Signature Restriction for Polymorphic Algebraic Effects
(Supplementary Material)

Taro Sekiyama!, Takeshi Tsukada?, and Atsushi Igarashi?

'National Institute of Informatics & SOKENDAI
tsekiyama®@acm.org
2Chiba University
tsukada@math.s.chiba-u.ac. jp
3Kyoto University
igarashi@kuis.kyoto-u.ac. jp

This is the supplementary material for “Signature Restriction for Polymorphic Algebraic Effects” submitted to
Journal of Functional Programming, providing the full definitions of the language, the polymorphic type system,
and the type-and-effect system and the full proofs of the properties presented in the article.

1 Definition

1.1 Syntax
Variables z,y,z, f,k Type variables «, 3,y Effect operations op
Base types ¢ = bool |int| ...
Types A,B,C,D 2= a|t|A—=>B|Va. A|AxB| A+ B| Alist
Constants ¢ = true|false |0 |+ ...
Terms M n= x| c| .M | My My | #op(M) | handle M with H |

(Ml,MQ) | 7T1M | 7T2M |
inl M | inr M | case M of inlx — My; inry — My |
nil | cons M | case M of nil — My; consz — My | fix f. z. M
Handlers H = returnz — M | H;op(z, k) - M
Values v ¢| Ax.M | (v1,v2) | inlw | inro | nil | consv
Typing contexts T : 0| T,z:A|T,«
Evaluation contexts E := [|| E M, | v E | #op(F) | handle E with H |
(B, M) | (v, E) | mE | moF |
inl E | inr E | case Eof inlx — My; inry — My |
cons F | case E of nil — Mj; consz — Mo

Convention 1. This work follows the conventions as below.

o We write o for a = ay,--+ ,a, with I = {1,...,n}. We often omit index sets (I and J) if they are not
important: for example, we often abbreviate a! to a. We apply this bold-font notation to other syntax
categories as well; for example, AT denotes a sequence of types.

o We write {s} to view the sequence s as a set by ignoring the order.

o We write Val. A forVay...Va,. A with I = {1,....,n}. We may omit index sets (Y a. A). We writeVal. A7
for a sequence of types Val. Ay, ..., VYal. A, with J ={1,...,n}.

e We write T'1, Ty for the concatenation of T'y and T's, and x: A and a for (B, z: A), (0, ), respectively.



o We write H™™™ for the return clause in H and H(op) for the operation clause of op in H.

Definition 1 (Domain of typing contexts). We define dom(T") as follows.

dom () L)
dom(T,x: A) def dom(T) U {z}
dom (T, &) o dom(T") U {a}

Definition 2 (Free type variables and type substitution in types). Free type variables ftv(A) in a type A and type
substitution B[A/a] of types A for type variables o in B are defined as usual. Type A is closed if and only if ftv(A)
18 empty.

Assumption 1. We suppose that the metafunction ty assigns to each constant ¢ a first-order closed type ty(c) of
the form 11 — -+ — v,. We also suppose that, for any ¢, there exists the set K, of constants of 1. For any constant
¢, ty(c) = v if and only if ¢ € K,. The partial function ¢ gives a denotation to pairs of constants. In particular,
for any constants ¢ and co: (1) {(¢1, ¢2) is defined if and only if ty(c1) = 1o — A and ty(ca) = o for some 1o and
A; and (2) if (c1, c2) is defined, ((c1, c2) is a constant and ty(C(c1, c2)) = A where ty(c1) = 19 — A for some 1
and A.

Definition 3 (Polarity of type variable occurrence). The sets ftu(A)™ and ftv(A)~ of type variables that occur
positively and negatively, respectively, in type A are defined by induction on A, as follows. We write ftv(A)* for
either ftv(A)T or ftu(A)~™ and ftv(A)T for the other.

fto(a)*t = {a}
fto(a)~ Lo
fv(A— B Y m(A)F U fo(B)*
fo(Va. A)F L f(A)*\ {a)
fu(Ax B Y fw(A)* U fo(B)E
f(A+B)*E Y p(A)*E U (B
fu(Alist)r Y (At

The set ftv(A)Ls of type variables that occur non-strictly positively in type A is defined as follows.
ftv(a)t, Lo
fiv(A— B)E Y fw(A)- U fo(B)L
fo(fo. A, = fw(A)f\ {a}
fr(Ax By, = f(A) U flu(B)i
f(A+B)y E (A U (B
fo(Alist)r, 9 (AL

Definition 4 (Type signature). The metafunction ty assigns to each effect operation op a type signature ty (op)
of the form Vay....Va,. A — B for some n, where ay,...,a, are bound in the parameter type A and arity type B.
It may be abbreviated to Yal.A < B or, more simply, to Vo. A — B. We suppose that Yoy ....Va,. A < B is
closed, i.e., ftv(A), ftv(B) C {ay, -+ ,an}.

Definition 5 (Signature restriction). An operation op with type signature ty (op) = Va.A < B salisfies the
signature restriction if and only if: (1) the occurrences of each type variable of o in the parameter type A are only
negative or strictly positive (i.e., {a} N ftv(A)Ls = 0); and (2) the occurrences of each type variable of a in the
arity type B are only positive (i.e., {a} N fiv(B ) =0).

1.2 Semantics

Definition 6 (op-transparent evaluation contexts). Ewvaluation context E is op-transparent, written op & E, if
and only if, there exist no Ey, Ey, and H such that E = FEj[handle E;with H] and H has an operation clause for

op.



Reduction rules

cv
(Ax.M)wv
handle v with H

handle E[#op(v)] with H

$ 4

D

¢(¢,v)
Mlv/x]
M{v/z]

(where H™™™ = returnz — M)
Mv/x][Ay.handle E[y] with H / k]
(where op ¢ E and H(op) = op(z, k) = M)

m(vi,v2) ~ v
mo(v1,v2) ~
caseinlvofinle — My;inry — My ~  M[v/x]
caseinrvofinlz — My;inry = My ~~  Ms[v/y]
casenilof nil — My; consx — My ~~ M
casecons v of nil — My; consz — My ~~  Ms[v/x]
fix fAz.M ~  (Ax.M)[fix f z. M/ f]
Evaluation rules My — M,
Ml ~ MQ

Figure 1: Semantics.

(R_-ConsT)
(R-BETA)
(R-RETURN)

(R-HANDLE)

(R-ProJ1)
(R-PrOJ2)
(R_-CASEL)
(R_CAsER)
(R-N1L)
(R_Cons)
(R-F1x)

Definition 7. Relations — and ~~ are the smallest relations satisfying the rules in Figure 1.

Definition 8 (Multi-step evaluation). Binary relation —* over terms is the reflexive and transitive closure of

—.

Definition 9 (Nonreducible terms). We write M —/~ if there exists no term M’ such that M — M'.

1.3 Typing

Definition 10. Well-formedness judgment - T" is the smallest relations satisfying the rules in Figure 3. We write
'+ A if and only if ftu(A) C dom(T) and b T is derived. Type containment judgment I' = A T B is the least
relation satisfying the rules in Figure 2. Typing judgments T+ M : A and '+ H : A = B are the smallest relations

satisfying the rules in Figure 4.



Type containment |[I'FALC B

FT TFACC THCLCB TFBICA TFALCDB,

_— _ _T _F
rraca CRer TFACB CARMNS S L CBioB oW
-8B C.Ins FT o ¢ ftu(A) C.G a-ACB O Po
_INST _GEN _PorLy
'FVa.AC A[B/a] I'-ACVa. A I'Va.ACVa.B
'rA,C B THALCB, C_PROD I'HAiCEB, THAC By C.Sum I'-~ACB O Lis
TFA x A, C B x By - TFA + 4, C B + B, - TFAlistC Blist "
FT o fu(d) C_DFun ot C_DProD
'Va.A—+BLCA—Va. B - 'Va.AxBC Va.A) x (Va.B) -
-r C_DS -r C_DLi1s
_ M _DLisT
TFVa.A+BLC (Va.A) + (Va. B) v T+ Va. Alist C (V. A) list

Figure 2: Type containment.

Well-formedness

x & dom(l) THA a & dom(T) FT
—  WF_EMPTY WF_EXTVAR

F_ExTT
- FT.z:A FT.a WE-EXTTYVAR

Figure 3: Well-formedness.



Term typing

FI 2:AeTl T VAR T T_Cons Iz:A+-M:B T.Ags
'z:A - 'k c:ty(e) - B '-X.M:A— B -
I't-Mi:A—-B TFHM:A T A NakFM:A TG r-Mm:A THACB I'HB T INs

_App —— —— _GEN _INST
I'EM M :B I'EM:Va. A I'-M:B
ty(op) =Va.A—B T'+M:AC/a] THC '-Mm:A THH:A=B
T_Op - T_HANDLE
'k #op(M) : B[C/a] I handle M with H : B
'My:A T'-M:B T Pamn '-M:AxB T Prosl '-M:AxB T Pros?
L+ (M, M) : Ax B N 'tmM:A N I'noM : B N
'-M:A T'HB T_INL '-M:B THA T_INR
TFinM:A+B TFind:A+B
'M:A+B T,2:A-M:C T,y:B+-My:C
. - T_CASE
I'Fcase M ofinle — My; inry — My : C
A TN I'EM:Ax Alist T.C
Thnil:Alist " TFconsM :Alist O
T'EM:Alist THEM :B T,x:Ax Alistk My : B If:A—->Bx:Ar-M:B
T_CASELIST T_Fix

I'F case M of nil — My; consxz — My : B

Handler typing |['FH:A=B

I''z:A-M:B

TFfixf \e.M:A— B

TH_RETURN

I'treturnz - M : A= B

I'rH: A= 1B

ty(op) =Va.C—>D T e,2:C,k:D— B+ M:B

TH_Op

'+ H;op(x,k) > M: A= B

Figure 4: Typing.



