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Appendix to 

BAYESIAN METRIC MULTIDIMENSIONAL SCALING 

 This Appendix shows a set of proofs of the existence of 

full rank Hessians for metric MDS in section A1; WINBUGS code 

for the Bayesian dissimilarities scaling of the 90
th
 Senate 

disagreement scores in A2; and the first and second derivatives 

for the similarities and unfolding models corresponding to 

equations (11) and (16) respectively, in A3. 

In section A1 we show how to identify solutions for metric 

MDS problems.  By identification what we mean is estimating the 

smallest number of parameters such that the Hessian matrix 

corresponding to a solution is full rank.  If too many 

parameters are estimated the Hessian is singular.  If too few 

are estimated then the log-posterior is distorted and a sub-

optimal solution will be the result.   

 Assume that our dissimilarities data are squared distances 

between pairs of stimuli (the analysis of unfolding data is 

essentially the same).  Our q by q symmetric matrix of data has 

q(q-1)/2 unique entries (we ignore the diagonal of zeroes).  

Suppose there is an exact solution; that is, a set of q points 
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in s dimensions that exactly reproduces the squared distances.  

Clearly, given that we only observe the distances, it does not 

matter what origin and the rotation around that origin we select 

as long as the configuration of points vis a vis one another is 

not altered.   

 With q points in s dimensions we have to solve for q*s 

parameters.  However, we can set any point to the origin – 

(0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  

To pin down the configuration we need to set the rotation.  In 

general a rotation matrix is determined by s-1 angles from the 

origin and sign flips on each dimension.  For example, in two 

dimensions the general form of the rotation matrix is: 

cos sin
 0 2

sin cos

 
 

 

 
    

 
              

However, note that given a specific θ we have four rotation 

matrices: 

1

cos sin

sin cos

 

 

 
   

 
 2

cos sin

sin cos

 

 

 
   

 
 3

cos sin

sin cos

 

 

 
   

  
 4

cos sin

sin cos

 

 

  
   

 
 

Or 

1 0
 where =

0 1

 
     

 
                   



3 

 

That is, given a specific θ, there are 2
s
 sign flips 

corresponding to the s columns of the rotation matrix.  With 

s=2, suppose that we have a solution Z  such that it reproduces 

our matrix of squared distances, D.  Then there are three more 

solutions corresponding to the above rotation matrices that also 

exactly reproduce D.  In general, in s dimensions, with one 

point set to the origin with s-1 fixed angles in the rotation 

matrix, if we have a solution Z  that exactly reproduces the 

matrix of squared distances then there an additional 2
s
-1 

solutions that exactly reproduce D.   

 This identification problem is very similar to that 

discussed by Rivers (2003).  He discusses the identification of 

the classical maximum likelihood factor analysis problem and 

shows the number of restrictions necessary to get identification 

(these include fixing the origin and sign flips).  However, his 

main concern is the identification of the multidimensional IRT 

model where the data are indicators and he shows that fixing s+1 

points (or s(s+1) parameters) fully identifies the model.  Our 

result is different because we assume that we observe (noisy) 

ratio scale data.  Identification is somewhat different in this 

setting. 

 With these preliminaries we turn to our existence proofs. 
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A1:  Existence Proofs for the Hessian 

We have a total of (s*q)+1 parameters – the q points plus 

2  (
2  is a fixed constant) for the similarities problem.  For 

the unfolding problem we have (s*(n+q))+1 parameters.  Because 

only distances, the 
*

jm
d and the djm, are used in the log-posterior, 

we impose the constraints that 
*ln( ) 0,  jmd j m (or 

*ln( ) 0, , ijd i j) and 

ln( ) 0,  jmd j m (or ln( ) 0, , ijd i j ) for our proofs below.  If any 
*

jm
d or 

djm is equal to zero for j≠m then equation (11) is equal to -∞.  

As a practical matter, this is not a problem for the observed 

data, 
*

jm
d , because it can be rescaled or the corresponding j

th
 

column and j
th
 row can be dropped on the assumption that the 

underlying j
th
 and m

th
 stimuli are the same.   

For the unfolding problem if a 
*

ij
d  is zero then equation 

(16) is equal to -∞.  Again, as a practical matter the offending 

*

ij
d  can be rescaled (e.g., set to a small distance greater than 

zero) or treated as missing data.   

