated (Table II in the main text) (Sharma *et al.* 1990). ³⁶Cl ages were computed with the Excel® spreadsheet published by Schimmelpfennig *et al.* (2009), taking into account the chemical composition of each sample (Tables S1 I & II). The ³⁶Cl production rates, referenced to sea level and high latitude (SLHL), used for the calculations are: 42.2 ± 4.8 atoms of ³⁶Cl (g Ca)⁻¹ yr⁻¹ for Ca spallation (Schimmelpfennig *et al.* 2011), 148.1 \pm 7.8 atoms of ³⁶Cl (g K)⁻¹ yr⁻¹ for K spallation (Schimmelpfennig *et al.* 2014), 13 \pm 3 atoms of ³⁶Cl (g Ti)⁻¹ yr⁻¹ for Spallation of Ti (Fink *et al.* 2000), 1.9 ± 0.2 atoms of ³⁶Cl (g Fe)⁻¹ yr⁻¹ for Fe spallation (Schom *et al.* 2005), and 696 \pm 185 neutrons (g air)⁻¹ yr⁻¹ for the rate of epithermal neutron production from fast neutrons in the atmosphere at the earth/atmosphere interface (Marrero *et al.* 2016). These production (Table I in the main text). The scaling factor used is based on the time-invariant "St" method (Stone 2000) (Table II in the main text). We applied a high-energy-neutron attenuation length value of 160 g cm⁻² and a bulk rock density of 2.4 g cm⁻³ for the calculation of all samples.

OES (major	elemer	ıts), ICF	-MS (tr	ace elem	tent), ato	mic abs ¹	orption (Li), col	orimetry	(B) and	spectro	photom	etry (Cl)					
Sample Name	CaO %	K2O %	TiO2 %	Fe2O3 %	CI (ppm)	SiO2 %	Na2O %	MgO %	A12O3 %	MnO %	P2O5 %	CO2 %	Li (ppm)	B (ppm)	Sm (ppm)	(mqq)	Th (ppm)	(mqq)
Ker-42	2.28	5.99	0.5	7.1	125	59.79	5.73	0.44	17.91	0.19	0.18	0.47	18.1	6.1	9.58	7.18	13.7	2.94
Ker-44	3.51	5.05	1.67	9.05	245	51.15	3.94	1.81	17.08	0.19	0.76	4.63	22.2	6.4	10.2	7.99	7.68	2.15
Ker-45	6.33	2.93	2.19	10.00	215	48.93	3.88	2.94	17.94	0.18	0.85	1.82	12.3	4.3	11.1	8.96	7.08	1.6
Ker-47	6.88	2.69	2.75	11.19	220	47.57	3.87	3.39	17.62	0.17	0.93	2.89	10.9	5.0	9.93	8.11	6.97	1.61
Ker-49	7.54	2.79	2.79	10.92	120	49.35	3.88	3.41	17.67	0.17	0.96	0.83	5.45	5.4	10.5	8.57	6.48	1.48
Ker-50	6.14	3.29	1.62	8.27	86	49.96	4.06	2.1	18.79	0.16	0.8	5.90	9.46	2.9	9.63	7.64	6.82	1.08
Ker-56	9.9	1.58	3.45	11.79	195	44.28	2.86	3.95	16.88	0.17	1.49	1.37	5.88	3.3	10.8	9.03	3.68	0.7
Ker-57	9.29	1.1	2.67	13.66	80	44.09	2.09	8.38	13.75	0.18	0.47	0.89	6.51	2.3	6.05	5.45	2.86	0.6
Ker-58	7.5	2.56	2.78	11.24	83	48.8	4.13	3.62	17.05	0.17	0.99	1.28	8.42	4.2	11.1	9.13	6.81	1.51
Ker-65	7.04	2.66	3.26	12.02	185	45.03	3.27	4.09	16.13	0.16	0.76	7.62	6.85	4.6	8.44	6.85	69.9	1.5
Ker-66	7.77	2.51	2.61	10.55	360	49.91	4.05	3.49	17.8	0.16	0.93	0.79	7.71	4.2	9.49	7.82	5.88	1.32
Ker-67	7.77	2.55	2.49	10.2	135	49.36	4.11	3.4	17.95	0.16	0.92	0.98	8.20	3.5	9.87	8.0	5.97	1.23
Ker-68	6.19	3.49	1.77	8.68	99	51.46	4.22	2.14	18.78	0.15	0.84	2.71	10.1	2.2	9.72	7.65	6.97	0.92

