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Statistical notes on fitting data to a Gompertz distribution 

For curve-fitting three datasets were considered: coat tearing, ct, the sum of pericarp splitting and coat 

tearing, ps+ct, and growth stage S1. To avoid any artificial overfitting, every dataset for distribution-

fitting was stopped once its maximum value was reached (whereas in Fig. 3A all the datasets are 

prolonged up to the last overall observed event, namely the last seed attaining stage S1, in order to 

facilitate comparison). For distribution-fitting, the percentages were corrected for both the (very small) 

number of seeds that showed normal germination (assumed as seeds germinating by pericarp splitting 

within the first two weeks of incubation, i.e. 0.36% (of the initial number of seeds, that is, one seed), 

which was excluded by data for fitting) and for the viability observed at the end of the experiment. In 

other words, for this analysis, data (diminished by 0.36%) were expressed as a fraction of their end 

value (also diminished by 0.36%) because distributions assume maximum values of 1, and once all 

the seeds have either germinated or rotted, end values represent maximum values. 

To have a preliminary guess of the distribution parameters, a cumulative distribution function (cdf) was 

built by manually varying the parameters to obtain a distribution similar to that of S1. Then, from these 

preliminary guesses (� � 0.001 and α � 0.01), the nonlinear regression procedure of Systat 

employing least-squares estimation (by the Gauss-Newton iterative method) was used to fit the 

cumulative Gompertz distribution to the observed data (expressed as fractions of 1), because such 

procedure minimizes the squared deviations of model’s predictions from observed data, thereby 

optimizing the fitting of the curve. In fact, the main target of this approach was to show that the 

timecourse of the anomalous germination indeed fits a Gompertz distribution. By this way, the three 

cumulative datasets for ct, ps+ct and S1 produced the following results: 

 ct ps+ct S1 
Raw R

2
 (1-Residual/Total) 1.000 0.999 0.999 

Mean Corrected R
2
 (1-Residual/Corrected) 0.999 0.998 0.997 

R
2
 (observed vs predicted) 0.999 0.999 0.997 

� 0.000222 0.000416 0.000430 
Wald 95% Confidence Interval 0.000212-

0.000233 
0.000394-
0.000438 

0.000400-
0.000461 

α 0.01720 0.014585 0.01429 
Wald 95% Confidence Interval 0.01695-0.01745 0.014289-

0.014882 
0.01389-0.01469 

 

Clearly, all three datasets fit very well a cumulative Gompertz distribution. The overall percentage of 

seeds showing a rupture of the caryopsis coat (ps+ct in Fig. 3A) was, however, deemed to be more 

interesting than S1 because the former shows the direct effect of the failure of the caryopsis coat (the 

failure of some function is the typical reason for observing a Gompertz distribution; Kirkwood, 2015), 

and it is also subject to a reduced interference by seed mortality (that is, only the percentage of seeds 

rotted before the rupture of the caryopsis coat has to be considered, which is a useful feature because 

germination and rotting after the rupture of the caryopsis coat are not independent from each other). 

Despite a slightly lower fitting, which however is still extremely good, the overall percentage of seeds 

showing a rupture of the caryopsis coat (ps+ct) was also preferred to the percentage of seeds 

showing only tearing of the caryopsis coat (ct) because, apart from the seeds germinating (all by 

pericarp splitting) within the first two weeks of incubation (0.36%) that are typically considered to 



undergo normal germination and were therefore subtracted from the cumulative data for this analysis, 

the pericarp splitting observed later can be interpreted as due to a failure of the ventral junction 

consequent to the embryo thrust, rather than to a programmed weakening of this specialized tissue. 

Indeed, if failure can occur at the caryopsis coat around the embryo, it can occur at the ventral junction 

as well, since the latter is just the predetermined breaking site for germination, and can therefore be 

expected to fail first. 

In spite of the good fitting, the nonlinear least-squares procedure is sometimes deemed to provide an 

estimation of the curve parameters that could be biased, whereas the maximum likelihood procedure 

is superior to this aim (Garg et al., 1970; O’Neill et al., 2004). In fact, variation in the proportions of 

germinated seeds will vary with time, being largest at intermediate monitoring intervals and smallest at 

the initial and final intervals where germination activity is low (Ritz et al., 2013). This means that a 

fundamental assumptions of variance homogeneity implicitly underlying nonlinear regression by LSe is 

not satisfied (O’Neill et al., 2004; Ritz et al., 2013). In addition, a relevant problem involved in 

regressing a time series is the autocorrelation of the errors that occurs when considering cumulative 

data (Mandel, 1957; O’Neill et al., 2004; Appendix S3 in Mesgaran et al., 2013): since subsequent 

cumulative recordings are made on the same sample(s), the errors are not independent, as required 

by regression analysis. In fact, each successive datum has an additional error term accruing from the 

proceeding observations, thus that cumulative counts have cumulative, heteroscedastic errors 

