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This appendix contains supplementary materials for the article, “What’s
in a Name? A Method for Extracting Information about Ethnicity from
Names.” I detail training data preparation, present Monte Carlo simulations,
and verification exercises for US and Kenyan data.

1. DATA PREPARATION

This section describes the preparation of training data used in the proposed
approach and the classify-and-aggregate approaches. I discuss how mean
absolute error (MAE) for the classify-and-aggregate approach depends on
P (Group) in the training data, and why this is not a problem with the pro-
posed approach. Two different ways in which the conditional P (Group|Name)
can be calculated are examined, each of which corresponds to different as-
sumptions about P (Group) in the training data. This is important because,
as shown in the Monte Carlo simulations and US verification exercise, these
assumptions affect the performance of the classify-and-aggregate approach.

The sizes of the underlying samples from each group affect classifica-
tion performance. This is problematic in circumstances where there is lit-
tle underlying information about the group populations to be estimated.
The example data matrix below is an example of what training data on
names might look like. The n rows each represent a unique name; the J
columns represent the J identity groups. Each cell reports the number of
times each name occurs in each group, with name i in group j occurring
fij times. P (Group|Name) can be calculated in two different ways. First,
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P (Group | Name i) can be calculated as P (Group j| Name i) =
fij∑
j fij

.

This approach assumes that the absolute sizes of each group in the train-
ing data (e.g., the sum of each column j) contain important information
regarding classification, beneficial when the target population of interest re-
sembles the training population.1 In this case, fi1 may be larger than fi2,
and thus P (Group 1| Name i) > P (Group 2 | Name i), which makes sense
if the relative sizes of the groups in the target and training populations are
similar.

Group = 1 Group = 2 · · · Group = J
Name 1 f11 f12 · · · f1J
Name 2 f21 f22 · · · fiJ
...

...
...

. . .
...

Name N fn1 fn2 · · · fnJ

However, this approach to calculating P (Group | Name) can be problem-
atic as large groups may wash out information about names common for
small groups. Another approach would be to first divide each column by the
column totals, and then divide each row element by the row totals to get
P ′(Group|Name). This approach effectively assumes that the absolute sizes
of each group are equal. For example, dividing each fij by

∑
i fij would get

pij. Then, P ′(Group j | Name i) =
pij∑
j pij

could be calculated. Following

the example from the previous paragraph, pi1 may be smaller than pi2 even
though fi1 > fi2, and thus P (Group 1|Name i) < P (Group 2|Name i).

This simple example serves to illustrate that assumptions made about
the relative group sizes in the training data affects the calculation (and clas-
sification performance) of P (Group | Name). Figure 1 presents a simulation
that illustrates the question: does the composition of the training data affect
the quality of the parameters estimated from the target data? To do so, I
constructed a simulation demonstrating the dependence of the accuracy of
estimates on the similarity of the training data and the target data when
using classify-and-aggregate.

To construct the figure, I first set a diffuse Dirichlet distribution with
α = rep(1/6, 6). Then, I took one draw from the Dirichlet to establish the
parameters used to form the training data. This is the functional equivalent
of jittering the “true parameters” (in this case, 1/6 for each of six groups) in
order to generate some distance between the simulated training data parame-
ters and the parameters generating the target data. Next, I generated target
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data using the “true parameters” represented by rep(1/6, 6), and classified
those names using the training data based on the Dirichlet draw. Finally,
I recorded two kinds of mean absolute error (MAE): the mean differences
between the training data parameters and the parameters that generated
the target data, and the mean differences between the parameters estimated
from the target data using the classify-and-aggregate approach and the “true
parameters” from which the target data were simulated.

The horizontal axis displays the mean absolute error of the “true” pa-
rameters generating the target data and the target data parameters. The
vertical axis represents the MAE of the “true” target data parameters and
the estimates of those parameters. The figure shows that increasing the
difference between the training and target data parameters corresponds to
poorer estimates of the training data parameters. The next section pro-
vides Monte Carlo and verification empirical evidence that the performance
of P (Group | Name) and P ′(Group|Name) depends on their similarity to
the parameters being estimated.