Effects ¢
Types A,B,C,D

{oplv"' aopn}
alt|A—=*B|Va.A|AxB|A+ B | Alist

Figure 5: Type language for the effect-and-type system.

Type containment |I'FACB

IFBCA THALB, FT o ¢ ftu(A) SR (e)
C_FUNEFF
F"A1—>6AQEB1—>EBQ FFVO&A—)EBEA—)GVOZB

C_DFUNEFF

Figure 6: Change from Figure 2 for type containment of the effect-and-type system. It gets rid of (C_FuUN) and
(C_DFuN) instead of adding (C_FUNEFF) and (C_DFUNEFF).

1.4 Type-and-effect system

The type language for the type-and-effect system is shown Figure 5. Figure 6 describes only the change of the type
containment rules from those of the polymorphic type system.

Definition 11 (Signature restriction on effects). The predicate SR (€) holds if and only if, for any op € € such
that ty (op) = Va. A — B:

o {a} N flv(A)d = 0;
e {a} N ftv(B)” = 0; and

e for any function type C —€ D occurring at a strictly positive position in the type A, if {a} N ftv(D) # 0,
then SR (€').

Definition 12. Typing judgments T M : Ale and T+ H : Ale = B|€ are the smallest relations satisfying the
rules in Figure 7.



Term typing |I'FM:Ale

FLaAel FT e Cons
E_ R —_— E_ NST
F'kxz:Ale T'kc:ty(e)|e
L,z:A+M:BJé o A THM:A—“Ble TFMy:Ale ¢ Ce Tn A
TFacM:Aoe Ble 0P8 TF M M,:B|e B-APP
Lot M:Ale SR() . LEM:Ale THACB THB
TFM:Va.Ale - TFM:Ble —AST

ty(op) =Va.A—=>B ope€ee T'FM:A[C/a]le THC

T+ #op(M) : B[C/a] |« Te-Or

'FM:Ale THH:Ale= B|¢

TeE_HA
I' - handle M with H : B|¢€ E NDLE

M :Ale THM,: Ble 'M:AxB]le 'M:AxB]le

TeE_P Te_P 1 TeE_P 2
TF (M, M) : Ax Ble BEAR T M A B0 T M B e RO
PEM:Ale TEB PEM:Ble THA
F'HinlM:A+ B]e - 'FinrM: A+ Be -
'EM:A+Ble Tya:A-M :Cle T y:Bk My:Cle
- . TE_CASE
't case M ofinlz — My; inry — My : Cle
A Te N PHM:AxAlist|e TE. CONS
———— TENIL E_CON
Tk nil: Alist| e I'FconsM : Alist| e
'M:Alistfe THM :Ble Tyz:Ax Alistk My : Ble TE. CASELIS
E_CASELIST
I'F case M of nil — Mj; consz — My : Be
If:A—=*B,x:AF M :B|e Te Fix FEFM:A|e € Ce B WEAK
TFfix fAz.M: A—¢Blée - PHM:Ale -

Handler typing |I'FH:A|e= B|¢€

Iz:AFM:B|e e C ¢

THE_RETURN
Ctreturnz — M : A|le = B|¢ *

I'FH:Ale=B|e¢ ty(op) =Va.C =D
L,o,z:Ck:D— BFM:B|é

THE.O
T+ Hiop(z,k) = M:Ale® {op} = B|¢ e

Figure 7: Typing of the effect-and-type system.



2 Proofs

2.1 Soundness of the Type System
Lemma 1 (Weakening). Suppose that - T1,Ts. Let I's be a typing context such that dom(I'y) N dom(L3) = 0.
1. If - Ty,Ts, then - Tq,To, Ty,
2. IfT1,Ts - A, then T1,Ts, T3 F A.
3. IfT1,Ts+ AC B, thenT'1,T5,Ts - AC B.
4. IfT1,T'sEM: A, thenT'{, 5,3 M : A.
5. IfT',I's-H:A= B, thenT1,T9, T3+ H: A= B.
Proof. By mutual induction on the derivations of the judgments. O
Lemma 2 (Type substitution). Suppose that T'y - A.
1. If kT4, 0, T, then FT1,T2 [A/q].
2. IfT'1,a,Ts - B, then T'1,T5 [A/a] F B[A/al.
3. IfT'1,a,Ta = BC C, thenT'1,T2[A/a] F B[A/a] C C[A/q].
4. IfT1,a,T9o - M : B, then'1,T9[A/a] F M : B[A/a].
5. IfT1,a,ToF H:B=C, thenT'1,T9[A/a] - H : B[A/a] = C[A/a].

Proof. Straightforward by mutual induction on the derivations of the judgments. Note that the cases for (T_OP)
and (TH_OP) depend on Definition 4, which states that, for any op, if ty (op) = V3.C — D, ftv(C) U ftv(D) C
{8}. O
Lemma 3.

1. Ifl_ F17$2A,F2, then F17F2.

2. IfFl,:L'ZA,FQ F B, then 1"1,1"2 F B.

3. IfFl,:c:A,FQ FB E C, then Fl,FQ FB E C.
Proof. By induction on the derivations of the judgments. O

Lemma 4 (Term substitution). Suppose that T'1 = M : A.
1. IfTy,2: A To - M': B, then T1,Ts - M'[M /2] : B.
2. IfTy,2:AToF H:B= C, then T1,To F H[M/z] : B = C.
Proof. By mutual induction on the typing derivations with Lemma 3. The case for (T_VAR) uses Lemma 1 (4). O

Definition 13. The function unqualify returns the type obtained by removing all the Vs at the top-level from a
given type, defined as follows.

unqualify (¥ a. A) def unqualify(A)
unqualify(A) 4 (if A # Va.B for any « and B)
Lemma 5. Suppose ' A C B. If unqualify(A) is not a type variable, then unqualify(B) is not either.

Proof. By induction on the type containment derivation. The only interesting case is for (C_INST). In that case, we
are given ' -Va.C C C[D/a] (A = Ya.C and B = C[D/a]) for some «, C, and D, and, by inversion, I' = D. Tt
is easy to see, if unqualify(V 5. C') = unqualify(C) is not a type variable, then unqualify(C[D/f]) is not either. O



Lemma 6. Suppose that ' A C B and unqualify(A) is not a type variable.
1. If unqualify(B) = t, then unqualify(A) = ¢.
2. If unqualify(B) = By — Bs, then unqualify(A) = Ay — A for some Ay and As.
3. If unqualify(B) = B X Ba, then unqualify(A) = Ay x Ay for some Ay and As.
4. If unqualify(B) = By + Bs, then unqualify(A) = Ay + As for some Ay and As.
5. If unqualify(B) = B'list, then unqualify(A) = A’list for some A’.

Proof. By induction on the type containment derivation. The case for (C_TRANS) is shown by the IHs and Lemma 5.
In the case for (C_INST), we are given I' F V. C C C[D/a] for some «, C, and D (A = Va.C and B = C[D/a]).
Since unqualify(V . C) = unqualify(C) is not a type variable, it is easy to see that the top type constructor of
unqualify(C') is the same as that of unqualify(C[D/a]). Proving the other cases is straightforward. O

Lemma 7. IfTF v: A, then unqualify(A) is not a type variable.
Proof. By induction on the typing derivation for v. We can show the case for (T_INST) by the IH and Lemma 5. [

Lemma 8 (Canonical forms). Suppose that T v : A.
1. If unqualify(A) = ¢, then v = ¢ for some c.
2. If unqualify(A) = B — C, then v = ¢ for some ¢, or v = \x.M for some x and M.
3. If unqualify(A) = B x C, then v = (v, v2) for some vy and vs.
4. If unqualify(A) = B+ C, then v = inlv" or v = inrv’ for some v'.
5. If unqualify(A) = Blist, then v = nil or v = consv’ for some v’.

Proof. Straightforward by induction on the typing derivation for v. The only interesting case is for (T_INST). In
the case, we are given, by inversion, '+ v: Band ' BC A and I' - A for some B. By Lemma 7, unqualify(B)
is not a type variable. Thus, by Lemma 6 and the IH, we finish. O

Definition 14. We use metavariable A for ranging over typing contexts that consist of only type variables. For-
mally, they are defined by the following syntazx.

Axz=0|A«
Lemma 9 (Commutation of universal quantification in type containment). If- T, thenT'FVa VB ACVSVa. A.

