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[bookmark: _GoBack]Appendix S1. Details of nest box construction. Throughout the duration of the study, the nest boxes used in north-central Florida were constructed to uniform dimensions (Figs. A1 and A2), although material used was either 2.54 cm/1 inch cypress or cedar wood. The entire box is pieced together using screws so that damaged parts may be easily replaced later. The entrance hole is circular and 7.62cm/3 in in diameter. The interior of the box is accessed from the side, as one side piece is hinged at top and swings outward to open. A 1-2 cm gap is allowed to remain at the top of the hinged side piece to provide room for door movement and ventilation. A “sill” at the door opening remains in place to prevent nest contents from falling out when the door is opened. Eight to 12 holes, approximately 3 mm in diameter, are drilled through the floor to provide drainage. Nest boxes were placed 6–7m above the ground on utility poles or live trees using steel-reinforced cable ties or nails, and oriented at random in respect to compass directions. However, we purposefully oriented boxes to face open space rather than any nearby vegetation.



FRAGSTATS metrics equations
Equations for the landscape metrics generated by program FRAGSTATS were downloaded from the online documentation at the website http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Metrics%20TOC.htm accessed on 18 April 2011.
Some metrics are additionally summarized with first- and second-order statistics at the landscape and patch level. Distribution statistics used here included mean (MN), area-weighted mean (AM), and coefficient of variation (CV).




Class metric, percentage of landscape (PLAND)

where Pi = proportion of the landscape occupied by patch type (class) i, aij = area (m2) of patch ij, and A = total landscape area (m2).

Landscape and class metric, aggregation index (AI)

which is the number of like adjacencies based on the single-count method involving the corresponding class, divided by the maximum possible number of like adjacencies involving the corresponding class, multiplied by 100 to convert to a percentage.

Landscape metric, area (AREA)

where aij = area (m2) of patch ij, which is divided by 10,000 to convert to hectares.
Landscape metric, interspersion and juxtaposition index (IJI)

where eik = total length (m) of edge in landscape between patch types (classes) i and k; and m = number of patch types (classes) present in the landscape, including the landscape border, if present.

Landscape and class metric, fractal shape index (FRAC)

where pij = patch perimeter, aij is patch area, and the perimeter is adjusted to correct for the raster bias in perimeter.

Landscape metric, proximity index (PROX)

where aijs=patch area within specified neighbourhood, s, of patch ij, and hijs=distance between the patch and the focal patch within specified neighbourhood.

Landscape and class metric, Euclidean nearest-neighbour distance (ENN)

where hij=distance (m) from patch ij to the nearest neighbouring patch of the same class.

Class metric, largest patch index (LPI)

where aij=area of patch ij, and A=total landscape area of the corresponding patch type, multiplied by 100 to convert to a percentage.

Landscape metric, contagion index (CONTAG)

where Pi = proportion of the landscape occupied by patch type (class) i, gik = number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method, and m =number of patch types (classes) present in the landscape, including the landscape border if present.

Landscape metric, perimeter-area fractal dimension (PAFRAC)

where aij = area (m2) of patch ij, pij = perimeter (m) of patch ij, and N = total number of patches in the landscape.

Prior probabilities
All prior probabilities were selected to be uninformative.

Dynamic occupancy portion
logit of , survival parameter; Muphi.prob ~ Logistic(0,1)
logit of , colonisation parameter; Mugam.prob ~ Logistic(0,1)
initial occupancy probability; 1 ~ Uniform(0,1)
detection probability; pj,t ~ Uniform(0,1)

Reversible jump Markov chain Monte Carlo (RJMCMC) portion
Currently selected coefficients; K ~ Binomial(0.5, Q [number of columns in covariate matrix])
Taueps ~ Gamma(0.01, 0.01)

Table S1. Reclassification to common categories for land cover types in Florida from published land cover maps based on imagery from 1985–1989 (early) and 2003 (late). Land cover maps published by Florida Fish and Wildlife Conservation Commission (Kautz et al. 1993; Kautz et al. 2007). Reclassification based on Kautz el al. (2007) except for further pooling of sandhill and grassland/agriculture categories into a single “open habitat” land cover type.