2. MONTE CARLO SIMULATIONS

This section describes the Monte Carlo simulations carried out to demon-
strate the performance of the proposed estimator, as well as estimated from
classify-and-aggregate approaches using P (Group|Name) and P ′(Group|Name)
(as defined above). For US Monte Carlo simulations and North Carolina veri-
fication exercises, training data from the United States census on the frequen-
cies of name use in six groups is used.2 These training data are then used to
calculate the required conditional distributions for the classify-and-aggregate
approaches. When P (Group | Name) is used for classification, it is referred
to as “US population parameters,” as the conditional is computed directly
from cell counts and row sums. Assuming parity across group populations –
P ′(Group | Name) – is referred to as “uniform population parameters.” For
the Kenyan training data, contextual knowledge is used to choose regions
of the country that are ethnically homogeneous, and then the voter regis-
ters from those areas are used to create the conditional distribution for each
ethnic group.

The estimand (e.g., the racial group proportions to be estimated) is ma-
nipulated as well as size of the target list of names, both of which are expected
to influence estimator performance. For the US data, I generated six sets of
racial group parameters from which to generate target lists of differing sample
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Figure 1: Performance of Classify-and-Aggregate Approach De-
pends on Similarity between the target and training datasets:
Horizontal axis shows the mean absolute error of the “true” parameters gen-
erating the target data and the target data parameters. The vertical axis
represents the MAE of the “true” target data parameters and the estimates
of those parameters, given the training data parameters.
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sizes 3. Table 1 presents the parameter sets used by row. The first row con-
tains uniform parameters, where each of the six groups comprises one-sixth
of the population. The remaining parameter sets define various mixtures of
the racial groups. For each combination of parameter set and target list size,
I generated 5000 simulated datasets and attemped to recover the estimand
using both of the classify-and-aggregate distributions (P (Group|Name) and
P ′(Group|Name)), and four variations on the proposed estimator (which are
described below.)

The following routine was used to generate a simulated dataset. For a
given parameter set and target list size, the parameter set is multiplied by
the target list size N to get the number of names to draw for each group.
For instance, for the first parameter set in table 1 and N = 2000, each
group would comprise one-sixth of the names on the target list, meaning the
sample size from each group would be approximately 333 names. Then, for
each group j, a sample equal to the group’s defined sample size is drawn
from P (Name|Group j) with replacement (as more than one individual may
have the same name) as defined by the US census name data. Once each
group’s names is sampled from the relevant P (Name|Group j) vector, those
unlabelled names are combined into one simulated target dataset of approx-
imately N names.

A classify-and-aggregate estimator based on P (Group|Name) and P ′(Group|Name)
that draws from the full conditional distribution for each name is deployed.4

Doing so enables a more stringent test, as this approach allows all infor-
mation about a name to be used, rather than linking each name with one
group. For each name in a target list, P (Group|Name) or P ′(Group|Name)
are sampled to get a name-specific classification. Then, these classifications
are aggregated for the target list and the racial proportion estimates for the
target list are calculated.

The efficacy of the inverse exponentially-weighted Cook’s Distance es-
timator described in the main text is tested, in addition to the standard
approach with no bias correction. No attempt to individually classify names
occurs in the proposed approach, as it works directly with a vector of the
proportions of each name in the target list. Code used for implementing the
proposed method can be found in section 5.

The tables below present Monte Carlo results for both the US and Kenya.
Five thousand Monte Carlo simulations were carried out on each parameter-
set/sample-size combination. Mean absolute error is calculated as the average
absolute difference between each parameter in a parameter set and its true

5



Table 1: Parameter sets (by row) for US MC simulations.
White Black Asian Am. Ind. Mixed Hispanic

.167 .167 .167 .167 .167 .167

.300 .300 .000 .000 .100 .300

.550 .250 .050 .050 .000 .100

.050 .800 .050 .025 .050 .025

.800 .050 .050 .000 .050 .050

.010 .11 .020 .000 .010 .850

value as defined in tables 1 and 2.