Proof. Let o and 3’ be fresh, distinct type variables. Because V 8.V . A is alpha-equivalent toV 3.V /. Al /a][8' /8],
it suffices to show that
FEVaVB. ACVA VA Ald /a]|B'/8] ,

which is derived by (C_TRANS) with the following type containment derivations:
FT o ¢ ftu(Va.Vj. A)
F~VaVB ACVd VaVp. A

(C_GEN)

FT B ¢ fu(Va' VaVB. A)
TFVa VavB ACVA Vo VaVvs. A

(C_GEN)

[,6,0 Fd
T,5.a FVavs ACVE. A /a]
VAV VaVB. ACVYB Vd' VB Ald /o]

(C_INsT)
(C_Pory)

8,0+ g
I, B, FVB. Al /o] T Ald//o][8'/5]
FEVR VA VB Al /o] TV VA Al /a8 B]

(C_INST)
(C_Pory)




Lemma 10 (Type containment inversion: polymorphic function types). IfT I Va A A Va2 By — Bs,
then there exist ol , ali2, 87, and C™ such that

{1} = {agi} W {ag5},

I ay, B’ FCh,

akFB CVE . A[Ch/aly],

o I al FValzvp/. AjJC™ ol E By, and
e type variables in {B7} do not appear free in A; and As.

Proof. By induction on the type containment derivation. Throughout the proof, we use the fact of - I" for applying
(C_REFL); it is shown easily by induction on the type containment derivation.

Case (C_REFL): We have a{l = 12 and A; = By and A3 = By. Let a{lf and 87 be the empty sequence,
ailf = ailv and C1it = a{l. We have to show that
e T,a2+ B, C A and
[ ] F,a? F Ag E BQ.

They are derived by (C_REFL).

Case (C_TRrANS): By inversion7 we have T' F Va{l.Al — A C Dand ' D C VaéQ.Bl — By for some D. By
Lemma 6, D = Va3 Dy — D5 for some a:]f, Dy, and Dy. Bythe[Hon T F Va{l.Al — Ay C Va{f. D1 — Do,
there exist all, a2, CI' and 87" such that

{ag'} = {al“} W {a5},

oI aé‘", i C’I11

e Ial F D, CVB]. Aj[CT /aly),

o I ak FValz Ve AyCl /ady] C Dy, and

e type variables in Bl do not appear free in A; and As,.

By the IHon I' - Va .Dy - Dy C chf B1 — B», there exist aé3117 aé“"f, C’é“, and ﬂ3]3 such that
{ag} = {ag)} w {ag3},

Lok, B - OB,

o I',af + B; L VB3 Di[C5* Jagy],

o I aR FVal3 VB3 Dy[C8 /ak] C By, and

e type variables in ,833 do not appear free in D; and Ds.

We show the conclusion by letting C11 = C1[CE' /a1 and B7 = ak2,B85°, 3], We have to show that

oT a2 L oakz B B FCilCE Jaki ),
elalFB C Va132 YB3 NB. A[Ch Jady], and
o oy FValy Vaiy VB3 VB Ax[Chi /aly] C By.

The first requirement is shown by T', a2, 8" - C{" and T, a2, 85 - C%' and Lemma 1 (2) and Lemma 2 (2).

Next, we show the second requlrement Since I’ a33 F D1 C V,@ [CI“/a]“] and I’ a2 , 3‘]3 F CI“ we have
Do, af B - D CVE. A[CI /aly] and T, a2 ,aé‘“’j, 3J3 F CI31 by Lemma 1 (3) and (2), respectlvely

Thus, by Lemma 2 (3),
T, a2, a3, 85 - D[CE a1 E VB A[CT Jady]

(note that we can suppose that 0/31 do not appear free in A;). By (C_PoLy),

T, a2 ol -vBE. D [CE ol EYBE YE. Al[Ch /oty

10



Since I', a2 F B; CV33%. D1[CE /aki], we have
T,az, a5 B CVB2 Y B 4[Cott /aty]

by Lemma 1 (3) and (C_TRANS). Since we can suppose that a 2 do not appear free in By, we have
I o By CVogs.VB3° VB Al[CM Jagy]

by (C_GEN), (C_PoLry), and (C_TRANS).

Finally, we show the third requlrement Slnce T a? - Vah? V,@ Ao [CI“/aI“] C Dyand T, a ;3 - Cé“,
we have I',a?, a2 B F Valz V@), [C’I“/a W] C Dy and T, 02, a2, B3° + C&' by Lemma 1 (3) and
(2), respectively. Thus, by Lemma 2 (3),

D, a2, 083,88 FValz VB . A [Chr /all] C Dy[Ca Jady]
(note that we can suppose that a ! do not appear free in Ay). By (C_PoLy),
Tap FVaig VBse Vo Ve . A[C Jagl] T Vais ¥V By°. Do[Cs™ Jasy] .
Since I', af FValy VB3 Do[Co' /agy] T B, we have
T oz FVaig VB Vo Ve A [C /o] C By
y (C_TRANS). Because
T ag FVoys Vai VB2V B A [Ch Jaly] CVais VB3 ¥V ags vV B A[CT Jag}]

by Lemma 9 (note that - I', a2 because we can assume that the type variables of a2 do not occur in T' without
loss of generality), we have

T oy Va3 Vasg Ve Ve ACh Ja] C By
by (C_TRANS).
Case (C_FuN): Obvious by inversion.

Case (C_INST): We have al' = a,al? and Bl = Ay[C/a) and By = A3[C/a] for some C such that ' - C. We

show the conclusion by letting a{lll = a,a2, C = C,ak, and aly and B” be the empty sequence. We have

to show that
o T, a2t C,
oT agz - A[C/a] E A[C/a], and
o T,al F Ay[C/a] C Ay[C/a).
The first is shown by Lemma 1 (1). The second is by (C_REFL). The third is by (C_REFL).

Case (C_GEN): We have az = a al and A1 = B; and Ay = Bs and o ¢ ftv(Va{l.Al — Aj). We show the
conclusion by letting a11 = al chv = a{‘, and ozl12 and 3”7 be the empty sequence. We have to show that

[ F,a,a{l FAl E A1 and
° F7a7a{1 FAs C As.

They are derived by (C_REFL).

Case (C_PoLy): We have af = a,ay and a}If = a,af2 and, by inversion, I'a F Vaiy. A, — Ay C
Va{)‘g. B; — By. By the IH, there exist some o)y, ailf, B7, and C’]‘J11 such that

o {agi} = {agii} W {ags5},

° F,a,aé‘g,,@‘] F Cé"“,

11



e T,a,al2 - B CVB7. A [CE Jal),
o T a,als FVal2 V37 A JCE" Jali] E By, and

e type variables in 87 do not appear free in A; and B;.
We can prove the conclusion by letting ad} = a,aly and CT = o, Clm,

Case (C_DFuN): It is found that, for some «, a{l = « and aéz is the empty sequence and B; = A; and
By = Va.As. We show the conclusion by letting a{lzg = « and ailll, Ch1 and B’ be the empty sequence. It
suffices to show that ' A; C Ay and I' - V. As C Va. Ay, which are derived by (C_REFL).

Case (C_PrOD), (C_SuM), (C_L1sT), (C_DPROD), (C_DSUM), and (C_DLIST): Contradictory.
O

Lemma 11 (Type containment inversion: monomorphic function types). IfT' F A; — Ay C By — B, then
F"Bl EAl andFl—A2 EBQ

Proof. By Lemma 10, ' F By C Va.A; and T' F Va. Ay E By for some « such that type variables in a do not
appear free in A; and Ay. Since I'FVa. A; C A; by (C_INST) (we can substitute any type, e.g., V5.3, for at), we
have I' - By C A; by (C_TRANS). Since I' - Ay C Va. Ay by (C_GEN), we have I' Ay C Bs. O

Lemma 12 (Value inversion: constants). IfI'F c: A, then T'F ty(c) C A.
Proof. By induction on the typing derivation for c¢. There are only three typing rules that can be applied to c.
Case (T_ConsT): By (C_REFL).

Case (T_GEN): We are given I' F ¢ : Va. B for some « and B (i.e., A = V. B), and, by inversion, I';a F ¢ : B.
By the IH, T',a - ty(¢) C B. By (C_PoLy), I' - Va. ty(c) C Va. B. Since ty(c) is closed, we have T' - ty(¢) T
Va.ty(c) by (C_GEN). Thus, by (C_TRANS), we have the conclusion.

Case (T_INST): By the IH and (C_TRANS).

Lemma 13 (Progress). If A+ M : A, then:
o M — M’ for some M';
e M is a value; or
e M = E[#op(v)] for some E, op, and v such thatop € E.

Proof. By induction on the typing derivation for M. We proceed by case analysis on the typing rule applied last
to derive A+ M : A.

Case (T_VAR): Contradictory.
Case (T_ConsT), (T_ABs), and (T_NIL): Obvious.
Case (T_Aprp): We are given

o M = M M,
o A M1 M2 : A,
e AWM :B— A, and
e A-My:B
for some M;, Ms, and B. By case analysis on the behavior of M;. We have three cases to consider by the IH.

Case M} — M for some M{: We have M — M| M.

12



Case My = Ej[#op(v)] for some Ej, op, and v such that op ¢ E;: We have the third case in the conclusion by
letting F = FEy Ms.
Case M; = v, for some v;: By case analysis on the behavior of My with the TH.

Case My — Mj for some Mj: We have M — v Mj.
Case My = Fs[#op(v)] for some FEs, op, and v such that op € FEs: We have the third case in the conclusion

by letting £ = v E».

Case My = vy for some vy: By Lemma 8 on vy, we have two cases to consider.

