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Abstract

This Web appendix contains proofs of consistency and unbiasedness
for the article “A Simple Distribution-Free Test for Nonnested Model
Selection.” The accompanying Stata code demonstrates how the Huth
and Allee example was computed. The data must be obtained from
the original authors.
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Properties of the Distribution-Free Test

Consistency

To prove consistency, we can make use of the following theorem.

Theorem .1 (Lehmann 1951) Let Tn denote a sequence of test statistics for
an α-level test of H0 : θ ∈ ω versus H1 : θ ∈ Ω− ω, such that the test based
on Tn rejects H0 if Tn ≥ cn or Tn ≤ c′n. Suppose there exists a function g(θ)
such that Tn converges in probability to g(θ) for every θ ∈ Ω. If, in addition,

g(θ) = g0 ∀ θ ∈ ω,

g(θ) 6= g0 ∀ θ ∈ Ω− ω,

and

lim
n→∞

cn ≤ g0,

lim
n→∞

c′n ≥ g0,

then Tn is a consistent sequence of tests for all alternatives in H1 : θ ∈ Ω−ω.

Let θ be the median, and let g(θ) = Pr(Di > θ) where Di = ln[f(Yi|Xi; β∗)
/g(Yi|Zi; γ∗)]. Then g(θ) = (1/2) for θ ∈ ω, and g(θ) 6= (1/2) for θ ∈ Ω− ω.
Now, write the test statistic as Tn = B/n, where B =

∑n
i=1 I(θ,+∞)(di). We

show that Tn converges in probability to g(θ) by showing convergence in
quadratic mean. The expected value and variance of Tn are

E

[
B

n

]
=

1

n

n∑
i=1

E[I(θ,+∞)(di)] = g(θ),

V

[
B

n

]
=

1

n2

n∑
i=1

V [I(θ,+∞)(di)] =
g(θ)[1− g(θ)]

n
.
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The variance tends to zero as n →∞, so we have shown that Tn
p→ g(θ).

As consistency is a large-sample property, we can consider the large-sample
approximation of the distribution-free test. Under the null hypothesis, the
expected value of Tn (from above) is (1/2), and the variance is (1/4n). For
large n, the test therefore rejects the null when

∣∣B
n
− 1

2
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√

1
4n

≥ zα
2
,

where zα
2

is the upper 100(α/2)th percentile of the standard normal. Rear-
ranging, we see that the test rejects when

∣∣∣∣
B

n
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1

2
+ zα

2

√
1

4n
.

As n → ∞, cn → (1/2) ≤ g0 = (1/2). As we have met the conditions of
Lehmann’s theorem, we can state that the test is consistent for all alternatives
in H1 : θ ∈ Ω− ω. (Similar proofs can be given for one-tailed tests.)
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Unbiasedness

The distribution-free test is,

H0 : median0(Di) = θ0 versus

H1 : median0(Di) < (>) θ0,

where Di = ln[f(Yi|Xi; β∗)/g(Yi|Zi; γ∗)]. Let D1, . . . , Dn be i.i.d. F (d − θ),
where θ is the median of the underlying distribution. We prove unbiasedness
by noting that the distribution-free test reaches its natural significance level
for every distribution in F (d− θ), and that its power function is monotonic.
We prove the later point using the following theorem.

Theorem .2 (Randles and Wolfe 1979) Suppose that for testing H0 versus
H1 we reject H0 for large (small) values of a test statistic T (X1, . . . , Xn)
that satisfies T (x1 + k, . . . , xn + k) ≥ (≤) T (x1, . . . , xn) for every k ≥ 0
and (x1, . . . , xn). Then the test has a monotone power function in θ for the
one-sample location problem; that is,

PT (θ, F ) ≤ PT (θ′, F ) for θ ≤ θ′,

and any continuous distribution with c.d.f. F (·).

The distribution-free test rejects for large (small) values of

B(Di, . . . , Dn) =
n∑

i=1

I(θ0,+∞)(di)

where I is the indicator function. When k ≥ 0,

B(d1 + k, . . . , dn + k) =
n∑

i=1

I(θ0,+∞)(di + k)

=
n∑

i=1

I(θ0−k,+∞)(di)

≥ B(d1, . . . , dn).
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The test then has a monotone power function in θ, and therefore the distribution-
free test is an unbiased of H0 : median0(Di) = θ0 against H1 : median0(Di) >
(<) θ0.
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