	2003 land cover type
	Early class number
	Late class number
	Reclassed number
	Reclassified land cover type name

	Dry prairie
	2
	6
	2
	Dry prairie

	Pineland
	3
	9
	3
	Pineland

	Xeric oak scrub
	6
	3
	4
	Scrub

	Sand pine scrub
	4
	4
	4
	Scrub

	Sandhill
	5
	5
	5
	Open habitat

	Mixed hardwood-pine forest
	7
	7
	6
	Upland forest

	Hardwood hammock and forest
	8
	8
	6
	Upland forest

	Hydric hammock
	8
	21
	6
	Upland forest

	Bay swamp
	14
	16
	7
	Forested wetland

	Cypress swamp
	12
	17
	7
	Forested wetland

	Mixed wetland forest
	13
	19
	7
	Forested wetland

	Hardwood swamp
	13
	20
	7
	Forested wetland

	Salt marsh
	10
	23
	10
	Salt marsh

	Freshwater marsh and wet prairie
	11
	12
	11
	Freshwater marsh

	Sawgrass marsh
	11
	13
	11
	Freshwater marsh

	Cattail marsh
	11
	14
	11
	Freshwater marsh

	Shrub swamp
	15
	15
	12
	Shrub swamp

	Shrub and brushland
	20
	28
	13
	Shrub and brushland

	Grassland
	19
	29
	5
	Open habitat

	Improved pasture
	19
	31
	5
	Open habitat

	Unimproved pasture
	19
	32
	5
	Open habitat

	Citrus
	19
	34
	5
	Open habitat

	Row/field crops
	19
	35
	5
	Open habitat

	Other agriculture
	19
	36
	5
	Open habitat

	Sand/beach
	22
	2
	16
	Urban/barren

	Bare soil/clearcut
	22
	30
	16
	Urban/barren

	High impact urban
	22
	41
	16
	Urban/barren

	Low impact urban
	22
	42
	16
	Urban/barren

	Extractive
	22
	43
	16
	Urban/barren

	Water
	18
	27
	17
	Water




Table S2. Marginal posterior probabilities of variables from reversible jump Markov chain Monte Carlo variable selection analysis (RJMCMC) of dynamic occupancy models of American Kestrel nest box occupancy in Florida, USA. Models were assessed iteratively, first considering only coarse-scale variables, than fine-scale variables, then a combination of the best-performing variables from both scales (those variables selected for the final model indicated in bold). The parameter  is the probability of continued occupancy of a site (“survival”), and is the colonisation probability for a previously unoccupied site. “Early” refers to the study time period 1992–93, and “Late” to 2008–2010. We modelled the effects of covariates only on  for the transition between study time periods, i.e, 3.

	Variable
	Component
	Early 
	3
	Late 

	Coarse-scale
	
	
	
	

	Aggregation index (AI)
	Contagion/diversity
	0.330
	0.330
	0.375

	Patch size coefficient of variation (AREA_CV)
	Large patch dominance 
	0.481
	0.510
	0.231


	Interspersion/juxtaposition index (IJI)
	Interspersion/ juxtaposition 
	0.723
	0.410
	0.428

	Fractal dimension coefficient of variation (FRAC_CV)
	Patch shape variability 
	0.514
	0.296
	0.207

	Mean fractal dimension, open habitat (FRMN_5)
	Patch shape complexity (class)
	0.199
	0.266
	0.599

	Mean fractal dimension, urban habitat (FRMN_16)
	Patch shape complexity (class)
	0.549
	0.364
	0.214

	Aggregation index, urban (AI_16)
	Aggregation (class)
	0.243
	0.642
	0.498

	Largest patch index, urban habitat (LPI_16)
	Large patch dominance (class)
	0.788
	0.308
	0.383

	Fine-scale
	Component
	Early 
	3
	Late 

	Aggregation index (AI)
	Contagion/diversity
	0.462
	0.495
	0.277

	Patch size coefficient of variation (AREA_CV)
	Large patch dominance 
	0.408
	0.486
	0.314

	Interspersion/juxtaposition index (IJI)
	Interspersion/ juxtaposition 
	0.273
	0.385
	0.456

	Fractal dimension coefficient of variation (FRAC_CV)
	Patch shape variability 
	0.672
	0.435
	0.356

	Mean proximity index (PROX_MN)
	Mean proximity 
	0.341
	0.455
	0.295

	Area-weighted mean nearest neighbour distance (ENN_AM)
	Nearest neighbour distance
	0.351
	0.401
	0.762

	Mean fractal dimension, open habitat (FRMN_5)
	Patch shape complexity (class)
	0.274
	0.451
	0.289

	Mean fractal dimension, urban habitat (FRMN_16)
	Patch shape complexity (class)
	0.258
	0.407
	0.432

	Aggregation index, urban (AI_16)
	Aggregation (class)
	0.425
	0.322
	0.324

	Mean nearest neighbour distance, urban (ENN_MN_16)
	Nearest neighbour distance
	0.334
	0.424
	0.246