Case vy = ¢1: Since A+ ¢ : B — A, we have A - ty(¢;) C B — A by Lemma 12. By Lemma 6 (2), it
is found that ty(c;) = ¢ — C for some ¢ and C. Since AF ¢t — CC B — A, we have AF BC by
Lemma 11. Since A F vy : B, unqualify(B) is not a type variable by Lemma 7. Thus, since A - B C ¢, it
is found that ungqualify(B) = ¢ by Lemma 6. Since A b vy : B, we have v = ¢ for some ¢y by Lemma 8.
Since A F ¢y : B, we have A F ty(cz) C B by Lemma 12. Since ungualify(B) = ¢, we have ty(cz) = ¢
by Lemma 6. Thus, ((¢1, ¢2) is defined, and M = ¢; ¢ca — ((c1, ¢2) by (R-ConsT)/(E_EVAL).

Case v = A\x.M’: By (R-BETA)/(E_EvVAL), M = (Az.M') vo — M'[v2/x].

Case (T_GEN): By the IH.
Case (T_INST): By the IH.
Case (T_OpP): We are given

o M = #op(M’),

e ty(op) = Va. A — B,

e A+ #op(M’): B'[C/a], and

e AFM :AC/al

for some op, M', o, A’, B, and C. By case analysis on the behavior of M’ with the TH.

Case M' — M" for some M": We have M — #op(M"").

Case M’ = FE'[#op’(v)] for some E’, op’, and v such that op’ ¢ E’: We have the third case in the conclusion by
letting E = #op(E’).

Case M’ = v for some v: We have the third case in the conclusion by letting £ = [].

Case (T_-HANDLE): We are given

e M = handle M’ with H,
e AFM':B, and
e AFH:B=A
for some M’, H, and B. By case analysis on the behavior of M’ with the IH.

Case M’ —s M" for some M": We have M — handle M with H.

Case M’ = E'[#op(v)] for some E’, op, and v such that op ¢ E’: If handler H contains an operation clause op(x, k) —
M", then we have M — M"[v/z][Ay.handle E’[y] with H /k] by (R_-HANDLE)/(E_EVAL).
Otherwise, if H contains no operation clause for op, we have the third case in the conclusion by letting
E = handle E’ with H.

Case M’ = v for some v: By (R-RETURN)/(E_EVAL).
Case (T_PAIR): We are given

o M = (M, M),
e A+ M, : By, and
[} A}_M2:BQ

13



for some Mj, Ms, By, and Bs. By case analysis on the behavior of M; with the IH.

Case My — M for some M{: We have M = (M{, Ms).
Case My = Ej[#op(v)] for some Ej, op, and v such that op ¢ E;: We have the third case in the conclusion by
letting £ = (Eq, Ma).

Case M; = wv; for some v1: By case analysis on the behavior of My with the TH.

Case My — Mj: We have My — (v, M3).

Case My = Es[#op(v)] for some FEs, op, and v such that op ¢ E;: We have the third case in the conclusion
by letting E = (v, E»).

Case My = vy: We have the second case in the conclusion since M = (vy, v2).

Case (T_PrOJ1): We are given

e M = m M’ and
e AFM' :AxB

for some M’ and B. By case analysis on the behavior of M’ with the TH.

Case M’ —s M" for some M": We have M — m; M".

Case M’ = FE'[#op(v)] for some E’, op, and v such that op ¢ E’: We have the third case in the conclusion by
letting £ = w1 E'.

Case M’ = v’ for some v': Since A M': Ax B (ie., AF v : Ax B), we have v = (v, v2) for some v; and
19 by Lemma 8. By (R_.ProJ1)/(E_EVAL), we finish.

Case (T-PRrR0J2): Similarly to the case for (T_ProJ1).
Case (T_INL), (T_INR), and (T_CoONSs): Similarly to the case for (T_PAIR).
Case (T_CAaSE): We are given

e M = case M'of inlx — Mjy; inry — Ms and
e AFM' :B+C

for some M', My, M5, x, y, B, and C. By case analysis on the behavior of M’ wit the TH.

Case M' — M" for some M": We have M — case M" of inlx — My; inry — M.

Case M’ = FE'[#op(v)] for some E’, op, and v such that op ¢ E’: We have the third case in the conclusion by
letting E = case E’ of inlz — My; inry — Ms.

Case M’ = v for some v: By Lemma 8, v = inlv’ or v = inrv’ for some v’. We finish by (R_-CASEL)/(E_EvAL)
or (R_.CAseR)/(E_EvAL).

Case (T_CASELIST): Similar to the case for (T_CASE).

Case (T_FIX): By (R-F1x)/(E_EVAL).

Lemma 14.
1. IfTEM: A, thenT F A.
2. fTHFH:A= B, thenT'+ B.

Proof. Straightforward by mutual induction on the typing derivations. The case for (T_OP) depends on Lemma 2
and Definition 4, which states that, for op such that ty (op) = Va. A — B, ftv(B) C {a}. O

Lemma 15 (Value inversion: lambda abstractions). IfI'F Az.M : A, thenT,a,x: B+ M :C andT+HVa. B —
C C A for some a, B, and C.

14



Proof. By induction on the typing derivation for Az.M. There are only three typing rules that can be applied to
Az.M.

Case (T_ABS): We have A = B — C for some B and C. Let a be the empty sequence. We have the conclusion
by inversion and (C_REFL).

Case (T_GEN): We are given I' - Az.M : V. D for some 8 and D (i.e., A = V§.D), and, by inversion, T', 5
Ax.M :D. By the IH, I, 8,4',2: B M :C and T, B+ V~!. B — C C D for some v/, B, and C. We show the
conclusion by letting o = 3,~. It suffices to show that I' - V3.Y~y!. B — C C V3. D, which is derived from
I,3+VY~4'.B - CC D with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).
O

Lemma 16 (Value inversion: pairs). IfT' F (My,Ms) : A, then Tya b My : By and T,a b My : By and
I'FVa.B; x By C A for some a, By, and Bs.

Proof. By induction on the typing derivation for (M, Ms). There are only three typing rules that can be applied
to (Ml, Mg)

Case (T_PAIR): Obvious by (C_REFL).

Case (T_GEN): We are given I' = (My, Ms) : V5.C (ie., A = VB.C) and, by inversion, I', 5 F (M, M) : C. By
the IH, T, 8,4 = M, : By and T, 3,4’ - My : By T, -V ~!. By x By C C for some 4!, By, and By. We show
the conclusion by letting o = 3,~'. It suffices to show that I' - V3.¥~!. By x By C V3. C, which is derived
from I, B - V~!. By x By C C with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).
0

Lemma 17 (Value inversion: left injections). IfT'FinlM : A, then T,at- M : B andT HFVa.B+C C A for
some o, B, and C.

Proof. By induction on the typing derivation for inl M. There are only three typing rules that can be applied to
inl M.

Case (T_INL): Obvious by (C_REFL).

Case (T_GEN): We are given I' - inlM : VS3.D (i.e., A = V§.D) and, by inversion, I', 5 F inlM : D. By the
IH, T,8,v'FM:Band T, FV~!.B+ C C D for some v/, B, and C. We show the conclusion by letting
a = B,~!. Tt suffices to show that I' -V B.Y~y!. B4+ C C V3. D, which is derived from I, 3+ V~!. B+ C C D
with (C_Pory).

Case (T_INST): By the IH and (C_TRANS).
O

Lemma 18 (Value inversion: right injections). IfT'FinrM : A, thenT,a - M : C andT+HVa.B+ C C A for
some o, B, and C.

Proof. Similarly to the proof of Lemma 17. O

Lemma 19 (Value inversion: cons). IfT'F consM : A, then T,a b M : B x Blist and ' F V. Blist C A for
some o and B.

Proof. By induction on the typing derivations for cons M. There are only three typing rules that can be applied to
cons M.

Case (T_Cons): Obvious by (C_REFL).

15



Case (T_GEN): We are given I' - cons M : V3.C (i.e., A = VS.C) and, by inversion, I', f - cons M : C. By the
IH T8, M:B x Blistand I, 3 F ¥~!. Blist C C for some v! and B. We show the conclusion by letting
a = B,~!. It suffices to show that I' - V3.¥~!. Blist C V3. C, which is derived from I, 8  V~!. Blist C C
with (C_Pory).

Case (T_INST): By the IH and (C_TRANS).

Lemma 20. Ifty(op) = Va!.A < B and I' - #op(v) : C, then
e I3/ DI,
e '3’ Fv:AD!/al], and
e I'FVB/.B[D'/al|C C

for some 37 and D'.

Proof. By induction on the typing derivation for #op(v). There are only three typing rules that can be applied to
#op(v).

Case (T_OP): We have C = B[D!/a!] and T D! and T'F v : A[D?/a] for some D’. We have the conclusion
by letting 37 be the empty sequence; note that I' = B[D! /a!] C B[D!/a!] by (C_REFL).

Case (T_GEN): We are given C = V.Cy and, by inversion, I, 8 F #op(v) : Cy for some 8 and Cy. By the IH,
there exist some Bg° and D! such that

o I,53,8° - D,
e T,3,8)Fv:AD"/a'] and
e I,BFVYB.B[D!/a!] E Cy.

We show the conclusion by letting 37 = 3, 3g°. It suffices to show I' -V 8.Y Bg°. B[D'! /a!] C V . Cp, which is
proven from I, 8 Y Bg°. B[D! /a!] C Cy with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).

Lemma 21. IfT',al - E[M]: A, then

e I'a!, B/ M:B and

e Iy:Val VB’ . B,al F Ely]: A for anyy & dom(T)
for some B’ and B.

