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Crossmark 
 
 
User manual, version 1.0.0 
 
 
 
1 Introduction 
 
The program Crossmark is designed to estimate transition probabilities using data from 
repeated cross-sections. Given a dichotomous Y variable,  Crossmark estimates the effects of 
predictor variables X on the entry and exit probabilities using a Markov model. A detailed 
description of the model is given in Moffitt (1993) and Pelzer, Eisinga and Franses (2001, 
2002).  
 
Crossmark is available for the Windows 95, 98 and 2000 platforms. To install the freeware 
version 1.0.0 place the file Crossmark.exe in a directory of your choice. The program then can 
be started by double-clicking on this file in Windows Explorer after which the Main Menu 
appears on the screen. This menu looks like the one below, but with all fields that have to be 
filled in being empty. 
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2 Standard analysis 
 
We shall describe how a standard analysis with Crossmark proceeds using a fictitious 
example on vote intention. To highlight all the options of the program, we use bold face 
characters for buttons that must be clicked and fields or menu's that have to be filled in. 
 
Suppose the data to be analyzed are from 5 cross-sections, gathered in consecutive years, i.e., 
from 1996 to 2000. The dependent variable is the 'intention to vote for political party A' (code 
1 = 'vote for', 0 = 'not vote for') and the independent variable is the respondent’s age (ranging 
from 18 to 70 years). The file containing the data is named 'c:\crossmark\vote.dat'. This 
filename has to be entered on the Main Menu in the field Data file (t-y-x-fre). The data file 
can be inspected by clicking the button Edit data file that opens the data file in WordPad 
format. The total number of cross-sections (i.e., 5) has to be entered in the field Number of 
cross-sections. The abbreviation 't-y-x-fre' behind 'Data file' stands for 'time index, 
Y variable, X  variables and frequency' and indicates the order in which these variables must 
appear the data file. The first three lines of the example data of each cross-section are 
presented below: 
 
1  1      1 51      1  51 52 53 54 55       5 
1  0      1 41      1  41 42 43 44 45       5 
1  1      1 62      1  62 63 64 65 66       8 
. 
. 
2  0      1 57      1  57 58 59 60 61       2 
2  1      1 42      1  42 43 44 45 46       8 
2  0      1 46      1  46 47 48 49 50       1 
. 
. 
3  1      1 64      1  64 65 66 67 68       8 
3  0      1 62      1  62 63 64 65 66       1 
3  1      1 46      1  46 47 48 49 50       4 
. 
. 
4  1      1 30      1  30 31 32 33 34       7 
4  1      1 69      1  69 70 71 72 73      14 
4  0      1 46      1  46 47 48 49 50       1 
. 
. 
5  1      1 30      1  30 31 32 33 34       3 
5  0      1 18      1  18 19 20 21 22       2 
5  1      1 56      1  56 57 58 59 60      10 
. 
. 

 
The first data column is the time index t. As there are five cross-sections the time index has to 
have the values 1, 2, 3, 4, 5 indicating the years 1996, 1997, 1998, 1999, 2000 respectively. 
Crossmark expects the data to be ordered in time, the data of the first cross section located at 
the top of the file, those of the second cross-section following underneath and so on until the 
data of the last cross-section located at the bottom. 
 
The second column of the data file contains the values of the dependent variable Y . These 
values need to be 0 or 1. Columns 3 through 10 contain the values of the predictor variables 
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used in the example, to be discussed below. The rightmost column must contain the number 
of cases having the values for t , Y , X  in the preceding columns. If each row contains the 
data for a single case, the last column of each row must have the value 1. There is no need to 
aggregate over t , Y , X . But aggregating the data can speed up the estimation process 
considerably. 
 
The third column up to (but not including) the last one must contain the values of the 
predictor variables X . The example uses the following 4 predictor variables: 
 
1. An intercept having the value 1 for each case. This intercept is located in column 3 of the 

data file. In the sequel we will refer to it as  ‘intercept 1’. 
2. The respondents age in 1996, located in column 4. For the respondents of the cross 

sections 1997 and following, the age in 1996 has been computed by ‘back casting’ their 
age to the year 1996. We shall explain below why we use ‘age in 1996’ as a separate 
predictor. We call this predictor ‘age 1996’. 

3. A second intercept in column 5, which is called ‘intercept 2’. 
4. The respondents age in each of the five years, located in columns 6 thru 10. These five age 

values are considered a single predictor variable, the values of which change over time. We 
call this predictor 'age'. 
 