(Mandel, 1957; O’Neill et al., 2004; Appendix S3 in Mesgaran et al., 2013). Anyway, a solution to 

these problems is available (Mandel, 1957; O’Neill et al., 2004): in the probability density function (pdf) 

the error of a probability datum observed at a given time is independent of the errors observed at any 

other time. Hence, a function based on single-time events, rather than the cumulative distribution 

function, should be used for parametric estimations in curve-fitting of time series by MLe, just because 

in the pdf there is no autocorrelation of the errors and, since data are not cumulated, it also alleviates 

problems related to non-homogenous errors, as neither the errors are therefore cumulated (Mandel, 

1957; O’Neill et al., 2004). 

Cumulative data for ps+ct were then used to generate a set of time-to-event data (where an event is 

the attainment of the ps+ct stage). In other words, the time required by every seed to attain the ps+ct 

stage (actually, the time of recording) was used, and when more seeds (� seeds, with � > 1) were 

recorded to attain the ps+ct stage at a given observation time, their times to-event were considered 

separately, that is, the recording time was repeated � times (as, according to the traditional custom of 

Survival Analysis, the Systat 12 program does not allow to indicate frequencies for times to-event). 

Thereafter, the subroutine for Fitting Distributions of Systat 12 was used to fit a continuous Gompertz 

probability density distribution, ��t, �,α� � �eα
exp�
��eα
 
1�/α�, to the time-to-event data (see the 

graph below, wherein the curve is the fitted pdf and the actual data are grouped in histograms), by 

estimating parameters with a Maximum Likelihood estimation (MLe) procedure. Estimated parameters 

were: � � 0.000350 and α � 0.015421, with a Chi-square goodness-of-fit test statistic = 6.013047, 

degrees of freedom = 7, and p-value = 0.538227 (note that for a Chi-square goodness-of-fit test the 

null hypothesis is that the data are consistent with the specified distribution). This fitting values were 

used for Fig. 3B. It can be noted that the value of � estimated by this procedure (MLe) is outside the 

confidence interval provided by the estimation according to the least-squares estimation (LSe, see the 

table above).  



 

The result obtained by estimating the parameters on the pdf by MLe can be compared with the fitting 

to the data of the pdf built on the parameters previously estimated on the cdf by LSe (� � 0.000416 

and α � 0.01459), whose graph is reported below: Chi-square goodness-of-fit test statistic = 

6.194440, degrees of freedom = 9, and p-value = 0.720311. The higher p-value is evidently due to the 

higher degrees of freedom (as the parameters were given), nevertheless it confirms the good fitting 

(see the graph below), even though the slightly higher value of the Chi-square goodness-of-fit test 

statistic indicates the fitting is a little bit less good than with parameters optimized on the pdf by MLe, 

as expected. Anyway, these findings suggest the statistical difference between results obtained by the 

two fitting procedures is small in this case. 
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The two cumulative Gompertz distributions based on fitting the data on the cdf by LSe and on the pdf 

by MLe are shown below together with actual data. 

 

The two curves are very close and their R2 (determined by the Excell function RSQ, which returns the 

square of the Pearson product moment correlation coefficient between the observed and predicted 

datapoints) is 0.998601 for LSe and 0.998599 for MLe. This confirms that the two fitting procedures 

provide very close fits in this case. The curve for MLe was chosen for Fig. 3B because this procedure 

is recommended for providing a better estimate of the parameters (Garg et al., 1970; O’Neill et al., 

2004). To provide a better estimation of the goodness-of-fit for the curve in Fig. 3B, an ANOVA was 

performed by using the GLM procedure of Systat 12 to test the capability of the curve obtained by MLe 

to predict actual data, and an Adjusted Squared Multiple R (R2
adj) of 0.9985842 was thereby obtained. 

The R2
adj is deemed a better indicator of goodness-of-fit in nonlinear models (Zar, 1999). 

There are at least two censoring problems with fitting germination data, namely, initial lag and the fact 

that data are recorded only at intervals. In germination studies, it can be useful to subtract the 

physiological lag time that seeds must undergo before they can germinate (Scott et al., 1984). Since at 

30°C it is less than one day, it was ignored in the present work, as the overall duration of the 

experiment is much longer than that. Anyway, a preliminary test confirmed that no noticeable change 

would be obtained if time data were elaborated after they were diminished by one day. 