Proof. By induction on the typing derivation of I', ! - E[M] : A.

Suppose that E = [|. Since I''a! F E[M] : A, we have I',a! - M : A. We let 37 be the empty sequence
and B = A. It is then trivial that I',y:Va!. B,al - E[y] : A by (T_INST). Note that - T" and T' F V. B by
Lemma 14.

In what follows, we suppose that F # []. We proceed by case analysis on the typing rule applied last to derive
I,al - E[M]: A.

Case (T_VAR), (T_ConsT), (T_ABS), (T_N1L), and (T_F1x): Contradictory with the assumption that E # [].
Case (T_APP): By case analysis on E.

Case E = E' My: By inversion of the typing derivation, we have I',a! - E'[M] : C — A and T, al F M, :
C for some C. By the IH, (1) I',a!,37 - M : B for some 37 and B and (2) for any y ¢ dom(T),
Iy:Ya!VB’.B,a’ - E'ly]: C — A. By Lemma 1 (4) and (T_AprpP), I',y:Va! VB’.B,a! - E'[ly| My : A,
ie,D,y:ValvB’. B al - E[y] : A.

16



Case E = v E’: Similarly to the above case.

Case (T_GEN): We have I',a! + E[M] : V5. A’ and, by inversion, I',a!,y = E[M] : A’ for some v and A’
(note A = V~v.A"). By the IH, (1) T,af,v,87 = M : B for some 37 and B and (2) for any y ¢ dom(I),
Iy:ValVy.vB7.B,al,yvF Ely]: A'.

By (T_GeN), Iy:Val Vy.VB7.B,al - E[y] : V7. A’. Since A = V. A’, we finish.

Otherwise: By the TH(s) and the corresponding typing rule, as the case for (T _ApP).

O
Lemma 22. Suppose thatI'1 = AC B and I'1 F A.
1. IfTy,2:B,To- M :C, thenT'y,x: A,To - M : C.
2. IfT',2:B,ToF H:C= D, thenT'1,z: A, To - H:C= D.
Proof. Straightforward by mutual induction on the typing derivations. O
Lemma 23. Ifty(op) = Val.A— B and T F Ef#op(v)] : C, then
o '3 DI,
e I3’ Fv:AD!/al], and
e foranyy ¢ dom(T), I',y:VB’. B[D!/a!|F Ely]: C
for some 37 and D'.
Proof. By Lemma 21,
o I, 3] + #op(v) : C" and
o T,y:VB{*.C" - E[y]: C for any y ¢ dom(T")
for some 35" and C’. By Lemma 20,
o« I,8{",8;° + D'
o I,3)", B2+ v: AID'/a’], and
e I3 -VBy2. B[D' /o' E C’
for some B3? and D' .
We show the conclusion by letting 87 = 37", 85. It suffices to show that, for any y ¢ dom(T),
I,y:YB{"VBy2. B[D!/a!| - Ely] : C.
Since T, B{* FV B32. B[D! /a!] C C’, we have
LY@ VB BID! /o) CVE].C
by (C_PoLy). Since T',y:¥3;{*.C" + Ely] : C, we have
T,y:YB{"VBy2. B[D!/a!| - Ely] : C.
by Lemma 22. O

Lemma 24 (Type containment inversion: product types). IfT'F Vail,Al X Ay C Vaf. B, x By, then there exist
ailf: 0{122; B, and C such that

o {a7} = {ag}} W {ags}),

° F,aéﬂﬁ‘] FCh,

17



o Mo FValz Vg’ Aj[C jady] C By,
o a2 FYalz VB’ Ay [C Jal] T By, and
e type variables in {B7} do not appear free in A; and As.
Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10. O

Lemma 25 (Type containment inversion: sum types). IfIT' - Va{l.Al + A, C Va£2.Bl + Ba, then there eist
all, ol 87, and C1 such that

o {og} = {aq} ¥ {3},
o I ay,B’ -Ch1,
e I a2 FValzvp’ A[Ch /ol E B,
o Do FYalz VB’ Ay [C Jal] T By, and
e type variables in {B7} do not appear free in A; and As.
Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10. O

Lemma 26 (Type containment inversion: list types). IfT'F Va{l CAlist © Vaéz. Bilist, then there exist ailll, a{lﬁ,

B7, and C™* such that

 {of'} = {afi} ¥ {afs),

o I ap,B’ -Ch1,

o Mo FValy VB’ A[Ch Jaly] C B, and

e type variables in {B”} do not appear free in A.
Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10. O
Lemma 27. Assume thatT'+ B C C.

1. Ifa & ftu(A)", then T+ A[C/a] C A[B/aql.

2. Ifa & ftv(A)~, then T+ A[B/a] C A[C/q].

Proof. By structural induction on A. In what follows, we assume - I' because it can be shown easily by induction
on the derivation of ' - BC C.

Case A = (§: If B = «, then we have to show that I' - B C C, which is assumed. Note that we do not need to
consider the first, negative case, i.e., to show I' - C' C B, because no occurrence of type variable « in type « is
negative.

Otherwise, if 8 # «, then it suffices to show that I' - 8 C 8, which is derived by (C_REFL).
Case A = 12 By (C_REFL).
Case A = V3. A”: By Lemma 1 (3), the IH, and (C_PoLy) for each case.
Case A = Ay — Ag: By the IHs and (C_FuN) for each case.
Case A = A; x As: By the IH and (C_PRrROD) for each case.
Case A = A; + As: By the IH and (C_SuM) for each case.
Case A = A’list: By the IH and (C_L1sT) for each case.

18



Lemma 28. Assume that T and o & ftv(A).
1. If B & ftv(A){s, then T HVa. A[B/B] C AV . B/f].
2. If B & fto(A)~, thenT - AV a. B/B] C V. A[B/B).

Proof. We first show case (2). By (C_TRANS), it suffices to show that I' - A[Va.B/8] C Ya. A[Va. B/f] and
I'Va. AVa.B/f] EVa. A[B/f]. The former is derived by (C_GEN). The latter is derived as follows, where we
have F I, & because we can assume that o ¢ dom(T") without loss of generality:

FIa
INaFYa.BC B
I'yat AVa.B/p] C A[B/S]
'FVYa. AVa.B/B] CVa. A[B/S]

(C_INsT)
by Lemma 27
(C_Pory)

Next, we show case (1) by induction on A.

Case A = v: If v = B, then we have to show that I' - Va. B C V «. B, which is shown by (C_REFL). Otherwise, if
v # B, then we have to show that I' - Va.~y C ~, which is derived by (C_INST) (the type used for instantiation
can be arbitrary, e.g., Va. a).

Case A = 12 By (C_INST).

Case A = C — D: The occurrences of 5 in C — D are only negative or strictly positive. By definition, the
occurrences of 8 in C are only positive. Thus, by case (2), ' F C[Va. B/f] CE Va.C[B/f]. By definition, the
occurrences of 8 in D are only negative or strictly positive. Thus, by the IH, I' - V. D[B/S] C DV a. B/f].
By (C_Fun),

't (Va.C[B/B]) - Va.D[B/B] E CVa. B/B] — D[Va.B/B|.

By (C_DFuN) and (C_TRANS),
I'Va. (Va.C[B/B]) - DIB/B] C CNV«a.B/B] — DV a. B/f]. (1)

By (C_INST),
I'akVYa.C[B/S] C C[B/A. (2)

By (C_FuN) and (C_PoLy) with (2),
I'+Va.C[B/B] = D[B/B] EVa.(Ya.C[B/B]) — D[B/A].
Thus, by (C_TRANS) with (1),

I'-Ya.C[B/B] = D[B/B| C C|Va.B/S] = DIV a. B/f].

Case A = V~.C: By the IH, (C_PoLY), Lemma 9, and (C_TRANS).

Case A = C x D: The occurrences of 8 in C'x D are only negative or strictly positive. By definition, the occurrences
of B in C are only negative or strictly positive. Thus, by the IH, ' - V. C[B/8] C C[Va. B/f]. Similarly, we
also have I' F Va. D[B/S] E D[V «. B/f]. By (C_PROD),

I+ (Va.C[B/f]) x Va.D[B/B) E CVa. B/B] x DV a. B/ B).
By (C_DPRroD) and (C_TRANS),

I'+Va. (C[B/B] x D[B/B]) E C¥ . B/f] x DIV a. B/].

Case A = C' + D: Similarly to the case that A is a product type; this case uses (C_SuM) and (C_DSumMm) instead
of (C_ProD) and (C_DPROD).

19



Case A = C'list: Similarly to the case that A is a product type; this case uses (C_LisT) and (C_DL1sT) instead of
(C_ProD) and (C_DPROD).

O
Lemma 29 (Subject reduction). Assume that all operations satisfy the signature restriction.
1. If AF My : A and My ~ M, then A+ My : A.
2. If AF My : A and My — Ms, then A+ Ms : A.
Proof. 1. Suppose that A+ M; : A and M; ~» M;. By induction on the typing derivation for M.

Case (T_VAR), (T_Op), (T_PAIR), (T_INL), (T_INR), and (T_CoNs): Contradictory because there are no
reduction rules that can be applied to Mj.

Case (T_ConsT), (T_ABs), and (T_NIL): Contradictory since M; is a value and no reduction rules can be
applied to values.

Case (T_APpP): We have two reduction rules which can be applied to function applications.