The first three predictors are constant over time, while the fourth takes on a different value in 
each of the five years. Time constant predictors occupy a single column in the data file, while 
time varying predictors occupy as many columns as there are cross-sections, i.e. five in the 
example. The names and types (constant or varying) of the predictors have to be specified in 
the submenu Predictor names and types. This submenu shows up after clicking the 
X-names button of the Main Menu: 
 

 
 



 4 

The left field of the Predictor names and types submenu contains the predictor’s name and 
the right field the predictor’s type. For a time constant predictor enter the character c, and for 
a time varying predictor enter v. Having done that, click on OK to get back the Main Menu. 
 
To understand why we employ two intercepts and two age predictors (instead of just one 
intercept and one age predictor, which would also be possible) we take a closer look at the 
model equations for 1p , 2p , 3p , 4p  and 5p  or, in words, the probabilities to vote for political 
party A in each of the five years. In general, the basic equations Crossmark uses are, with five 
cross-sections: 
 

1 1

2 1 2 1 2

3 2 3 2 3
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In the example, we let the !  and "  elements depend on the respondents ages as follows:  
 

1 1 2 1996
* *

2 3 1997 2 1 2 19974
* *

3 3 1998 3 1 2 19984
* *

3 1999 1 2 19994 4 4

5 53 20004

logit( )
logit( ) logit(1 )
logit( ) logit(1 )
logit( ) logit(1 )
logit( ) logit(1 )

Age
Age Age
Age Age
Age Age
Age

! # #
! # # " # #
! # # " # #
! # # " # #
! # # "

! #
! # " ! #
! # " ! #
! # " ! #
! # " ! * *

1 2 2000Age# ##

 

 
Age1996 refers to the respondent’s age in 1996, Age1997 to the age in 1997, etcetera. The 
symbol "  indicates the exit probability: 3"  is the probability not to vote for party A in 1998 
given a ‘vote for A’ in 1997. For the complement of " , or the probability to stay in state 

1Y ! , the term ‘1-exit’ probability is used in the sequel, as is done in Crossmark. The 
symbol !  indicates the entry probability: 3!  is the probability to vote for A in 1998 given a 
‘not vote for A’ in 1997.  
 
Speaking of 1 1p! !  as an entry probability can be problematic. Generally spoken, 1p  is the 
probability to be in state 1Y !  at 1t !  and this need not to be the same as the probability to 
be in state 1Y !  given that the previous state was 0Y ! . Only if one knows that each 
respondent's previous state was 0Y ! , one may truly consider 1p  an entry probability. This 
would e.g. be the case if political party A did not exist before 1996. In many applications, of 
course, the 1Y !  state does exist prior to 1t !  and respondents could have been in that 
state. In such situations, one may prefer to model 1p  as a state probability, rather than an 
entry probability. This is accomplished by estimating different sets of parameters for 1!  and 
for 2!  and following, as is done in the model above, where the parameters 1#  and 2#  only 
apply to 1! . 
 
In Crossmark the model equations can be specified in the Design mu and Design lambda 
fields of the Main Menu. In Design mu we indicate which predictor variable acts upon which 
entry probability ! . For the example this is done as follows: 
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 1  1 1  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 

 
The first column is the time index t  and the other four columns correspond to the four 
predictor variables in the model. The second column corresponds to 'intercept 1', and the 
value 1 for 1t !  indicates that ‘intercept 1’ has an effect on 1! ; the 0 scores in the second 
column for 2, 3, 4t !  and 5  indicate that ‘intercept 1’ does not have an effect on 2! , 3! , 

4! and 5! . The rightmost column is related to the time varying predictor ‘age’; the 0 value for 
1t !  indicates that 'age' does not occur in the equation for 1!  while the 1 values for 
2, 3, 4t !  and 5  indicate that 'age' does occur in the equations for 2! , 3! , 4! and 5! . 

 
In general, the Design mu matrix must have as many rows as there are cross-sections. Each 
row starts with the time index t  and is followed by a 1 or 0 value for each predictor variable 
indicating whether (1) or not (0) the predictor acts upon entry probability t! . In the same way 
a Design lambda matrix has to be specified indicating which predictor acts upon which exit 
probability " . For the present example the lambda matrix is specified as: 
 
 1  0 0  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 

 
Note that the first row of the Design lambda matrix contains the value 1 for the time index 

1t !  and else only 0 values to indicate that none of the four predictor variables has an effect 
on 1" . This is just to specify that 1"  does not play a part in the model equations. 
 
We proceed by clicking the Estimation button of the Main menu after which the following 
menu appears: 
 

 
 
The upper two fields in this Estimation Menu specify the starting values for the iterative 
Fisher scoring scheme. The default values are 0 for all #  and *#  parameters of the entry and 
1-exit probabilities respectively. Good starting values, i.e., values close to the final ML 
estimates, speed up the estimation process. Starting values far removed from the final 
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estimates slow down this process or may cause the estimates to be caught in a local maximum 
or not to reach convergence at all. When convergence has been reached, it is advisable to 
choose other starting values and let Crossmark run again to check whether the same 
parameter estimates are found. If this turns out to be the case, one can be more confident that 
the estimates are indeed the true global ML estimates instead of estimates associated with a 
local maximum. 
 