2.1. US MC Results

6



T
ab

le
2:

P
ar

am
et

er
se

ts
(b

y
ro

w
)

fo
r

K
en

ya
n

M
on

te
C

ar
lo

si
m

u
la

ti
on

s.
K

al
en

ji
n

K
am

b
a

K
ik

u
y
u

K
is

ii
L

u
h
ya

L
u

o
M

a
sa

i
M

er
u

M
’k

en
d

a
P

o
ko

t
S

o
m

a
li

T
u

rk
a
n

a
.0

83
.0

83
.0

83
.0

83
.0

8
3

.0
8
3

.0
8
3

.0
8
3

.0
8
3

.0
8
3

.0
8
3

.0
8
3

.4
00

.1
00

.2
00

.0
50

.0
5
0

.0
5
0

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.0
50

.1
00

.4
00

.0
50

.0
5
0

.2
0
0

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.0
2
5

.1
00

.2
50

.2
50

.0
50

.0
5
0

.2
5
0

.0
2
5

.0
2
5

.0
0
0

.0
0
0

.0
0
0

.0
0
0

.1
00

.0
00

.1
00

.0
50

.2
5
0

.1
5
0

.0
0
0

.1
0
0

.0
0
0

.0
0
0

.2
5
0

.0
0
0

.1
25

.0
25

.1
00

.0
50

.3
0
0

.3
0
0

.0
0
0

.1
0
0

.0
0
0

.0
0
0

.0
0
0

.0
0
0

.0
25

.0
25

.8
00

.0
50

.0
0
0

.0
0
0

.0
0
0

.1
0
0

.0
0
0

.0
0
0

.0
0
0

.0
0
0

.8
00

.0
25

.0
25

.0
50

.0
0
0

.0
0
0

.0
0
0

.1
0
0

.0
0
0

.0
0
0

.0
0
0

.0
0
0

7



Table 3: MAE of Classify-and-Aggregate, Uniform Population Parameters,
US Data.

1 2 3 4 5 6
N=2000 0.01 0.09 0.11 0.15 0.16 0.09
N=4000 0.00 0.09 0.11 0.15 0.16 0.09
N=8000 0.00 0.09 0.11 0.15 0.16 0.09
N=16000 0.00 0.09 0.11 0.15 0.16 0.09
N=32000 0.00 0.09 0.11 0.15 0.16 0.09

Table 4: MAE of Classify-and-Aggregate, US Population Parameters, US
Data.

1 2 3 4 5 6
N=2000 0.12 0.09 0.05 0.20 0.03 0.08
N=4000 0.12 0.09 0.05 0.20 0.03 0.08
N=8000 0.12 0.09 0.05 0.20 0.03 0.08
N=16000 0.12 0.09 0.05 0.20 0.03 0.08
N=32000 0.12 0.09 0.05 0.20 0.03 0.08

Table 5: MAE of Standard Approach, No Weighting, US Data.
1 2 3 4 5 6

N=2000 0.06 0.05 0.04 0.04 0.04 0.01
N=4000 0.04 0.03 0.02 0.03 0.03 0.01
N=8000 0.03 0.02 0.02 0.02 0.02 0.01
N=16000 0.02 0.01 0.01 0.02 0.01 0.01
N=32000 0.01 0.01 0.01 0.01 0.01 0.01

Table 6: MAE of Standard Approach, Weighting for Bias Reduction, US
Data.

1 2 3 4 5 6
N=2000 0.06 0.05 0.03 0.03 0.03 0.01
N=4000 0.04 0.03 0.02 0.02 0.02 0.01
N=8000 0.03 0.02 0.01 0.02 0.02 0.01
N=16000 0.02 0.01 0.01 0.01 0.01 0.01
N=32000 0.01 0.01 0.01 0.01 0.01 0.01
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2.2. Kenya MC Results

Table 7: Ratio of MAE of Proposed Method to Classify-and-Aggregate,
Kenya Data.