Case (R_CoNsT): We are given
[ M1 = (1 C2,
My = ((c1, c2),
e Abcie: A,
e Abc¢:B— A, and
e Abe: B
for some ¢1, c2, and B. By Lemma 12, A+ ty(¢;) C B — A. By Lemma 6 and Assumption 1, ty(¢;) =
¢ — C for some ¢ and C. Since ((¢c1, ¢2) is defined, it is found that ty(ce) = ¢ and ty({(c1, c2)) = C.
Since F A by Lemma 14, we have A F ((c1, ¢2) : ty(¢(c1, ¢2)). Since A F ¢ — ty({(c1,c2)) T B — A
(recall that C = ty(¢(c1, c2))), we have A F ty({(c1,¢2)) C A by Lemma 11. By (T_INST), we have
A+ C(Cl, 02) DA
Case (R_BETA): We are given
M, = (Ax.M)w,
My, = Mv/z],
e Az M)v: A,
e Ab)Xx.M:B — A, and
e Abv:B
for some x, M, v, and B. By Lemma 15 A,a’,2:B'- M : A’ and A+-Val.B' - A'C B — A for
some o', A’, and B’. By Lemma 10, there exist a{l, aé"’, B7, and C" such that
{a'} = {a7'} v {az'},
A B FCh,
A+BLCVYB . B[C"/al,
AFYa2Vp’l. ACh /o] C A, and
e type variables in 37 do not appear free in A’ and B’.
By Lemma 1, A, 37, a’,2: B'+ M : A’ and A, 87, af - C"'. Thus, by Lemma 2 (4),

A, B’ af,x:B'[C" /o] M : AICH/ay] . (3)

Because AFv: Band A+ BC VA’ B'[Ch/al] and A, a2 -V B7. B'[Ct /al!] (which can be easily
shown with Lemma 14), we have

Ao Fv:VB . BC" /o]
by Lemma 1 and (T_INST). Then, by Lemma 1 (4), (C_INST), and (T_INST), we have

A,B7 a2 v BChjal] .

20



By Lemma 4 (1) with (3),
A, B7 a2+ Mv/z]: A[CT Jad] .

By (T_GEN) (with the permutation of the bindings in the typing context),
At Mlv/z]:YaR v’ AlCh/al] .

Since A FVYal VB’ A'[Ch/al| C A, we have A+ M[v/x] : A by (T_INST).
Case (T_GEN): By the IH and (T_GEN).
Case (T_INsT): By the TH and (T_INST).
Case (T_HANDLE): We have two reduction rules which can be applied to handle-with expressions.

Case (R_-RETURN): We are given
e M; = handlevwith H,
o H™WM — returnx — M,
My = Mv/z],
e At handlevwith H : A,
e Atwv:B,
e AFH:B=A

for some v, H, x, M, and B. By inversion of the derivation of A+ H : B = A, we have A,x: B+ M : A.
By Lemma 4 (1), A+ M[v/xz] : A, which is the conclusion we have to show.

Case (R_-HANDLE): We are given

M; = handle E[#op(v)] with H,

op ¢ E,

H(op) = op(z,k) = M,

My = M[v/z][\y.handle E[y] with H /K],
A F handle E[#op(v)|with H : A,

A& El#op(v)] : B,

e AFH:B=A

for some E, op, v, H, x, y, k, M, and B. Suppose that ty (op) = Va.C — D. By inversion of the
derivation of A H : B= A, we have A,a,z:C,k:D — A+ M : A.
By Lemma 23, A, 37 F Cp and A, 37 - v : C[Cy/q] for some 37 and Cp. Since A -V 37. C,

A,x:CNVB’.Co/al,k:DNVB’.Co/a] - AF M : A (4)

by Lemma 2 (4) (note that type variables in o do not appear free in A).

Since A,B87 + v : C[Co/al], we have A F v : VB7.C[Co/a] by (T_-GEN). By Definition 5, {a} N
fto(C)t, = 0. Thus, we have A+ v : C[V37.Co/a] by Lemma 28 (1) and (T_INST) (note that - A by
Lemma 14 and we can suppose that 87 do not appear free in C'). Thus, by applying Lemma 4 (1) to
(4), we have

Ak:DVB’.Co/a) - A M[v/z]: A . (5)

We show that
A+ Ay.handle E[y]with H : D[V 37.Co/a] — A .

By Definition 5, {a} N ftv(D)~ = 0. Thus, we have
AFDNVB'.Cy/a] CVB'.D[Cy/a]

by Lemma 28 (2) (note that - A by Lemma 14 and we can suppose that 87 do not appear free in D).
By Lemma 23,
A,y:¥B’.D[Co/a]F Ely]: B .

By Lemma 22,
Ay:D[VB’.Co/a]F Efy]: B .

21



Thus, we have
A,y:D[VB’.Co/a] F handle E[y] with H : A

by Lemma 1 (5) and (T_HANDLE). By (T_ABS),
A+ Ay.handle E[y]with H : D[V 37.Co/a] — A .
By applying Lemma 4 (1) to (5), we have
A F Mlv/z][Ay.handle E]y] with H /K] : A,

which is what we have to show.
Case (T_PrRoJ1): We have one reduction rule (R_PR0OJ1) which can be applied to projection m;. Thus, we
are given
o My = m1(v1, v2),
o My = u,
o A mi(v,m): A,
AF (v,1):AxB
for some vy, v2, and B. By Lemma 16, A,a’ Fv; : Cr and Aol F v : Coand AFVal!.Ci xCo T Ax B
for some o, C1, and Cy. By Lemma 24, there exist ail, a?, 37, and D' such that
{a'} = {a1'} ¥ {az'},
o A3+ Dh,
e AFVaRvpl.Ci[Dh/al] C A,
e AFVak Vg’ Cy[D" /al] C B, and
e type variables in 37 do not appear in C; and Cs.
We have to show that

A v - A .
Since A -V aR.VB’.C1[D" /al] C A, it suffices to show that

At v Va2 Vp’l.Ci[D" /ol

by (T_INST). We have A, 37, a’ - v, : C; by Lemma 1 (4). By Lemma 2 (4), we have A,,@‘],oé? F o
C1 [DIl/ail]. By (T_GEN) (and swapping 37 and aéQ in the typing context A, 37, aéz), we have

At Va2 vp’.ci[D" /ol .

Case (T_PR0J2): Similar to the case for (T_PRrRoJ1).
Case (T_CASE): We have two reduction rules which can be applied to case expressions.

Case (R_CASEL): We are given
e M; = case(inlv)ofinlz — M{; inry — M,
My = M{[v/al,
A& case(inlv)of inlz — M{; inry — M : A,
e Atinlv: By + By,
e Alz:BiF M|: A and
e Alz:ByFMj: A
for some v, x, y, M{,, M3, By, and By. By Lemma 17, A,a! Fv:C; and AFVal.Cy+Cy C By + By
for some a!, Cy, and Cy. By Lemma 25, there exist a{l, aéz, B7, and D' such that
e {al} = {al'} v {ad},
o A3+ Dh,
e AFVYalVvp’.Ci[D"/al]|C B,
e AFValVvp'. Cy[D"/al] C By, and

22



e type variables in 37 do not appear in C; and Cs.
We first show that
AFwv: Bl .

Since A FVYak.VB’.C1[D" /al] C By, it suffices to show that
AFv:Ya2vp’l.ci[D" /ol

by (T_INST). We have A, 37, a! v : C; by Lemma 1 (4). By Lemma 2 (4), we have A, 87, a2 + v, :
C,|[Dh /a{l]. By (T_GEN) (and swapping 37 and aéz in the typing context A, 37, aé"'), we have

At Va2 vp’.ci[D /ol .

Since A,z: B1 - M{ : A, we have
At M{[v/z]: A
by Lemma 4 (1).
Case (R_CASER): Similar to the case for (R_CASER), using Lemma 18 instead of Lemma 17.
Case (T_CAseL1ST): We have two reduction rules which can be applied to case expressions for lists.

Case (R_N1L): Obvious.
Case (R_CoNs): We are given
o M; = case(consv)of nil — M{; consz — Mj,

My = Mjfv/a),
A case (cons v) of nil — M{; consy — M3 : A,

e At consw : Blist, and

e Alz:BXx Blistk Mj: A
for some v, x, M{,, Mj, and B. By Lemma 19, A,af - v : C x Clist and A - Va!.Clist C Blist for
some a! and C. By Lemma 26, there exist a{l, aéﬂ 37, and D such that
{al} = {al} ¥ {ab},
A,B DN,
AFVYalvp’.Cc[D"/al] C B, and

e type variables in 37 do not appear in C.
We first show that

AFYa2Vp’l.C[D" Jal] x C[D" Jal]list E B x Blist .

Since A FVYak.vVB7.C|D" /o] C B, we have

At (Va2 v B’.CIDM Jal])list C Blist
by (C_L1sT). We also have

AFYalvp’l.Cc[D" /ol list € (Ya2.vB7.C[D" Jalt]) list

by (C_DLisT). Thus, by (C_TRANS), we have

AFYa2Vp’l.C[D" /al]list C Blist .
By (C_ProD),

A+ (Va2 VB’ .CID" /al]) x (Vai ¥ B7.C[D" /ai]list) C B x Blist .

By (C_DProD) and (C_TRANS), we have

AFYalvp’.CID"/al] x C[D" Jal']list C B x Blist (6)

23



Next, we show that
AFv:BxBlist.