When analyzing complex models, in the sense of having many predictors, starting values 
become more of an issue. The final estimates of a previous, relatively simple model can be 
used as starting values for a new model having additional predictors. To this end the button 
read starting values can be helpful. After clicking, the final estimates of the previous model 
are filled in as starting values in both fields. The starting values for the additional predictors 
in the second model are defined to be zero and automatically added to the list. If a predictor 
that was present in the previous model does not appear in the second, the user has to remove 
the relevant starting values from both lines. 
 
The Step size field in the Estimation Window refers to the step size $  of the Fisher scoring 
algorithm employed for iteratively updating the parameter estimates. The algorithm is given 
by 1

1
� � � ( / )k k k kI LL% % $ & & %"
# ! # , where �k%  and 1

�
k% #  are the parameter estimates at the 

iterations k  and 1k # , 1�
kI"  is the inverse of the Fisher information matrix evaluated at 

�
k% %! , and ( / )kLL& & %  are the derivatives of the log likelihood with respect to the 

parameters, evaluated at �
k% %! . By default, the value of the step size $  is 0.5. If the log 

likelihood function has a single mode, the optimal value for the step size would be 1. It is not 
unusual, however, for the log likelihood function to have multiple modes in which case a step 
size of 1 could easily cause the algorithm to jump over the parameter region with the highest 
mode. For this reason, a default step size of 0.5 is chosen. A much smaller step size value may 
slow down the algorithm too much. There is no rule of thumb given here as to the choice of 
the most efficient step size value. 
 
The  Step size shrinkage  (s ) also deals with the problem of the step size being too large. If 
the log likelihood based on 1

�
k% #  is lower than the one based on �k% , the current step size has 

apparently been too large. In that case Crossmark produces the message "Not converging, 
back to parameter estimates of previous iteration" and takes as the new step size the product 
s $$ .  If this smaller step size also leads to 1

�
k% #  estimates with a lower log likelihood than the 

one based on �k% , the step size s s $$ $  is tried. In short, the step size is multiplied by s  as 
many times as needed to produce an increase in log likelihood. 
 
The estimation ends if the percentage change in log likelihood is less than the Minimal % 
LogLikelihood Change specified, which by default is 0.000001%, or the Maximum number 
of iterations has been reached, which by default is taken to be 100. 
 
To obtain the same number of cases in each cross-section, case weights are applied by default. 
This option can be switched off by clicking the checkbox Weight cross-sections equally. 
 
Crossmark produces an output file, the name of which can be specified in the field Outputfile 
for t-mu-lambda-p-fre. By default it is labeled 'tmulapfre' and put in the directory where the 
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'crossmark.exe' resides. The output file contains one line for each case in the data file. For 
case i , this line has the following information from left to right: 
 
- the time index of the cross-section case i  belongs to,  
- the predicted values of 1i!  to iT! ,   
- the predicted values of 1i"  to iT" , 
- the predicted values of 1ip  to iTp ,   
- the frequency of case i , equal to the frequency specified in the rightmost column of the data 
file. 

 
Predicted ! , "  and p  values that do not apply to a particular case (e.g., 3!  for a case of 
cross-section 2, or 1"  for all cases) are assigned the ‘missing value’ 9. 
 
After clicking the OK button of the Estimation Menu the Main Menu reappears. To save all 
the specifications entered, click the Save button and specify a file name, e.g. 'vote.crm' which 
then appears in the top line of the Main Menu. Using the Save as button enables saving the 
job under a different name. The most recently saved job can be opened by clicking on the 
button Last job while older jobs may be opened with Other job.  
 
To start the analysis the data have to be read first. This is done by clicking on Read data. 
When finished reading, Crossmark presents the total number of cases as well as the number of 
cases for each cross-section in the rightmost window of the Main Menu. After reading the 
data, the estimation can be carried out by clicking on Go. The initial log likelihood, based on 
the starting values of the parameters, appears on the screen after a few moments, as does the 
log likelihood of each subsequent iteration. When the last iteration is finished, a 'Ready' 
message is delivered. The estimation may take some time, especially when many cases and/or 
predictor variables are involved. In the mean time the user may want to look at intermediate 
results by clicking the Show iter button or pressing Ctrl+Tab on the keyboard. The Output  
window then appears, with the parameter estimates of each iteration scrolling over the screen, 
accompanied by the log likelihood and, possibly, messages concerning corrective actions 
undertaken by the estimation algorithm. Pressing Ctrl+Tab again (or clicking the cross X in 
the upper right corner of the screen) closes the Output window.  
 