6	
y I	
.ط	
9	
ŭ	
Hr.	
5	
Va1	
9	
Q	
R	
Ŷ	
\geq	
ŁR	
S	<u> </u>
he	0
t tl	y (
l a	etr
Jec	ň
E	oto
rfo	hc
be	lo
12.	cti
lys	spe
na	d s
Ą	an
nt.	$\widehat{\mathbf{m}}$
nei	0
atn	try
ïe	ne
alt	rit
<u>ič</u> .	olo
g	ŏ,
ch	()
ē	U
fo	01
þ,	pti
es	SOL
Įđ	ab
an	<u>.</u>
ς s	n
oci	ato
V L),
ull	ant
b b	m
the	ele
of	ě
$\mathbf{1S}$	rac
101	E
sit	US
bo	-
ШС	$\overline{\mathbf{O}}$
ర), 1
cal	<u>its</u>
Ē.	let
hei	en
Ο	e]
ï	jor
$\mathbf{S1}$	na
le	<u> </u>
ab	ES
E	0

Sample Name	CaO %	K2O %	TiO ₂ %	Fe2O3 %	SiO2 %	Na2O %	MgO %	Al2O3 %	MnO %	P2O5 %
G2										
Ker-42	2.17 ± 0.33	6.10 ± 0.31	0.55 ± 0.11	$\textbf{5.03}\pm0.50$	62.0 ± 1.2	$\textbf{5.28} \pm \textbf{0.26}$	0.320 ± 0.064	16.97 ± 0.33	0.095 ± 0.019	0.0300 ± 0.0045
Ker-44	3.38 ± 0.51	4.87 ± 0.49	2.30 ± 0.23	9.09 ± 0.91	57.1 ± 1.1	3.90 ± 0.19	1.06 ± 0.11	15.61 ± 0.31	0.130 ± 0.026	0.120 ± 0.018
Ker-45	6.04 ± 0.30	3.11 ± 0.31	2.52 ± 0.25	9.16 ± 0.92	54.3 ± 1.1	3.98 ± 0.20	2.26 ± 0.23	16.49 ± 0.33	0.140 ± 0.028	0.250 ± 0.038
G1										
Ker-47	7.21 ± 0.36	2.27 ± 0.23	3.06 ± 0.31	9.87 ± 0.99	51.1 ± 1.0	3.84 ± 0.19	2.46 ± 0.25	18.48 ± 0.37	0.130 ± 0.026	0.150 ± 0.023
Ker-49	7.68 ± 0.38	2.22 ± 0.22	3.03 ± 0.30	9.60 ± 0.96	50.9 ± 1.0	3.72 ± 0.19	2.89 ± 0.29	18.46 ± 0.37	0.120 ± 0.024	0.160 ± 0.024
Ker-50	6.61 ± 0.33	2.96 ± 0.30	1.65 ± 0.17	$\textbf{5.98} \pm \textbf{0.60}$	55.3 ± 1.1	4.24 ± 0.21	1.33 ± 0.13	20.33 ± 0.41	0.087 ± 0.017	0.140 ± 0.021
Ker-56	9.28 ± 0.46	1.71 ± 0.17	4.27 ± 0.43	9.15 ± 0.92	51.6 ± 1.0	2.94 ± 0.15	2.45 ± 0.25	15.72 ± 0.31	0.150 ± 0.030	0.690 ± 0.035
Ker-57	10.00 ± 0.20	1.08 ± 0.11	3.04 ± 0.30	11.70 ± 0.23	50.1 ± 1.0	2.09 ± 0.10	8.20 ± 0.41	12.00 ± 0.24	0.150 ± 0.030	0.180 ± 0.027
Ker-58	8.45 ± 0.42	1.85 ± 0.19	2.86 ± 0.29	9.30 ± 0.93	50.9 ± 1.0	3.78 ± 0.19	3.22 ± 0.32	19.11 ± 0.38	0.130 ± 0.026	0.210 ± 0.032
Ker-65	6.93 ± 0.35	2.72 ± 0.27	3.53 ± 0.35	11.19 ± 0.22	50.7 ± 1.0	3.30 ± 0.16	3.25 ± 0.33	15.98 ± 0.32	0.140 ± 0.028	0.390 ± 0.059
Ker-66	7.87 ± 0.39	2.10 ± 0.21	3.11 ± 0.31	9.86 ± 0.99	50.3 ± 1.0	3.68 ± 0.18	3.11 ± 0.31	18.50 ± 0.37	0.130 ± 0.026	0.220 ± 0.033
Ker-67	6.87 ± 0.34	2.36 ± 0.24	3.25 ± 0.36	10.96 ± 0.22	50.4 ± 1.0	3.68 ± 0.18	3.12 ± 0.31	17.21 ± 0.34	0.140 ± 0.028	0.130 ± 0.020
Ker-68	6.41 ± 0.32	2.91 ± 0.29	1.70 ± 0.17	6.53 ± 0.65	54.6 ± 1.1	4.22 ± 0.21	1.54 ± 0.15	19.93 ± 0.40	0.094 ± 0.019	0.150 ± 0.023