1 2 3 4 5 6 7 8
N=2000 6.11 0.66 0.61 0.40 0.49 0.42 0.16 0.17
N=4000 4.65 0.41 0.38 0.25 0.31 0.26 0.11 0.10
N=8000 3.69 0.27 0.25 0.17 0.21 0.18 0.07 0.07
N=16000 3.42 0.18 0.16 0.12 0.15 0.13 0.05 0.05
N=32000 3.29 0.12 0.10 0.08 0.11 0.09 0.04 0.04

Table 8: Ratio of MAE Weighted Proposed Method to Unweighted Proposed
Method, Kenya Data.

1 2 3 4 5 6 7 8
N=2000 1.00 0.99 0.98 0.96 0.95 0.95 0.89 0.96
N=4000 0.99 0.97 0.95 0.91 0.93 0.92 0.84 0.94
N=8000 0.94 0.95 0.92 0.87 0.90 0.88 0.81 0.92
N=16000 0.91 0.91 0.88 0.85 0.88 0.87 0.77 0.91
N=32000 0.91 0.88 0.85 0.83 0.85 0.84 0.75 0.87

Table 9: MAE for Classify-and-Aggregate Approach, Kenya Data.
1 2 3 4 5 6 7 8

N=2000 0.00 0.02 0.03 0.03 0.02 0.02 0.05 0.04
N=4000 0.00 0.02 0.03 0.03 0.02 0.02 0.05 0.04
N=8000 0.00 0.02 0.03 0.03 0.02 0.02 0.05 0.04
N=16000 0.00 0.02 0.03 0.03 0.02 0.02 0.05 0.04
N=32000 0.00 0.02 0.03 0.03 0.02 0.02 0.05 0.04
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Table 10: MAE for Standard Approach, No Weighting, Kenya Data.
1 2 3 4 5 6 7 8

N=2000 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
N=4000 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
N=8000 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
N=16000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N=32000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: MAE for Standard Approach, Weighting for Bias Reduction, Kenya
Data.

1 2 3 4 5 6 7 8
N=2000 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
N=4000 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
N=8000 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
N=16000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N=32000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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3. VERIFICATION EXERCISES: FLORIDA AND NORTH CAROLINA

The previous section demonstrated the performance of the proposed estima-
tor on simulated data. This section shows that the method outperforms the
alternative in North Carolina and Florida.

3.1. Data Preparation

The names in the North Carolina and Florida data were cleaned to correspond
to cleaning done on the Census data. This entailed removing punctuation and
spaces and capitalizing all letters (e.g., “O’Reilly” becomes “OREILLY”).
For hyphenated names, I randomly chose one of the two names to represent
that individual. These steps ensured comparability between the target and
training data and minimized the amount of data discarded due to differences
in how a given name was recorded.5

There is striking consonance between the categories provided in the North
Carolina and Florida voter registers6 (which comprise the target data for the
verification exercises) and the census names data.7 The main difference is
that the “Hispanic” category exists in the Census data, but, for the NC and
FL data, it is contained in a separate field that records whether or not the
voter is Hispanic. I combined these two columns in the voter register data,
where the value for a person’s race is replaced by “Hispanic” only when that
person is identified as Hispanic in the separate field.

Next, the six racial proportions from each county’s voter register were es-
timated using the classify and aggregate approaches (uniform population pa-
rameters) in addition to the proposed approach with and without the bias re-
duction weighting.8 Finally, the mean absolute error (MAE) for each county
was calculated as the average absolute difference between the actual group
proportion (calculated using data on race from voter register) and the esti-
mated group proportion for each group. Both states included categories for
“other” and “unknown” in their data. As the Census did not provide name
data for those groups, those estimates were assumed to be equal to zero for
the estimators tested, and were included in the MAE calculations.