Back in the Main Menu the estimation process - if still running - can be stopped by using the 
Stop button. This may be useful if e.g. the log likelihood does not change substantially 
anymore. Another reason to stop the iterations is that the algorithm does not converge, which 
may happen if the model contains too many (i.e., not uniquely identified) parameters. 
 
To leave Crossmark click Exit or the cross X in the upper right corner of the screen.  
 
 
3 Nonbackcastable variables 
 
It may be that the respondent's value on a predictor variable at time t  is known, but the values 
at 1t " , 2t "  and so on are not. Take e.g. the variable ‘monthly income’. Given the income 
of a respondent of cross-section t , usually little, if anything, is know about his or her income 
at earlier points in time. To put it another way: the variable income cannot be 'backcasted'. 
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Such a non-backcastable variable can be used as a predictor for the entry and exit probability 
only at the time the respondent was observed but not at preceding points in time. We will 
show using a simple example how such variables can be handled in Crossmark. 
 
Suppose that we have three cross-sections and the non-backcastable predictor we would like 
to use is named Inc , representing the monthly personal income of a respondent at the time of 
observation. Also, we have the backcastable predictor age specified as ( )Age t , where the t  
between brackets denotes that there are three age vectors, one for each of the three points in 
time. For simplicity, we omit the intercept in the equations for !  below. For any respondent 
of the second and subsequent cross-sections, the following two equations apply to logit( )t! , 
depending on whether t  relates to the time the respondent is actually observed or to a 
preceding point in time: 
 
observed: 1 3logit( ) = ( ) + Inc  t Age t! # #$ $  (1) 
preceding: 2logit( ) = ( )t Age t! # $  (2) 
 
In equation (1) we can use Inc  as a predictor, whereas in equation (2) this is not possible. Of 
course the Age  effects 1#  and 2#  need not necessarily be the same. In order to estimate 1# , 

2#  and  3#  with Crossmark a single equation for logit( )t!  must be specified that applies to 
all points in time. To achieve this we construct three ancillary time varying predictors, which 
we shall call _ ( )Age obs t , _ ( )Age pre t  and _ ( )Inc obs t  to be discussed below. The 
construction of these predictors must precede the analysis with Crossmark and the user must 
add the predictors to the data file and treat them like any normal predictor variable: their 
names and types (v) have to be entered (using the X-names button in the Main Menu) and 
also, three columns, one for each predictor, have to be added to the Design mu and Design 
lambda matrices. 
 
The predictor _ ( )Age obs t  has to be constructed such that _ ( ) ( )Age obs t Age t!  for cases 
observed at time point t  and _ ( ) 0Age obs t !  for all other cases. For predictor _ ( )Age pre t  
it must hold that _ ( ) ( )Age pre t Age t!  for cases observed after time point t  and 

_ ( ) 0Age pre t !  for all other cases. For 6 randomly chosen cases, two of each cross-section, 
the values of ( )Age t , _ ( )Age obs t  and _ ( )Age pre t  might be those in the following table: 
 
               ( )Age t              _ ( )Age obs t            _ ( )Age pre t  

 (1) (2)  (3) (1) (2) (3) (1) (2) (3) 
 
 1t !  19  0  0 19  0  0  0  0  0 
  45  0  0 45  0  0  0  0  0 
 
 2t !  37 38  0  0 38  0 37  0  0 
 21 22  0  0 22  0 21  0  0 
  
 3t !  42 43 77  0    0 44 42 43  0 
 66 67 68  0  0 68 66 67  0 

 
Note that, put next to one another, the three _ ( )Age obs t  vectors form a block-diagonal 
matrix and the _ ( )Age pre t  vectors a 'sub-block diagonal' one. For Inc  and _ ( )Inc obs t  the 
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values of the six cases might be as the ones below, the _ ( )Inc obs t  vectors forming a block-
diagonal matrix: 
 
          Inc                       _ ( )Inc obs t  

                         (1)      (2)       (3) 
 
 1t !  1500 1500    0    0 
       7300 7300    0    0 
 
 2t !  3500    0 3500    0 
        9400    0 9400    0 
 
 3t !  1200    0         0 1200 
      2200    0         0 2200 

 
Instead of the two separate equations (1) and (2), we can now write a single equation holding 
for time observed as well as preceding points in time: 
 
 _ _ _5 64logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs t! # # #! $ $ $  (3) 
 