	Nearest neighbour distance coefficient of variation, open habitat (ENN_CV_5)
	Patch dispersion (class)
	0.401
	0.672
	0.526

	Nearest neighbour distance coefficient of variation, urban habitat (ENN_CV_16)
	Patch dispersion (class)
	0.362
	0.456
	0.365

	Largest patch index, urban habitat (LPI_16)
	Large patch dominance (class)
	0.425
	0.326
	0.524

	Combination – multiscale
	Component
	Early 
	3
	Late 

	Interspersion/juxtaposition index (IJI) – coarse
	Interspersion/ juxtaposition 
	0.407
	n/a
	n/a

	Fractal dimension coefficient of variation (FRAC_CV) - fine
	Patch shape variability
	0.732
	n/a
	n/a

	Area-weighted mean nearest neighbour distance (ENN_AM) - fine
	Nearest neighbour distance
	n/a
	n/a
	0.552

	Aggregation index, urban (AI_16) - coarse
	Aggregation (class)
	n/a
	0.507
	n/a


	Nearest neighbour distance coefficient of variation, open habitat (ENN_CV_5) – fine
	Patch dispersion (class)
	n/a
	0.692
	n/a

	Largest patch index, urban habitat (LPI_16) – coarse
	Large patch dominance (class)
	0.623
	n/a
	n/a

	Proportion of landscape in open habitat (PLAND_5) – coarse
	Putative suitable habitat amount
	0.371
	0.371
	0.378






Appendix S2. Example WinBUGS code for dynamic occupancy models.

# dynamic occupancy model with three reversible jump portions

# coded for R2WinBUGS implementation

sink("rj3Pmy.txt")
cat("
model {

# priors
K ~ dbin(0.5, Q)
beta.prec <- 0.1
taueps ~ dgamma(0.01,0.01)
K2 ~ dbin(0.5, Q2)
beta.prec2 <- 0.1
taueps2 ~ dgamma(0.01,0.01)
KG ~ dbin(0.5, QG)
beta.precG <- 0.1
tauepsG ~ dgamma(0.01,0.01)
for(t in 2:nyear){
    muphi.prob[t]~dunif(0,1)
		logit(muphi[t])<-muphi.prob[t]
    mugam.prob[t]~dunif(0,1)
		logit(mugam[t])<-mugam.prob[t]
}

psi1~dunif(0,1)

for(t in 1:nyear){
  for(j in 1:nrep){
    pInt[j,t]~dnorm(0,0.4)
    }
}

# state process, z is unobserved but informed by Zst
for(i in 1:nsite){
  z[i,1]~dbern(psi1)
  
  logit(gamma[i,2])<- mugam[2]
  logit(phi[i,2])<- muphi[2] + nu[i]  
  nu[i] ~ dnorm(psi[i], taueps)
  muZ[i,2]<- z[i,2-1]*phi[i,2] + (1-z[i,2-1])*gamma[i,2]
  z[i,2]~dbern(muZ[i,2])
      
  logit(gamma[i,3])<- mugam[3] + nuG[i]
  nuG[i] ~ dnorm(psiG[i], tauepsG)
  logit(phi[i,3])<- muphi[3] 
  muZ[i,3]<- z[i,3-1]*phi[i,3] + (1-z[i,3-1])*gamma[i,3]
  z[i,3]~dbern(muZ[i,3])
  
  logit(gamma[i,4])<- mugam[4]
  logit(phi[i,4])<- muphi[4] 
  muZ[i,4]<- z[i,4-1]*phi[i,4] + (1-z[i,4-1])*gamma[i,4]
  z[i,4]~dbern(muZ[i,4])
    
  logit(gamma[i,5])<- mugam[5] 
  logit(phi[i,5])<- muphi[5] + nu2[i,5]
  nu2[i,5] ~ dnorm(psi2[i], taueps2)
  muZ[i,5]<- z[i,5-1]*phi[i,5] + (1-z[i,5-1])*gamma[i,5]
  z[i,5]~dbern(muZ[i,5])
}

#reversible jump portion number 1, for early Phi
psi[1:nsite] <- jump.lin.pred(X[1:nsite, 1:Q], K, beta.prec)
id <- jump.model.id(psi[1:nsite]) 

pred[1:(Q + 1)] <- jump.lin.pred.pred(psi[1:nsite], X.pred[1:(Q + 1), 1:Q])
for (i in 1:Q) 
	{
	X.pred[i, i] <- 1
	for (j in 1:(i - 1)) {X.pred[i, j] <- 0}
	for (j in (i + 1):Q) {X.pred[i, j] <- 0}
	X.pred[(Q + 1), i] <- 0
	effect[i] <- pred[i] - pred[Q + 1]
}