Figure 2 compares the MAE for all 100 counties in North Carolina for
all approaches using box-and-whiskers plots. The leftmost column presents
classify-and-aggregate results based on P ′(Group|Name i), with a median
MAE of about 0.13. The middle column shows the improved approach, with
a median MAE near .03. The rightmost column shows the efficacy of the bias
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reduction technique, further reducing the mean and dispersion of MAE.9
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Figure 2: North Carolina County-Level MAE: Distribution of mean
absolute error for each of the 100 NC counties in a box-and-whiskers plot
for each estimation strategy. The leftmost column presents the standard ap-
proach based on P ′(Group|Name i). The middle column shows improvement
in MAE using the proposed approach based on P (Name | Group). The right-
most column finds additional improvement from the bias-reduction weight-
ing.
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Figure 3 compares the MAE for all 67 counties in Florda for all three ap-
proaches using box-and-whiskers plots. Results are similar to North Carolina.
The leftmost column is uniform parameter classify-and-aggregate approach
based on P ′(Group|Name i), with a median MAE of about 0.13. The middle
column shows the improved approach, with a median MAE near .04. The
rightmost column shows the efficacy of the bias reduction technique, further
reducing the mean and dispersion of MAE.
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Figure 3: Florida County-Level MAE: Distribution of mean absolute
error for each of the 67 FL counties in a box-and-whiskers plot for each
estimation strategy. Results are similar to those for North Carolina.
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3.2. Model Fit and Mean Absolute Error
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Figure 4: Better Model Fit and Lower Mean Absolute Error:
Higher R2 is negatively related to mean absolute error. These data – from
county-level data in Florida and North Carolina – suggest that better model
fit corresponds to lower MAE.

4. APPLICATION: BLACK TURNOUT IN NORTH CAROLINA
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Table 12: North Carolina Summary Statistics by County, Black Voters.
County No. Black % Black County No. Black % Black
ALAMANCE 21369 0.20 JOHNSTON 19695 0.16
ALEXANDER 1176 0.04 JONES 3009 0.35
ALLEGHANY 92 0.01 LEE 8297 0.22
ANSON 8459 0.44 LENOIR 18841 0.42
ASHE 115 0.01 LINCOLN 3375 0.06
AVERY 105 0.01 MACON 216 0.01
BEAUFORT 9747 0.26 MADISON 163 0.01
BERTIE 9786 0.60 MARTIN 8947 0.44
BLADEN 9656 0.38 MCDOWELL 975 0.03
BRUNSWICK 9570 0.10 MECKLENBURG 229647 0.32
BUNCOMBE 12634 0.06 MITCHELL 23 0.00
BURKE 3928 0.06 MONTGOMERY 4130 0.22
CABARRUS 20844 0.16 MOORE 9484 0.13
CALDWELL 3185 0.05 NASH 28578 0.38
CAMDEN 1243 0.15 NEWHANOVER 24645 0.14
CARTERET 3050 0.05 NORTHAMPTON 10065 0.58
CASWELL 6214 0.36 ONSLOW 19746 0.19
CATAWBA 10483 0.09 ORANGE 15612 0.12
CHATHAM 7164 0.14 PAMLICO 2172 0.20
CHEROKEE 239 0.01 PASQUOTANK 12555 0.39
CHOWAN 3744 0.32 PENDER 7479 0.18
CLAY 39 0.00 PERQUIMANS 2651 0.24
CLEVELAND 15288 0.22 PERSON 7892 0.28
COLUMBUS 13255 0.32 PITT 43919 0.34
CRAVEN 18063 0.23 POLK 826 0.05
CUMBERLAND 95258 0.40 RANDOLPH 6221 0.06
CURRITUCK 1113 0.06 RICHMOND 11277 0.33
DARE 641 0.02 ROBESON 24769 0.29
DAVIDSON 10791 0.09 ROCKINGHAM 13381 0.20
DAVIE 2121 0.07 ROWAN 17552 0.17
DUPLIN 10475 0.32 RUTHERFORD 5139 0.11
DURHAM 90706 0.38 SAMPSON 13291 0.32
EDGECOMBE 26529 0.60 SCOTLAND 9999 0.40
FORSYTH 75782 0.28 STANLY 4888 0.11
FRANKLIN 12326 0.28 STOKES 1592 0.05
GASTON 22958 0.16 SURRY 2032 0.04
GATES 3146 0.35 SWAIN 156 0.01
GRAHAM 3 0.00 TRANSYLVANIA 1050 0.04
GRANVILLE 13579 0.34 TYRRELL 965 0.33
GREENE 4859 0.38 UNION 18387 0.12
GUILFORD 133422 0.34 VANCE 17410 0.52
HALIFAX 22615 0.53 WAKE 148745 0.21
HARNETT 17670 0.23 WARREN 8518 0.53
HAYWOOD 480 0.01 WASHINGTON 5196 0.50
HENDERSON 2462 0.03 WATAUGA 970 0.02
HERTFORD 10567 0.62 WAYNE 28153 0.34
HOKE 12443 0.39 WILKES 1914 0.04
HYDE 1003 0.25 WILSON 25068 0.41
IREDELL 14617 0.12 YADKIN 871 0.03
JACKSON 574 0.02 YANCEY 107 0.01
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Listing 1: R code to implement the proposed method.