Why (1) and (2) are equivalent to (3) becomes clear when equation (3) is worked out for the 
observed and preceding time points separately: 
 
observed: _ _ _5 64logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs t! # # #! $ $ $  
 5 64= ( ) 0Age t Inc# # #$ # $ # $  
 64 ( )Age t Inc# #! $ # $  (3a) 
 
preceding:  _ _ _5 64logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs t! # # #! $ $ $  
 5 64 0 + ( ) + 0Age t# # #! $ $ $  
 5 ( )Age t#! $  (3b) 
 
Thus, equations (3a) and (3b) appear to be equivalent to (1) and (2). Since Crossmark uses a 
single equation for !  we employ the generic equation (3). Parameter 4#  can be interpreted  
as 1# , i.e., the effect of age controlled for income, at observation time;  5#  is interpreted like 

2#  as the effect of age at preceding points in time not controlled for income; 6#  has the same 
interpretation as 3# , i.e., the effect of income controlled for age at the time of observation. 
 
Instead of (3) way may also use another generic equation in Crossmark: 
 
 _ _7 8 9logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs t! # # #! $ $ # $  (4) 
 
Working out (4) for observation time and preceding timepoints results in: 
 
observation: _ _7 8 9logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs t! # # #! $ $ # $  
 7 8 9( ) + ( )  Age t Age t Inc# # #! $ $ # $  
 7 8 9( ) ( )  Age t Inc# # #! # $ # $  (4a) 
 
preceding: _ _7 8 9logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs t! # # #! $ $ # $  
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 7 8 9logit( ) ( ) + 0  0t Age t! # # #! $ $ # $  
 7logit( ) ( )t Age t! #! $   (4b) 
 
As can be seen (4a) is equivalent to (3a) and (1), while (4b) is equivalent to (3b) and (2). 
Therefore, both equation (3) and (4) can be used to model logit( )t! . They differ only in 
parameterization. The sum 7 8# ##  has the same interpretation as 4#  (or 1# ); 7#  is 
interpreted in the same way as 5#  (or 2# ). Finally, the interpretation of 9# is similar to the one 
of 5#  (or 3# ). A minor advantage of using (4) instead of (3), is that (4) needs on construction 
of the _ ( )Age pre t  vectors. 
 
 
3.1 Testing the null-hypothesis 0 1 2H :# #!   
 
Looking at the equations (1) and (2) the question arises as to the equality of the two Age  
effects 1#  and 2# . When applying equation (4) the above null hypothesis translates into 

0 7 8 7H : # # ## !  or, more simply, to 0 8H : 0# ! . This test is automatically performed by 
Crossmark and the significance level of the related Wald statistic is reported in the Output 
window. When, on the other hand, equation (3) is applied, the above hypothesis translates into 

50 4H : 0# #" ! . Given the hypothesis is true, the sample outcome of the statistic 
2

5 54 4
� � � �( ) / var( )# # # #" " , with 54

� �var( )# #"  being the estimated sample variance of 
54

� �# #" , follows a 2'  distribution with 1 degree of freedom. The value of 54
� �# #"  can of 

course be derived from the ML estimates produced by Crossmark in the final iteration. To 
derive 54

� �var( )# #"  the formula 5 5 54 4 4
� � � � � �var( ) var( ) var( ) 2 cov( , )# # # # # #" ! # " $  can be 

applied  with 4
�var( )# , 5

�var( )#  and  54
� �cov( , )# #  representing the estimated variances of  4

�#  
and  5

�#  and their estimated covariance respectively. These variances and covariance are given 
by Crossmark on request.  
 
If the test outcome leads to not rejecting the null hypothesis, the ancillary variables for the 
predictor in question are no longer needed and the original predictor, ( )Age t  in the example, 
can be used, possibly along with ancillary variables of other predictors for which the 
hypothesis does not hold. 
 
The equations above did not incorporate an intercept for simplicity. Of course, in most 
applications an intercept will be present and we will have to decide which type of intercept 
vector(s) to employ. If we have no non-backcastable predictors, the intercept is simply a 
single vector containing the value 1 for all cases of all cross-sections. If, however, non-
backcastable predictors are utilized, we may want to estimate one intercept for time observed 
and another one for preceding time, just as was done for ( )Age t  in equations (1) and (2). In 
that case we would have to construct two ancillary (time varying) intercept predictors, 
according to the scheme below: 
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             Intercept           _ ( )Intercept obs t         _ ( )Intercept pre t  

                              (1)  (2)  (3)         (1)  (2)  (3) 
 
 1t !         1            1    0    0           0    0    0 
             1            1    0    0           0    0    0 
 
 2t !         1            0    1    0           1    0    0 
              1            0    1    0           1    0    0 
  
 3t !         1 0    0    1           1    1    0 
              1 0    0    1           1    1    0 

 
 
4 Fixed !  and "  values 
 
Crossmark has the option of entering fixed !  and/or fixed "  values for some (or all) cases on 
some (or all) points in time. We start with discussing three situations in which this option can 
be utilized to adjust the basic equations for the state probabilities p . We also explain how the 
option has to be specified in Crossmark. 
 