By (T_INsT) with (6), it suffices to show that
At v:Va2vp’.cIDM jal] x C[D" Jal]list .

We have A, 37, al - v : C x Clist by Lemma 1 (4). By Lemma 2 (4), we have A,,@‘],aé2 Fo:
C[D" /ol x C[D" Jai']list. By (T_GEN) (and swapping 87 and a? in the typing context A, 87, a?),
we have
At wv:Ya2vp’.Cc[D" /al] x C[D" Jal ] list .
Since A,z: B x Blist = M : A, we have
At Mylv/x]: A

by Lemma 4 (1).

Case (T_F1x): We have one reduction rule (R_F1x) which can be applied to the fixed-point operator. The
proof is straightforward with Lemma 4 (1) and (T_ABS).

2. Suppose that A - M; : A and M; — M,. By definition, there exist some FE, M{, and Mj such that
My = E[M]], My = E[Mj], and M{ ~» M;. The proof proceeds by induction on the typing derivation of
for My = E[M]]. If E = [], then we have the conclusion by the first case. In what follows, we suppose that
E # []. By case analysis on the typing rule applied last to derive A - E[M]] : A.

Case (T_VAR), (T_ConsT), (T_ABS), (T_N1L), and (T_F1x): Contradictory because F has to be [].
Case (T_APP): By case analysis on F.
Case E = E’' M: We are given
e A-E'[M|]:B— Aand

e AFM:B
for some B. By the IH, A + E'[Mj] : B — A. Since Mo = E'[Mj] M, we have the conclusion by
(T_App).

Case E = v E’: By the IH.
Case (T_GEN): By the IH.
Case (T_INST): By the IH.
Case (T_Op): By the IH.
Case (T_HANDLE): By the IH.
Case (T_PAIR): By the IH.
Case (T_ProJ1): By the IH.
Case (T_Pr0J2): By the IH.
Case (T_INL): By the IH.
Case (T_INR): By the IH.
Case (T_CASE): By the IH.
Case (T_CoNs): By the IH.
Case (T_CASELIST): By the TH.

O

Theorem 1 (Type Soundness). Assume that all operations satisfy the signature restriction. If A+ M : A and
M —* M' and M' —/~, then:

o M’ is a value; or
e M' = FE[#op(v)] for some E, op, and v such that op ¢ E.
Proof. By Lemmas 29 and 13. O

24



2.2 Soundness of the Type-and-Effect System

This section show soundness of the type-and-effect system. We may reuse the lemmas proven in Section 2.1 if their

statements and proofs do not need change.

Lemma 30 (Weakening). Suppose that - T'1,Ts. Let I's be a typing context such that dom(T2) N dom(T'3) = 0.

1. If-T1,Ts, then - Ty, Ty, Ts.

9. IfT1,TsF A, then Ty, Ty, T3 - A.

9. IfT\,Ts+ AC B, thenTy,Ts,Ts - A C B.

4. IfT1, T3 M: Ale, thenT'1,T9, T3 M : Ale.

5. IfT1,I'sk-H:Ale= Bl€, thenT1,T2, T3+ H:Ale= B|¢.
Proof. By mutual induction on the derivations of the judgments.
Lemma 31 (Type substitution). Suppose that T'; F A.

1. If kT, e, T, then - T1,T2 [A/q].

2. IfT1,a, Ty B, then T'1,T2 [A/a] b B[A/a].

3. IfT1,a,To - BC C, then T1,T2[A/a] F B[A/a] C C[A/q].

4. IfT1,0,T9o b M : Ble, thenT1,To[A/a] - M : B[A/a]|e.
.

IfTy,a,T9 - H: Ble= C|¢€, thenT'1,Iy[A/a]F H : B[A/a]|e = C[A/a]| €.

Proof. Straightforward by mutual induction on the derivations of the judgments, as in Lemma 2.

Lemma 32 (Term substitution). Suppose that Ty - M : Ale for any e.

1. IfTy,2: A ToF M': Ble, thenT1,To - M'[M/z] : B|e.

2. IfT1,2: A ToF H:Ble=C|¢€, thenT1,ToF HM/z]: Ble= C|¢€.
Proof. By mutual induction on the typing derivations as in Lemma 4.
Lemma 33 (Canonical forms). Suppose that 't v : Ale.

1. If unqualify(A) = 1, then v = ¢ for some c.

If unqualify(A) = B —€ O, then v = ¢ for some ¢, or v = Ax.M for some x and M.

= Bx C, then v = (v1, 12) for some v; and vs.

)
)
)
)

= B+ C, thenv = inlv or v = inrv’ for some v'.

(
2. (
3. If unqualify(A
4. If unqualify(A
5. (

If unqualify(A) = Blist, then v = nil or v = consv’ for some v’.

Proof. Similarly to Lemma 8.

O

Lemma 34 (Type containment inversion: polymorphic function types). IfI'F Vail.Al — Ay C Va?. By —

By, then € = €3 and there exist oy, o2, 87, and C™* such that
I I I
o {ay'} = {aqy} W {aj5},
e I ak g’/ +Ch,
o az - By CVB/. A[Ch /agy],
o a2 FValz VB’ Ay JC™ Jaly] C By,

25



e type variables in {B7} do not appear free in Ay and As, and

o if ailf or B7 is not the empty sequence, SR (e1).
Proof. Similarly to Lemma 10. O
Lemma 35. IfT'H A —»¢ Ay C By =2 By, thene; = e and TH B C Ay and TH A C Bs.
Proof. Similarly to Lemma 11 with Lemma 34. 0
Lemma 36 (Value inversion: constants). IfI'F c: Ale, thenT'F ty(c) C A.
Proof. Similarly to Lemma 12. O
Lemma 37 (Progress). If A+ M : Ale, then:

o M — M’ for some M';

e M is a value; or

o M = E[#op(v)] for some E, op, and v such that op ¢ E and op € e.

Proof. Similarly to Lemma 13 with the lemmas proven in this section. The case for (TE_-WEAK) is also straight-
forward. O

Lemma 38 gValue inversion: lambda abstractions). If ' b Ax.M : Ale, then Tya,z:B + M : C|€ and
'-Va.B—¢ CC A for some a, B, C, and €.

Proof. Similarly to Lemma 15. 0

Lemma 39 (Value inversion: pairs). IfT'F (M, M) : Ale, then oot My : By|le and T',a = My : By|e and
I'FVa.B; x By C A for some a, By, and Bs.

Proof. Similarly to Lemma 16. O

Lemma 40 (Value inversion: left injections). IfT'FinlM : Ale, thenT,at M : Ble and THFVa.B+CLC A
for some a, B, and C.

Proof. Similarly to Lemma 17. O

Lemma 41 (Value inversion: right injections). IfTkFinrM : Ale, thenT,abF M :Cle andTHFVa.B+CLC A
for some o, B, and C.

Proof. Similarly to the proof of Lemma 18. O

Lemma 42 (Value inversion: cons). IfT'FconsM : A|e, thenT,a - M : Bx Blist|e and T -V a. Blist C A for
some a and B.

Proof. Similarly to Lemma 19. O
Lemma 43. Ifty(op) = Val. A< B and T #op(v) : C|¢, then

e '3 DI,

e I3 Fuv:AD!/al]|¢,

o ¢ Ceg,

e op €€, and

e '-V3/.B[D!/a!| C C; or
for some B7, D!, and €. Furthermore, if 3”7 is not the empty sequence, SR (¢') holds.

Proof. By induction on the typing derivation. There are only five typing rules that can be applied to #op(v).

26



Case (TE_GEN): Straightforward by the IH. Note that SR (¢) by inversion.
Case (TE_INST): Straightforward by the TH and (C_TRANS).
Case (TE_OpP): Trivial.

Case (TE_WEAK): By the IH.

Lemma 44. IfT,a! - E[#op(v)]: A|e and op ¢ E, then
o Ia!, 37 I-#op(v) : B|€ and
e I'y:Va!VB’/.B,a’ - Ely|: Ale for any y & dom(T), and
e op €€
for some B7, B, and €. Furthermore, if 87 is not the empty sequence, then SR ({op}) holds.
Proof. By induction on the typing derivation.
Case (TE_VAR), (TE_CoONST), (TE_ABS), (TE_NIL), and (TE_FIX): Contradictory.
Case (TE_APP): By case analysis on E.

Case E = E' My: By inversion of the typing derivation, we have I', a! + E'[#op(v)] : C = Ale and T',a! +
M, : C|eand € C e for some C and €¢”. By the TH,
o I'al, B3’ I~ #op(v) : B¢,
e Iy:Va!VB/.B,a! F E'ly]: C —< Alefor any y ¢ dom(T), and
e 0p € ¢,
e If 37 is not the empty sequence, then SR ({op}) holds.

for some B/, B, and €. By Lemma 30 (4) and (Te_App), I',y:Val VB’/.B,al - E'[y| My : Ale, ie.,
Iy:Va!VB'.B,al - Ely]: Ale

Case E = v, E’: Similarly to the above case.
Case (TE_GEN): By the IH. We find SR ({op}) by op € € and SR (¢).
Case (TE_INST): By the IH.

Case (TE_OP): If E = [], the proof is straightforward by letting 37 be the empty sequence, B = A, and ¢ = ¢;
op € e is found by Lemma 43.

Otherwise, the proof is similar to the case for (TE_APP).