#reversible jump portion number 2, for gamma[3]
psiG[1:nsite] <- jump.lin.pred(XG[1:nsite, 1:QG], KG, beta.precG)
idG <- jump.model.id(psiG[1:nsite]) 

predG[1:(QG + 1)] <- jump.lin.pred.pred(psiG[1:nsite], X.predG[1:(QG + 1), 1:QG])
for (i in 1:QG) 
	{
	X.predG[i, i] <- 1
	for (j in 1:(i - 1)) {X.predG[i, j] <- 0}
	for (j in (i + 1):QG) {X.predG[i, j] <- 0}
	X.predG[(QG + 1), i] <- 0
	effectG[i] <- predG[i] - predG[QG + 1]
}

#reversible jump portion number 3, for late Phi
psi2[1:nsite] <- jump.lin.pred(X2[1:nsite, 1:Q2], K2, beta.prec2)
id2 <- jump.model.id(psi2[1:nsite]) 

pred2[1:(Q2 + 1)] <- jump.lin.pred.pred(psi2[1:nsite], X.pred2[1:(Q2 + 1), 1:Q2])
for (i in 1:Q2) 
	{
	X.pred2[i, i] <- 1
	for (j in 1:(i - 1)) {X.pred2[i, j] <- 0}
	for (j in (i + 1):Q2) {X.pred2[i, j] <- 0}
	X.pred2[(Q2 + 1), i] <- 0
	effect2[i] <- pred2[i] - pred2[Q2 + 1]
}

# observation component
for (t in 1:nyear){
 for(i in 1:nsite){
 for(j in 1:nrep){
   logit(p[i,j,t]) <- pInt[j,t] 
   Py[i,j,t]<- z[i,t]*p[i,j,t]
   y[i,j,t] ~ dbern(Py[i,j,t])
}
}
}

# things to monitor, or derived parameters
psivec[1]<-psi1 #monitoring pop-wide occupancy probability
psi.fs[1]<-sum(z[1:nsite,1])/nsite  #proportion presently occupied sites
for(t in 2:nyear){
  psivec[t]<-psivec[t-1]*muphi[t] + (1-psivec[t-1])*mugam[t]
  psi.fs[t]<-sum(z[1:nsite,t])/nsite 
  growthr[t]<-psivec[t]/psivec[t-1]
  turnover[t-1]<- (1-psivec[t-1])*mugam[t]/psivec[t]
}
for(t in 1:nyear){
  for(j in 1:nrep){ 
    p.ave[t,j]<-sum(p[1:nsite,j,t])/nsite
    }
  }

}
",fill=TRUE)
sink()

# covariate matrices
X <- cbind(EAL$frmn16eal, EAL$frmn5eal, EAL$ai16eal, EAL$lpi16eal, EAL$aieal, 
EAL$arcveal, EAL$ijieal, EAL$frcveal)
Q <- ncol(X)
X2 <- cbind(LTL$frmn16ltl, LTL$frmn5ltl, LTL$ai16ltl, LTL$lpi16ltl, LTL$ailtl, 
LTL$arcvltl, LTL$ijiltl, LTL$frcvltl)
Q2 <- ncol(X2)
XG <- cbind(deltal[,3], deltal[,4], deltal[,5], deltal[,6], deltal[,7],
deltal[,8], deltal[,9], deltal[,10])
QG <- ncol(XG)

data <- list ("y","X", "Q", "X2", "Q2", "XG", "QG", "nsite", "nrep", "nyear")

inits <- function()
  list (z=Zst, taueps=0.01, K=0, taueps2=0.01, K2=0, tauepsG=0.01, KG=0)

parameters <- c("effect", "id", "growthr", "turnover", "psi.fs", "effect2", "id2", "effectG", "idG", "p.ave")

# first trial run to check if code is working
rj3.Pmy.coarse <- bugs (data, inits, parameters, "rj3Pmy.txt", n.thin=1, n.chains=2, 
n.burnin=10000, n.iter=16000, debug=TRUE, codaPkg=T)

# now that looks good, run longer
rj3.Pmy.coarse <- bugs (data, inits, parameters, "rj3Pmy.txt", n.thin=1, n.chains=2, 
n.burnin=75000, n.iter=125000, debug=TRUE, codaPkg=T)

Figures S1 and S2. Schematic of the design of artificial nest boxes used throughout the duration of the study in north-central Florida. First image depicts the front of the box, and second image the side that comprises the door. Dimensions are in inches.
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