In some applications, the values for !  and/or "  may be considered fixed and hence need not 
be estimated. This would e.g. be the case when the (backcasted) age of a respondent is 17 or 
younger in a study on voting behavior, given that the voting age is 18. Suppose, in the 
example given earlier, a respondent is 18 years old at the time the third cross-section was 
observed (i.e., on 3t ! ). For this respondent we would like 1p  and 2p  to be zero; also, since 

3p  is an entry probability (the respondent could not have voted for party A at 2t ! ) we 
would like 3p  to equal the entry probability 3! . To implement these restrictions in the model 
equations, we fix 1 2 0! !! !  for this respondent, which implies the following adjusted 
equations for 1p  to 5p : 
 

 

1 1

2 1 2 1 2 2

3 2 3 2 3 3 3 3

3 34 4 4

5 5 54 4

0
(1 ) (1 ) 0(1 ) 1 0 0
(1 ) (1 ) 0(1 ) 1
(1 ) (1 )
(1 ) (1 )

p
p p p
p p p
p p p
p p p

!
" ! "
" ! " ! !
" !
" !

! !
! " # " ! " # $ !
! " # " ! " # $ !
! " # "
! " # "

 

 
The equations for 4p  and 5p  have the usual Markov form, while those for 1p , 2p  and 3p  are 
adjusted in the sense specified above. We shall explain below how the fixed 0 values for the 
!  probabilities in question for respondents younger than 18 have to be entered in Crossmark.  
 
A second example of adjusting the basic equations for p  is the following. Suppose all 
predictor variables we would like to use are constant over time, but only for a short time 
period. To be more specific, we assume that the predictor values for a case observed at time t  
also apply to 1t "  and 2t " , but not further back in time. Therefore, we let the Markov 
chain for each case start two time points preceding to the one the case was observed, instead 
of starting at time point 1t !  as we would have done, had the predictors been perfectly 
stable. This implies that the first state probability estimated for the cases of the cross-section 
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at 5t !  will be 3p . For the cases of the cross-section at 4t ! , 2p  will be the first estimated 
state probability, and for those of the cross-section at 3t ! , 2t !  and 1t ! , 1p  will be the 
first estimated state probability. This is different from the more general situation where, for all 
cases of all cross-sections, 1p  is the first estimated state probability. Remember that for 1p  we 
used a logistic equation, 1 1p !! , with specific #  parameters, different from the ones of 2!  
through 5! . Here, we would like the same to hold for 2p  and 3p , as far as the cases of the 
cross-sections at 4t !  and 5t !  respectively are involved. To achieve this, we shall again 
use the equation 1 1p !!  to estimate 1p  as the first estimated state probability for all cases of 
all cross-sections and then (i) let 2p  have the same value as 1p  for the cases of the cross-
section at 4t !  and (ii) let 3p  have the same value as 1p  for the cases of the cross-section at 

5t ! . By doing so, we estimate three first state probabilities, 1p , 2p  and 3p , using the 
logistic equations 1 1p !! , 2 1p !!  and 3 1p !! . At the same time 2p  and 3p  are also 
estimated by a Markov equation for the cases of the cross-sections at 3t !  and 4t !  
respectively. 

To specify the model we exploit fixed !  and "  values. Let us take a look at a case of 
the cross-section at 5t !  for which we want to estimate 3p  using the equation 3 1p !! . We 
let 2 3 0" "! !  and 2 3 0! !! ! , which results in: 
 

1 1

2 1 2 1 2 1 1 1

3 2 3 2 3 1 1 1

3 34 4 4

5 5 54 4

(1 ) (1 ) (1 0) (1 ) 0
(1 ) (1 ) (1 0) (1 ) 0
(1 ) (1 )
(1 ) (1 )

p
p p p
p p p
p p p
p p p

!
" ! ! ! !
" ! ! ! !
" !
" !

!
! " # " ! " # " $ !
! " # " ! " # " $ !
! " # "
! " # "

 

 
As can be seen, the equations for 5p  and 4p  are the usual Markov equations, while for 3p  we 
have 3 1p !! . For the cases of cross-section 4 we proceed in a similar way by fixing 2 0" !  
and 2 0! !  which leads to 2 1p !! . For the cases of the cross-sections at 3, 2t t! !  and 

1t ! , we automatically have 1 1p !! , so for these cases we do not need to fix any !  or " .  
 