Case (TE_.HANDLE): By the IH. We find op € ¢ because the handler does not have an operation clause for op

(op & E).
Case (TE_WEAK): By the IH.

Otherwise: Similarly to the case for (TE_APP).

O
Lemma 45. Suppose thatT'1 - AC B and 'y F A.
1. IfTy,2: B, To - M :C|e, thenT1,2: A,To - M : C|e.
2. IfT',2:B,ToF H:Cle= D|¢€, thenT1,2: A ToF H:Cle= D]|¢€.
Proof. By mutual induction on the typing derivations. O

Lemma 46. If ty(op) = Val. A~ B and T'+ Ef#op(v)] : C|e and op & E, then

27



o '3 DI,

o I3 Fv:AD!/al]|€, and

o foranyy ¢ dom(T), ',y:¥B’. B[D!/a!]F Ely]: C|e
for some B7, D!, and €. Furthermore, if 37 is not the empty sequence, SR ({op}) holds.
Proof. By Lemma 44,

o T',B3]" F#op(v) : C'| ¢ and

. F,y:V,BlJl.C’ F E[y]: C|efor any y ¢ dom(T'), and

o if B{l is not the empty sequence, then SR ({op}) holds
for some ﬁ‘lh and C’. By Lemma 43,

o I',8{",85 + DI,

o I.B{". By Fv: A[D'/a']|¢,

o I'B{' FVB332. BID!/al!] C C’, and

e if 337 is not the empty sequence, SR ({op}) holds

for some B3?, D', and ¢’
We show the conclusion by letting 37 = ‘1]1, ng' It suffices to show that, for any y ¢ dom(T),

L,y:VB]YBy2. B[D!/al|F E[y]: C|e.

Since I', 3" -V B32. B[D' /a!] C C’, we have
T+VYB) VB2 BID! /o' EvE). C

by (C_PoLy). Since T',y:V37*.C' + E[y] : C| ¢, we have

T,y:YB{'VBy2. BID!/a!|F E[y]: C|e.
by Lemma 45. O
Lemma 47. IfTFv: Ale, thenT v : A|€ for any €.
Proof. Straightforward by induction on the typing derivation. O

Lemma 48. Assume that T and o & ftv(A).

1. Suppose that (1) B & flv(A)L, and (2) for any function type C —¢ D occurring at a strictly positive position
of A, if B € ftv(D), then SR (€). ThenT' FVa.A[B/B8] C AV a. B/S].

2. If 8 & ftv(A)~, thenT F AVa. B/B] CVa. A[B/f].

Proof. Case (2) can be proven similarly to Lemma 28 (2).
We show case (1) by induction on A. We consider the case that A = C' —¢ D for some C, D, and ¢; the other
cases are shown similarly to those in Lemma 28 (1). By case (2) with C, we have I' - C[Va. B/S] C V. C[B/f].
Now, we show that

I'FVa. (Va.C[B/B]) —=° D|IB/B]| C ClVa.B/B] —=° D[Va.B/f). (7)
If 8 € ftv(D), then SR (¢) by the assumption. By the IH on D, I' - V. D[B/S] C DV . B/S]. By (C_FUNEFF),

Tt (Ya.C[B/B]) =V a.D[B/B] T C¥a. B/B] = DY a. B/ .

28



Since SR (¢), we have (7) by (C_LDFUNEFF) and (C_TRANS). Otherwise, if 8 ¢ ftv(D), then I, = D[B/S] C
DV a. B/B] by (C_REFL) because D[B/] = D[V a.B/f] = D. Thus,

I'-VYa. (Ya.C[B/B]) = D[B/B]EVa.C[Va.B/B] = D[Va.B/f]

by (C_PoLry) and Lemma 30 (3). Since a ¢ ftv(A) and A = C' —° D, we can have (7) by eliminating the outermost
¥ on the RHS type with (C_INST).
By (C_INsT),
Ik Va.C[B/S] C C[B/A), ®)

By (C_REFrL), (C_FUNEFF), and (C_PoLry) with (8),

T'+Va. C[B/B] = DIB/B] CVa.(Va.C[B/f]) - D[B/B].
Thus, by (C_TrRANS) with (7),

I'kVYa.C|B/B] —° DIB/B) E CNVa. B/B] —° DIV a. B/j].

O
Lemma 49 (Subject reduction).
1. If A M;: Ale and My ~ Ms, then AF My : Ale.
2. If AEM;: Ale and My — My, then A+ My : Ale.
Proof. 1. By induction on the typing derivation. Most of the cases are similar to Lemma 29. We here focus on

the cases that need a treatment specific to the type-and-effect system.

Case (TE_Aprp)/(R-BETA): We are given
o My = (Mz.M) v,

My = M[v/z],
AF(Ax.M)v: Ale,

e A Xx.M:B — Ale,

e A wv:Ble and

o ¢y C ¢
for some x, M, v, B, and ¢;. By Lemma 38 A,a!,z:B'+ M : A’ | and AFVal. B —¢ A'CB—% A
for some af, A’, B’, and €. By Lemma 34, we find ¢ = ¢, and there exist a{l, aé?, B7, and C* such
that

{a'} = {a1'} W {az},

o A3/ FCh,

e AFBLVYB/.B[C"/al],

e AFVYakVvp’. ACh/al]C A, and

e type variables in 37 do not appear free in A’ and B’, and

o If aéQ or 37 is not the empty sequence, SR (¢).
By Lemma 30, A, 37, a’,2:B' - M : A’|¢ and A,,Bj,aéz F Ch. Thus, by Lemma 31 (4),

A,B’ az, x:B'[C"a"]F M : A[C" jag']| € (9)
Since A v:Bleand AF BC VB’ B[C"/al], we have
At w:VB . B[C"/al]|e

by (TE_INST) (note that A + ¥V 37. B'[C"'/al'] is shown easily with Lemma 14). By Lemma 30 (4),
(C_INST), and (TE_INST), we have

A,B7 a2 v B[Chja"] e

29



By Lemmas 47 and 32 (1) with (9),
A, B a2 - Mlv/z): A[CT /al]|€.
By (TE-GEN) (with the permutation of the bindings in the typing context),
At Mv/z]:Yak v’ A[Ch/al] €

(note that If a2 or B” is not the empty sequence, SR (¢')). Since A F Va2V B7. A[C" /al] C A, we
have A+ M[v/z]: A|€ by (TE_INST). Since € C ¢, we have

AF Mlv/z]: Ale

by (TE_-WEAK).
Case (TE_GEN): By the IH and (TE_GEN).
Case (TE_HANDLE)/(R_HANDLE): We are given
e M; = handle E[#op(v)] with H,
eop ¢ E,
e H(op) = op(z, k) = M,
o My = M[v/z][\y.handle E[y] with H/k],
e A+ handle E[#op(v)|with H : A]e,
A+ Ef#op(v)]: B|€,
e AFH:B|eé = Ale
for some E, op, v, H, z, y, k, M, B, and €. Suppose that ty (op) = Va.C — D. By inversion of the
derivation of AF H : Ble' = A|e, we have A e, z:C k:D —¢ A M : Ale.
By Lemma 46,
o A B+ Cy,
A, B Fv:C[Co/a]] e,
I,y:¥B’.D[Co/a] - E[y] : B|€, and
e if 37 is not the empty sequence, SR ({op})
for some 87, Cyp, and €. Since A +VB37.Cy,

A,z:CVB’.Co/al,k:DVB’.Coja] = Al M: Ale (10)

by Lemma 31 (4) (note that type variables in a do not appear free in A). Since A, 37 v : C[Co /]| €0,
we have A v :VB7.C[Co/a]| ey by Lemma 47 and (TE_GEN).

We show that A v : C[VB7.Co/a] | €. If B/ is not empty, then SR ({op}). Thus, we have the derivation
by Lemma 48 (1) and (TE_INST) (note that - A by Lemma 14 and we can suppose that 37 do not appear
free in C). Otherwise, if 37 is empty, we also have it.

By applying Lemmas 47 and 32 (1) to (10), we have
Ak:DVB’.Co/a) =< AF M[v/x]: Ale. (11)
We show that
A+ \y.handle E[y] with H : D[V B87.Co/a] —° A|¢”

for any €”.

For that, we first show that A = D[V37.Co/a] C VB’. D[Co/a]. If B7 is not empty, then SR ({op}).
Thus, we have the derivation by Lemma 48 (2) (note that - A by Lemma 14 and we can suppose that 37
do not appear free in D). Otherwise, if 37 is empty, we also have it by (C_REFL).

Thus, since I',y:V37. D [Co/a] - E[y] : B|¢, we have

A,y:D[VB’.Co/a]F E[y]: B|€

30



by Lemma 45. Thus, we have
A,y:D[VB’.Co/a]F handle E[y]with H : A|e
by Lemma 30 (5) and (TE_HANDLE). By (TE_ABS),
A+ \y.handle E[y]with H : DIV 37.Co/a] —¢ A|€”

for any €”.
By applying Lemma 32 (1) to (11), we have

A F Mlv/z][Ay.handle E]y] with H /K] : A|e,

which is what we have to show.

Case (TE_FIX)/(R_FI1X): By Lemma 32. Note that the fixed-point operator can be given any effect.

2. Straightforward by induction on the typing derivation.

Theorem 2 (Type Soundness). If A+ M : A|Q and M —* M’ and M’ —/~, then M’ is a value.
Proof. By Lemmas 49 and 37.

31