1 require(corpcor)
2 require(quadprog)
3
4 nameEst <− function(cond, targ){
5 Y <− targ
6 X <− cond
7 Yt <− Y
8 orderind <− intersect(names(Yt), rownames(X))
9 Yt <− Yt[orderind]

10 X <− X[orderind,]
11 Yt <− Yt[row.names(X)]
12 designmat <− model.matrix(Yt ˜ −1 + X)
13 Dmat <− crossprod(designmat, designmat)
14 pdind <− is.positive.definite(Dmat)
15 if(pdind == FALSE){Dmat <− make.positive.definite(Dmat)}
16 dvec <− crossprod(designmat, Yt)
17 Amat <− cbind(matrix(1, nr=length(dvec), nc=1), diag(length(dvec)),−diag(length(dvec)))
18 bvec <− c(1, rep(0, length(dvec)), rep(−1, length(dvec)))
19 meq <− 1
20 resTmp <− tryCatch(expr = solve.QP(Dmat, dvec, Amat, bvec, meq, factorized = F)[[1]],
21 error = function(e) rep(NA, ncol(X)))
22 out <− round(resTmp, 5)
23 names(out) <− colnames(X)
24 return(out)
25 }

5. CODE

This code uses the quadratic programming methods described in Goldfarb
and Idnani (1982, 1983) to estimate the parameters of interest. Implemen-
tation is in R using the quadprog package.
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Notes

1Though it is worth mentioning that if the researcher knows that the tar-
get population resembles the training population, it is unclear why she would
undertake this endeavor in the first place. This suggests another rationale
for using uniform population parameters as done below: they represent a flat
prior favoring no single group.

2These groups are: Hispanic, Black, White, American Indian, Asian/Pa-
cific Islander, and Mixed Race. These data are available at
http://www2.census.gov/topics/genealogy/2000surnames/names.zip.

3N = 2000, 4000, 8000, 16000, 32000; for the Kenyan data, we generated
eight sets of group parameters, given that there are more groups in the
Kenyan data.

4For the Kenyan data, only P ′(Group|Name) (uniform population param-
eters) is considered because, as is likely in most settings where the proposed
method would be applicable, name counts by racial group from the census
do not exist.

5Florida voter registration data was downloaded from http://flvoters.com/downloads.html

and North Carolina voter registration data can be downloaded from ftp://alt.ncsbe.gov/ENRS/.

6The categories are BLACK or AFRICAN AMERICAN, AMERICAN IN-
DIAN or ALASKA NATIVE, OTHER, WHITE, UNDESIGNATED, ASIAN,
and TWO or MORE RACES.

7The categories are WHITE, BLACK, ASIAN PACIFIC ISLANDER,
AMERICAN INDIAN, TWO or MORE RACES, and HISPANIC.

8For the classify-and-aggregate approach, 100 draws were taken from the
conditional, and the mean was taken as the final estimate.

9The four outliers (black dots) in figure 2 are counties with relatively high
American Indian population concentrations, which are easily conflated with
White and Black names, generating high MAE.
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