In our proofs below we analyze only the similarities 

problem because the unfolding problem is a subset of the 

similarities problem albeit with missing data.  That is, we 
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could set 
Z

W
X

 
  
 

 where W is a (q+n) by s matrix and all the 

proofs would hold using W instead of Z.   

In our proofs we assume that all the points are distinct; 

that is, 

Definition:  A set of points is distinct if 0   jmd j m, or 

equivalently,  j,m=1,…,q, and j≠m, Zj ≠ Zm.   

In practice distinctness is not a serious problem because 

if two points were the same, that is, Zj = Zm , then there is a 

“pinhole” that goes down to -∞ in the surface of equation (11).  

Such a “pinhole” cannot be a maximum in any event.  We simply 

avoid the problem by always “moving around” them. 

Let 
*n  denote the right hand side of equation (11).  For 

any configuration of points in s dimensions, 1 2 1, ,..., ,q qZ Z Z Z , there 

is a unique 
2 which is simply the mean of the q(q-1)/2 squared 

differences between 
*ln( )jmd  and ln( )jmd  (see equation (A3) and (A12) 

in Appendix A3).   Hence we will ignore it in the notation below 

and simply assume that it is computed from the configuration; 

that is, 
2 (Z) or 

2 (Z,X).   
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Given a configuration of points in s dimensions, there are 

an infinite number of configurations that produce the same 
*n  

by adding a constant and rotating the original configuration.  

Let Ω be the set 

    1 2 1, ,..., , , , q qZ Z Z Z      (A1) 

where α is an s-length vector of additive constants and Γ is an 

s by s rotation matrix.  Let  *n   be the function value for 

the set Ω.  This allows us to state a simple non-existence 

theorem for the Hessian. 

Theorem 1: Given Ω such that all Z are distinct, then the 

Hessian for any Ω that maximizes 
*n  will be singular. 

Proof:  Given that there are an infinite number of 

configurations of points, there are an infinite number of Ω.  

However, since every possible configuration is a member of some 

Ω we can compute all possible values of  *n  .  Hence, it must 

be the case that for some Ω*,    * * * *n n      .  However, no 

member of Ω* can be an inflection point because there are an 

infinite number of configurations in Ω* within any arbitrary 

distance from any selected configuration.  Therefore the Hessian 

is singular for all members of Ω*.  Q.E.D. 
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Note that because  * *n  is the value for every element of 

Ω* then this results in a uniform distribution over a subspace 

of the real q*s hyperplane of the parameters (much like a "mesa" 

but infinitely long).  The same is true for other Ω ≠ Ω*.  

Geometrically, there are an infinite number of stacked uniform 

"mesas" over the q*s hyperplane of the parameters with Ω* having 

the highest “altitude”  * *n .  If one point is set to the 

origin then we still have an infinite number of stacked uniform 

"mesas" but now the radius of each “mesa” is finite with a value 

of 
2

1 1

q s

jk

j k

Z
 

  where one of the Zj=0.  

We now show that with q distinct points and s(s+1)/2 hard 

constraints the Hessian is full rank.  Without loss of 

generality, we can pick α and Γ so that the q by s coordinate 

matrix, Z , has the following form: 

 

11 12 13 1, 1 1

21 22 23 2, 1 2

1,1 1,2 1,3 1, 1

,1 ,2 ,3

2,1 2,2

1,1

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0





        

  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

q q

q q

q s q s q s q s q

q s q s q s

q q

q

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z

Z

  (A2) 
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That is, we set Zq to the origin and then pick s-1 angles 

for Γ such that all but one of the coordinates for Zq-1 are equal 

to zero, all but two of the coordinates for Zq-2 are equal to 

zero, and so on.  As we explained above, we have the sign flips, 

  , where Δ is an s by s diagonal matrix with plus or minus 

ones on the diagonal.  Given s-1 specific angles, θ1 , θ2 ,..., 

θs-1 , then there are 2
s
 sign flips corresponding to the s columns 

of the rotation matrix.  This allows us to define  

      ,  Z       (A3) 

Theorem 2: Given Ω as in (A3) such that all Z  are distinct, 

then the Hessian for any Ω that maximizes 
*n  will be rank q*s-

(s*(s+1)/2). 