A second problem involved in regressing a time series for germination is that the exact germination 

time is never known precisely, but it is somewhere between two successive monitoring dates, a 

feature defined “interval censoring” (Onofri et al., 2011; Ritz et al., 2013). Thus, in interval censoring a 

given germination percentage is considered implicitly in most analyses to be attained at a precise 

moment, when in fact it will usually have occurred earlier (but never later) than the time that counts are 

made (Onofri et al., 2011). This can obviously be a problem whenever the intervals between two 

successive monitoring times are relevant with respect to the overall timecourse, as the values of the 

independent variable (time) would then be known only with a relevant uncertainty, whereas regression 

analysis assumes they are known without relevant errors. Again, this is not considered an issue in the 
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present study, wherein the long timecourse makes negligible every uncertainty in the precise moment 

the observed germination percentage is attained between two successive monitoring dates. 

Another statistical problem, which can be very important, is that successive observations on the 

germination curve are highly correlated: the total number of seeds that have germinated at a particular 

time is highly dependent on the number of seeds that germinated previously (Ritz et al., 2013). This 

means that not only the errors, but the data themselves are not independent. Thus, even another 

fundamental assumption underlying nonlinear regression, i.e. independence between proportions, is 

not satisfied (Ritz et al., 2013). This trouble can affect the whole shape of the timecourse curve, and 

therefore bias any modeling. A solution to this problem would still be possible if there is some variable 

that, for each observation, is not dependent on what has previously happened: such a variable could 

be used to assess whether the modeled data show deviations from the observed data by comparing 

predicted and actual values of this variable. In Survival Analysis, of which the Gompertz distribution 

represents a parametric model, this assessment of the parametric model’s appropriateness may be 

made by comparing predicted and actual values of the cumulative hazard (Bradburn et al., 2003). The 

cumulative hazard is therefore introduced below. 

Although the Gompertz distribution is a parametric approach to failure time series, other approaches 

of Survival Analysis, which provides the general statistical background to study this kind of time-to-

event processes, can be applied too. A common one is the Kaplan-Meier product-limit estimator (Hill 

and Lewicki, 2006). Thus, the nonparametric procedure for Survival Analysis of Systat 12 was used to 

estimate (by MLe) the Kaplan-Meier (K-M) probabilities that define the survival function of the seeds 

(the decreasing proportion of initial seeds that survive at the end of each interval). In order to 

elaborate these data, Systat 12 employs the Turnbull’s generalization of the Kaplan-Meier estimator 

for interval-censored data to extended the application of this estimator. Quite interestingly, this 

analysis allows to consider both data that are interval censored, just like the ps+ct data, and data that 

are right censored, like data of seeds rotted before attaining ps+ct, which have not attained such stage 

prior to the end of their last interval and therefore provide the analysis with more power, that is more 

seeds, to calculate the frequencies of seeds not attaining ps+ct for the time prior to their rotting. In this 

analysis, also the seed germinated within 14 days was included, to see if it was effectively associated 

to a different statistical behavior, since its presence does not affect the overall output of non-

parametric analysis. The graph below shows the survival function (red squares), ��t�, established 

according to the Turnbull’s generalization of K-M probabilities. The survival probability function gives 

the probability that an event will not happen until time t. From this analysis it is also possible to obtain 

values of ln��t� (black points in the graph below), that is, of the logarithm of the cumulative hazard, 

as ��t� is the negative logarithm of the survival function: ��t� �  
 ln ��t�. It turns out, therefore, that 

ln��t� � ln�
 ln ��t��. The logarithm of the cumulative hazard was plotted because it gives a more 

linear curve than the cumulative hazard, in the case of a Gompertz distribution, thereby facilitating the 

comparison. The cumulative hazard measures the total amount of risk of failure that has been 

accumulated up to time t (Cleves et al., 2008), and as such it has no upper bound: a cumulative 

probability of 100% is never reached in a finite time, but the cumulative risk that every initial seed will 

undergo ps+ct within a given finite time is always increasing. As seen, ��t� is directly computable from 

the Kaplan-Meier estimator of the survival function, whereas the hazard rate, which is the derivative of 

��t�, needs the step up function of the cumulative hazard is smoothed before it can be differentiated 

(Cleves et al., 2008). 



 

The hazard rate, ��t�, aka the age-specific failure rate, is defined as the probability per time unit that a 

case that has survived to the beginning of the respective interval will fail in that interval (Hill and 

Lewicki, 2006). It is an unobserved yet fundamental variable that determines the timing of events in a 

given process (Allison, 2014), and in nonparametric models it is computed as the number of failures 

per time units in the respective interval, divided by the average number of surviving cases at the mid-

point of the interval (Hill and Lewicki, 2006). Specifically to the case of germination, the hazard is the 

probability that a seed will germinate in a particular time interval, given that it has not already 

germinated (Scott et al., 1984). This latent variable is a key feature distinguishing among different 

models for continuous-time data (Allison, 2014) and is not dependent on what happened previously as 

it depends only on the underlying process that affects the survived individuals, whatever their number 

is. 