The last example of using fixed !  and "  values concerns the analysis of discrete panel data. 
Consider a situation in which we have at our disposal a five wave panel data set without any 
inflow or outflow. The Markov model for discrete panel data reads as 
 

1 1(1 ) (1 )t t tt tp y y" !" "! " # " ,      2, , 5t ! ! , 
 
while for cross-sections, it reads as 
 

1 1(1 ) (1 )t t tt tp p p" !" "! " # " ,      2, , 5t ! ! , 
 
the difference being the use of 1ty "  in the case of panel data and 1tp "  when using cross-
sectional data. As stated earlier, Crossmark uses the second equation since it was designed for 
the analysis of cross-sectional data. However, the program can simply be tricked to analyze 
panel data as well and thus to apply the first equation. 

To do so, we first have to construct the data file in the way Crossmark expects it to be, 
i.e., according to the t-y-x-fre format. Each 'cross-section' in this data file corresponds to a 
particular wave of the panel data. The data for the first wave have to be placed at the top of 



 13 

the data file, followed by the data for the second wave, the third wave and so on. The order in 
which the respondents appear within the data for each wave is irrelevant and need not be the 
same for each wave.  

Second, we need to define 1 1t tp y" "!  for 2, , 5t ! !  or, to put it simply, t tp y!  for 
1, , 4t ! ! . To do so we use fixed !  and fixed "  values. To make sure that 1 1p y! , we 

simply let 1 1y! ! , resulting in 1 1 1p y!! ! . For 2p  through 4p  we proceed as follows. If 
for a certain case 0ty !  ( 2, , 4t ! ! ), we let 1t" !  and 0t! ! , which results in  

1 1 1 1(1 ) (1 ) (1 1) (1 ) 0 0t t tt t t tp p p p p" !" " " "! " # " ! " # " ! ; thus 0t tp y! ! , as 
was meant to be the case. If, on the other hand, 1ty ! , we let 0t" !  and 1t! ! , so that 

1 1(1 0) (1 ) 1t t tp p p" "! " # " ! ; thus 1t tp y! ! .  
The third and final point concerns the fact that in models for panel data the likelihood 

is commonly computed for the data of 2t % , while in Crossmark, the likelihood for 1t !  is 
used as well. To delete the likelihood contribution of the cases for 1t !  in Crossmark, we 
assign a very small frequency to the cases of the first wave (i.e., 0.0000000001) in the (t-y-x-
fre) data file. We can also delete all cases of the first wave from the data file except one case, 
and assign the small frequency value to this single case. This single remaining case for 1t !  
may have any values on the Y  and X  variables since it only acts as a dummy case, having 
(virtually) no influence on the parameter estimates. 
 
 
4.1 Specifying fixed !  and "  values in Crossmark 
 
The fields File with fixed mu-values and File with fixed lambda-values in the Main Menu 
can be used to enter the names of the data files containing fixed !  and "  values for some or 
all cases of some or all cross-sections. The ‘file with fixed mu-values’ must contain one line 
for each case to which fixed !  values are assigned. Each line starts with the sequence number 
the case has in the (t-y-x-fre) data file and is followed by as many values 0, 1 or 9 as there are 
cross-sections. In the first example given above, where the age of a respondent (say the 316th 
respondent in the data file) was 18 years at the time point of the third cross-section, the line to 
enter in the ‘file with fixed-mu values’ for this respondent is the first of the two following 
lines: 
 
316  0  0  9 9 9 
925  0  0  0 0 9 

 
Value 316 in the first line refers to the sequence number of the respondent; the two 0 values 
that follow are assigned to 1!  and 2!  and the three 9 values indicate that 3! , 4!  and 5!  are 
not fixed, but have to be estimated. The second line refers to another respondent with 
sequence number 925 in the data file, who was 18 years old at 5t ! . In this example a ‘file 
with fixed lambda values' need not be specified, since only values of !  are fixed. 
 
The ‘file with fixed lambda-values’ must contain one line for each case to which fixed "  
values are assigned. Each line starts with the sequence number of the case in the data file and 
is followed by as many values 0, 1 or 9 as there are cross-sections minus 1, since these values 
relate to 2"  through T" , T  being the total number of cross-sections. The third example given 
above concerned the analysis of five-wave panel data without inflow and outflow. If we 
assume there are 500 respondents then the data file consists of 2500 lines, 500 lines for each 
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wave. Suppose a particular respondent has the Y pattern 01100 for 1, , 5t ! ! . If the 
sequence number of the respondent in the first wave is 29, then the other four sequence 
numbers are 529, 1029, 1529 and 2029. In the 'file with fixed mu-values' and the 'File with 
fixed lambda-values' we have to enter the lines given in the box below. 
 