Proof:  Every configuration of points, Z, can be 

transformed into Z  as in equation (A2) by choice of origin and 

rotation without changing the inter-point distances.  Given that 

there are an infinite number of configurations of points, Z, and 

each one can be transformed into a Z  that satisfy equation (A2), 

there are an infinite number of Ω that satisfy equation (A3).  

However, since every possible Z  configuration is a member of 

some Ω, then we can compute all possible values of  *n  .  
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Hence, it must be the case that for some Ω*, 

   * * * *n n      .  By construction, given s-1 specific 

angles, θ1 , θ2 ,..., θs-1 , then there are 2
s
 sign flips 

corresponding to the s columns Δ.  Hence, Ω* has 2s members and 

each is separated from the others by a distance of at least 

1 1 1
2 2 2

1 2

1 1 1

min 2 ,2 ,..., 2 0
  

  

  
  

  
  
q q q

j j js

j j j

Z Z Z .  Denote these configurations 

as 
*

Z  so that  * *,  Z . Consider any nearby configuration of 

distinct points, Z ,  ,  Z , within an infinitesimal distance 

of Ω*; that is,  
2

*

1 1

0
 

  
q s

jk jk

j k

Z Z .  Hence, by construction 

   * * *n n    .  Because this is true for an infinitesimal 

distance on the q*s-(s*(s+1)/2) dimensional hyperplane in any 

direction from 
*

Z , the 2
s
 members of Ω* are inflection points 

with corresponding full rank Hessians. Q.E.D.   

Note that the key difference between Theorems 1 and 2 is 

that Ω* in Theorem 1 had an infinite number of members and in 

Theorem 2 Ω* had 2s members.  In Theorem 1 this meant that no 

member of Ω* could be an inflection point because there are an 

infinite number of members within an infinitesimal distance of 

any selected member (the "mesa").  In contrast, the 2
s
 members of 
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Ω* from Theorem 2 are separated from each other by non-zero 

distances.  Hence, it is easy to show using a standard argument 

from mathematical analysis that any configuration not in Ω* that 

is an infinitesimal distance from one of the 2
s
 members of Ω* 

must be, by construction, less than the maximum; that is, 

   * * *n n    .   

We now show two corollaries: first, if the number of hard 

constraints is less than s(s+1)/2, then the Hessian is singular; 

and second, if the number of hard constraints is greater than 

s(s+1)/2 then the solution is inferior in the sense that 

   * * *n n    .   

Corollary 1: Let the number of hard constraints be less 

than s(s+1)/2.  Given Ω such that all Z are distinct, then the 

Hessian for any Ω that maximizes 
*n  will be singular. 

Proof:  Suppose that the number of hard constraints is 

(s(s+1)/2)-1.  Without loss of generality modify Z  so that 

1,q s qZ     , that is, coordinate 1,q s qZ    is not constrained to be 

zero.  Denote this modified configuration as ( 1)Z .  There are an 

infinite number of Ω that satisfy  ( 1) ,  Z .  However, since 

every possible ( 1)Z  configuration is a member of some Ω, then we 
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can compute all possible values of  *n  .  Hence, it must be 

the case that for some Ω*,    * * * *n n      .  Ω* has an 

infinite number of members because, by construction, 

1,q s qZ     .  However, no member of Ω* can be an inflection 

point because there are an infinite number of configurations in 

Ω* within any arbitrary infinitesimal distance from any selected 

configuration in the direction of 1,q s qZ   .  Therefore the Hessian 

is singular for all members of Ω*.  Finally, it is easy to 

construct similar arguments for ( 2)Z , ( 3)Z , etc. Q.E.D.   

Corollary 2: Let the number of hard constraints be greater 

than s(s+1)/2.  Given Ω such that all Z are distinct, then the Ω 

that maximizes 
*n  will be less than 

*n  for a Z with (s+1)/2 

hard constraints as in equation (A2). 