The hazard rate can be computed by both nonparametric (with some further elaboration of ��t�, as 

said above) and parametric models. In the latter case, it is assumed to follow some specific function 

that determines a parametric distribution (Allison, 2014). In the case of a Gompertz parametric model 

for survival probability the basic assumption is that ��t, �,α� � �eα
 (Garg et al., 1970; Johnson et al., 

1995; Kirkwood, 2015). A direct consequence of this assumption is that by plotting the hazard rate on 

a logarithmic scale against time, a linear increase can be observed for the Gompertz parametric model 

for survival probability, in accordance with the logarithmic version of the hazard rate equation, i.e. 

ln ��t, �,α� � ln � � αt (Kirkwood, 2015). Accordingly, a linear plot of ln ��t, �,α�, with the values of 

parameters estimated by the MLe, is shown in the graph above (blue diamonds in the graph above). 

In parametric models, the cumulative hazard, ��t�, is obtained for every time (upper end of time 

interval, t�) as the integral between t � 0 and t � t� of the hazard ratio ��t� (Cleves et al., 2008). 

Thus, in a parametric Gompertz model ��t, �,α� � ��eα
 
1�/α (Garg et al., 1970). On the other hand, 

in Survival Analysis it has been established that ��t� �  
 ln ��t�, and then ��t� � exp �
��t��, which 

holds for every function, even parametric (Cleves et al., 2008). Hence, the survival function of the 
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Gompertz parametric model for survival probability is (Garg et al., 1970; Johnson et al., 1995): 

��t, �,α� � exp �����α� �� 
α

!. At each survival function is associated a complementary failure function, 

#�t�, such that #�t� � 1 
 ��t�. Therefore, the cumulative Gompertz distribution, which is the failure 

function for a model assuming that ��t, �,α� � �eα
, is $�t, �,α� � 1 
 exp �����α� �� 
α

!. This shows that 

the parametric Gompertz distribution is based on the assumption of a specific hazard model, and a 

cumulative hazard can be promptly computed from the parameters estimated for this distribution. It is 

therefore possible to compare the plot of ln��t� computed from the Kaplan-Meier nonparametric 

Survival Analysis (black points in the graph above) with the plot of ln��t, �,α� estimated by the 

parametric Gompertz model (blue line in the graph above). In fact, an informal assessment of a 

parametric model’s appropriateness may be made via plotting the cumulative hazard against values 

estimated by the model (Bradburn et al., 2003). It is evident that the two plots match very well (R2
adj = 

0.994). 

It is therefore concluded that: (i)- the assumption of a log-linear increase of the hazard rate is 

supported by the good match between the logarithmic plots of cumulative hazard values estimated 

according to the parametric model and the values computed by the non-parametric analysis, thus that 

the adoption of the Gompertz parametric model for failure probability is fully justified; (ii)- the inclusion 

of right censored data, that is, times to rotting for seeds that had not yet attained ps+ct, does not 

change the resulting hazard, thus it is confirmed that normalizing the ps+ct data to the end viability to 

perform the parametric analysis does not alter the outcome distribution; (iii)- the germinative event (by 

pericarp splitting) that occurred in the first two weeks of incubation in water is compatible with the 

frequencies expected by the Gompertz model of caryopsis coat failure (i.e., the first black point on the 

left in the graph above is quite close to the blue line), that is, this event (representing about 0.36% of 

initial number of seeds) could be due to a failure of the coat at the ventral junction rather than to 

programmed physiological germination. Clearly, there is no statistical way to say which is the case, 

this only highlights that the anomalous germination can include a very few early events that are 

however indistinguishable from normal germination in the absence of a physiological marker. 

Nonetheless, these events can only represent a tiny portion of seeds, which is therefore absolutely 

negligible when considering data of normal germination. In fact, based on the parametric Gompertz 

model adopted in this study, the cumulative hazard for dehulled red rice caryopses is 0.0055 at 14d 

and 0.0134 at 30d of incubation, which means the total risk of failure up to this times is minimal. 

Actually, it should be noted that the interpretation of these figures is not straightforward, as they are 

risks, not probabilities: ��t� reaches the value of 1 at 247d (this means seeds are expected to 

undergo ps+ct within 247d, on average), 2 at 291d (which means that seeds whose coat has not failed 

at 247d are then expected to undergo ps+ct within an additional 291-247= 44 days, on average) and 

6.29 at 365d (which is the number of times the eventually surviving seeds have exceeded a time 

threshold at which they were expected, on average for the seeds survived each time at the previous 

threshold, to undergo ps+ct, and have thus endured without attaining the ps+ct stage up to this time of 

incubation). The probabilities are given by the cumulative Gompertz distribution, which foretells 

probabilities of anomalous germination of 0.55% and 1.33% within 14d and 30d, respectively (and 

99.82% at 365d). Hence, the timeframes of normal germination (usually 1-2 weeks) and of the 

anomalous germination (one year and more) are so different that any overlapping can be safely 

ignored. 
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