File with fixed mu-values File with fixed lambda-values wave 
seqnr 1!  2!  3!  4!  5!  seqnr 2"  3"  4"  5"  

 
  529 0 9 9 9 9        2 
 1029 9 1 9 9 9 1029 0 9 9 9   3 
 1529 9 9 1 9 9 1529 9 0 9 9   4 
 2029 9 9 9 0 9 2029 9 9 1 9   5 
 
 
As can be seen, for the data of wave t  we specify a fixed 1t! "  value in the 'file with fixed 
mu-values' equal to value of 1tY " ; e.g. for wave 3 we specify 2 2 1y! ! ! . The fixed 1t" "  
value that has to be specified in the 'File with fixed lambda-values' for the data of wave t  is 
equal to the complement of 1tY " .  
 
 
5 Unobserved heterogeneity 
 
Crossmark offers the possibility to account for the influence of unobserved variables on the 
entry and exit probabilities. In doing so the assumption is made that the overall contribution 
of these variables to the logits of the transition probabilities is constant for the time period 
considered. The logit equations for !  and 1 ""  including the contributions of unobserved 
variabels can be written as follows: 
 

 1
*

2

logit ( )
logit (1 ) ,

t

t

x
x

! # &
" # &
! #
" ! #  

 
where x  is a row vector with the values of the observed (potentially backcasted) predictors,  
#  and *#  are the column vectors with the parameters associated with x , and finally 1&  and  

2&  represent the total contribution of the unobserved variables. The values of 1&  and 2&  for all 
respondents (or cases) are considered to be drawn from a normal distribution with zero mean 
and variances 2

1(  en 2
2( .  The above equations therefore can also be written as: 

 
1

*
2

logit ( )
logit (1 ) ,

t

t

x z
x z

! # (
" # (
! #
" ! #  

 
with (0,1)z N"  being the standardized contribution of the unobserved variables and 1(  and 

2(  the parameters associated with the ‘predictor’ z . Since the z  values for all cases are 
unknown the parameters # , *# , 1�(  en 2�(  cannot be estimated. However, given a set of 
parameter values and the value of z , it is of course easy to determine the log likelihood 
contribution ##  of that case. Also, for a given set of parameter values, the expected (or 
marginal) log likelihood contribution ( )E ##  of a case can be determined, where the 
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expectation is taken over all possible values of z  taken from (0,1)N . For a case of e.g. the 
cross-section at 2t !  it holds that: 
 

1 2 1 2( ) [ (1 ) (1 ) ] ( )E p p f z dz" !
&

"&

! " # "'##  if 2 1y ! ,  and 

1 2 1 2( ) [ (1 )(1 ) ] ( )E p p f z dz! "
&

"&

! " " #'##  if 2 0y !  

 
Here, 2!  and 2"  are defined as above (i.e., including z ), 1p  is defined as usual (i.e., 1 1p !! ) 
without z  (in Crossmark, controlling for unobserved variables is only possibly for the 
transitions probabilities at 2t % .), and ( )f z  is the height of the standard normal pdf at z . 
The integrals cannot be derived analytically, but are approximated by Crossmark using 
Gaussian quadrature with 20 mass points. Utilizing the ( )E ##  values of all cases of all cross-
sections it is possible to estimate those values �# ,  � *# , 1�(  en 2�(  that,  averaged over all 
values that z  can take, have the highest expected (or marginal) log likelihood. The criterion to 
maximize in this estimation is the sum of the ( )E ##  values of all cases of all cross-sections. 
The resulting estimates �#  en � *#  can be interpreted as the effects of the predictors x , 
corrected for the average influence of the unobserved variables. Using the above equations 
and estimation procedure has consequences for the standard errors of �#  and � *# , which can 
be quite different from the ones estimated without taking into account unobserved 
heterogeneity. The values of 1�(  and 2�(  are the estimates of the standard errors of 1&  and 2&  
respectively, i.e., of the contributions of the unobserved variables to the logits of the entry and 
exit transition probabilities.  
 
 
5.1 Testing the hypothesis 0 1 2: 0H ( (! !  
 
To test this hypothesis we may use a test-procedure described by Snijders and Bosker (1999).  
We first calculate the value of  2 loglikelihoodA !" $  for the model including 1z(  and 2z( . 
Then we compute 2 loglikelihoodB !" $  for the model without 1z(  and 2z(  and obtain the 
difference D B A! " . Finally we test the difference D  to be significant using a 2'  
distribution with 2 degrees of freedom, but halve the right tail probability associated with the 
value of D . 
 
The standard estimation procedure in Crossmark does not take into account the possible 
influence of unobserved heterogeneity. If we wish to perform an analysis as described above, 
including the 1z(  and 2z(  terms in the equations for the transition probabilities, we have to 
go the Estimation Menu and click on the option called Extra Bernoulli variance. After 
running the model we will find the estimates 1�(  en 2�(  in the Output window.  
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