Sis	
ıaly	
. Ar	
ing)	
stchi	
id e	
t (ac	
nen	
eatr	
e-tr	
al pı	
mic	
chei	
the	
fter	
es a	
Iqm	
e sa	
n th	
froi	
ken	
ts ta	
spli	
d in	
ine	
term	
, de	OES
ides	CP-
t ox	by I
men	(e)
eleı	Tan
ajor	cy, I
e m	Van
of th	C D
ons c	RP
ratic	ž
centi	SAR
Conc	the S
II :	at t
S1	med
ble	rfon
Ta	pei

Supplemental references

- FINK, D., VOGT, S. & HOTCHKIS, M. 2000. Cross-sections for ³⁶Cl from Ti at Ep = 35-150 MeV: Applications to in-situ exposure dating. *Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms*, **172**, 861– 866, 10.1016/S0168-583X(00)00200-7.
- IVY-OCHS, S., SYNAL, H.A., ROTH, C. & SCHALLER, M. 2004. Initial results from isotope dilution for Cl and ³⁶Cl measurements at the PSI/ETH Zurich AMS facility. *Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms*, 223–224, 623–627, 10.1016/j.nimb.2004.04.115.
- JOMELLI, V., MOKADEM, F., SCHIMMELPFENNIG, I., CHAPRON, E., RINTERKNECHT, V., FAVIER, V., VERFAILLIE, D., et al. 2017. Sub-Antarctic glacier extensions in the Kerguelen region (49°S, Indian Ocean) over the past 24,000 years constrained by ³⁶Cl moraine dating. *Quaternary Science Reviews*, **162**, 128–144, 10.1016/j.quascirev.2017.03.010.
- JOMELLI, V., SCHIMMELPFENNIG, I., FAVIER, V., MOKADEM, F., LANDAIS, A., RINTERKNECHT, V., BRUNSTEIN, D., et al. 2018. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from ³⁶Cl dating. *Quaternary Science Reviews*, **183**, 110– 123, 10.1016/j.quascirev.2018.01.008.
- MARRERO, S.M., PHILLIPS, F.M., CAFFEE, M.W. & GOSSE, J.C. 2016. CRONUS-Earth cosmogenic ³⁶Cl calibration. *Quaternary Geochronology*, **31**, 199–219, 10.1016/j.quageo.2015.10.002.
- MERCHEL, S., BREMSER, W., ALFIMOV, V., ARNOLD, M., AUMAÎTRE, G., BENEDETTI, L., BOURLÈS, D.L., et al. 2011. Ultra-trace analysis of ³⁶Cl by accelerator mass

spectrometry: an interlaboratory study. *Analytical and Bioanalytical Chemistry*, **400**, 3125–3132, 10.1007/s00216-011-4979-2.

- SCHIMMELPFENNIG, I., BENEDETTI, L., FINKEL, R., PIK, R., BLARD, P.-H., BOURLÈS, D.,
 BURNARD, P. & WILLIAMS, A. 2009. Sources of in-situ ³⁶Cl in basaltic rocks.
 Implications for calibration of production rates. *Quaternary Geochronology*, 4, 441–461, 10.1016/j.quageo.2009.06.003.
- SCHIMMELPFENNIG, I., BENEDETTI, L., GARRETA, V., PIK, R., BLARD, P.-H., BURNARD, P., BOURLÈS, D., FINKEL, R., AMMON, K. & DUNAI, T. 2011. Calibration of cosmogenic
 ³⁶Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). *Geochimica et Cosmochimica Acta*, **75**, 2611–2632, 10.1016/j.gca.2011.02.013.
- SCHIMMELPFENNIG, I., SCHAEFER, J.M., PUTNAM, A.E., KOFFMAN, T., BENEDETTI, L., IVY-OCHS, S., ASTER TEAM & SCHLÜCHTER, C. 2014. ³⁶Cl production rate from Kspallation in the European Alps (Chironico landslide, Switzerland). *Journal of Quaternary Science*, **29**, 407–413, 10.1002/jqs.2720.
- SHARMA, P., KUBIK, P.W., FEHN, U., GOVE, H.E., NISHIIZUMI, K. & ELMORE, D. 1990.
 Development of ³⁶Cl standards for AMS. *Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms*, **52**, 410–415, 10.1016/0168-583X(90)90447-3.
- STONE, J.O. 2000. Air pressure and cosmogenic isotope production. *Journal of Geophysical Research*, **105**, 753–759, 10.1029/2000JB900181.
- STONE, J.O., FIFIELD, K. & VASCONCELOS, P. 2005. Terrestrial chlorine-36 production from spallation of iron. In Abstract of 10th International Conference on Accelerator Mass Spectrometry.