Proof:  Suppose that the number of hard constraints is 

(s(s+1)/2)+1.  Without loss of generality modify Z  so that an 

additional coordinate is constrained to be a constant; for 

example, let 1, 1 1, 1     q s q q s qZ C .  Denote this modified configuration 

as ( 1)Z .  However this modified configuration is a member of some 

Ω used in Theorem 2.  From Theorem 2 we have 

   * * * *n n      .  Hence, unless 1, 1  q s qC  is exactly equal to 
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1, 1  q s qZ  in Ω*    * * *n n    .  Finally, it is easy to construct 

similar arguments for any subset of additionally constrained 

coordinates.  Q.E.D.  

In one dimension, setting one point to the origin results 

in two solutions with the same 
*n  values.  For purposes of 

characterizing the distributions of the parameters with MCMC 

methods, setting the sign -- a soft constraint -- on a second 

point (typically a point that is distant from the origin) 

isolates one log-posterior.  So we get a unique log-posterior 

with one hard and one soft constraint.  However, note that, if 

we use two hard constraints by fixing two points we get an 

inferior result because we have fixed one of the distances.   
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A2:  WINBUGS SIMILARITIES MODEL 

# 

#  MDS Model for 90th Senate--over constrained 

# 

model{ 

 

#  Fix one point 

# 

        x[8,1] <- -0.626000480 

………………  x[8,2] <-  0.46524749 

# 

# llh and sumllh monitor the log-likelihood 

# 

for (i in 1:101){ 

    llh[i,i] <- 0.0 

    for (j in i+1:102){ 

# 

#  Read in Distances rather than the similarities (makes handling missing data easier) 

# 

         dstar[i,j] ~ dlnorm(mu[i,j],tau) 

         mu[i,j] <- log(sqrt((x[i,1]-x[j,1])*(x[i,1]-x[j,1])+(x[i,2]-x[j,2])*(x[i,2]-x[j,2]))) 

         llh[i,j] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 

         llh[j,i] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 

    } 

} 

 

   llh[102,102] <- 0.0 

   sumllh <- sum(llh[,])  

#    

  ## priors 

  tau ~ dgamma(1,1) 

 

# 

# Informed priors placed below (not all shown) 

# 

  x[1,1] ~ dnorm(0,.1) I(0,) 

  x[1,2] ~ dnorm(0,.1) I(,0) 

  x[2,1] ~ dnorm(0,.1) I(,0) 

  x[2,2] ~ dnorm(0,.1) I(0,) 

 

...etc. etc. 

 

  x[98,1] ~ dnorm(0,.1) I(,0) 

  x[98,2] ~ dnorm(0,.1) I(0,) 

  x[99,1] ~ dnorm(0,.1) I(,0) 

  x[99,2] ~ dnorm(0,.1) I(, -0.5) 

  x[100,1] ~ dnorm(0,.1) I(,0) 

  x[100,2] ~ dnorm(0,.1) I(,-0.5) 

  x[101,1] ~ dnorm(0,.1) I(0.5,) 

  x[101,2] ~ dnorm(0,.1) I(0.2,) 

  x[102,1] ~ dnorm(0,.1) I(,-0.2) 

  x[102,2] ~ dnorm(0,.1) I(,0) 

 

} 
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A3:  The Derivatives for the Log-Normal Bayesian Model 

Similarities: The first derivatives for the similarities 

problem are: 

      * 2

2 2
1

1
21 1 1

2 ln ln (  - ) 2  - 
2 2

q s
jk

jm jm jk mk jk mk

j m kjk jm

Zn
d d Z Z Z Z

Z d



  

 
     

                   
 

   

which simplifies to 

    
 

*

2 2 2

ln ln1
 -  

q
jm jm jk

jk mk

j mjk jm

d d Zn
Z Z

Z d



 

   
  

   

                (A1) 

and 

    
1 2

*

2 2 4
1 1

( 1) 1
ln ln

4 2

q q

jm jm

j m j

n q q
d d



  



  

 
   


                   (A2) 

Hence, we get the usual result for the variance term: 

    
1 2

2

1 1

2

1

q q
*

jm jm

j m j

ˆ ln d ln d
q( q )




  

 


               (A3) 

Note that if κ
2
 is a vague prior, the practical effect is 

that at an inflection point we have 

2

2
0

jk jk

n n

Z Z

 



 
 

 
.  Numerically, 

this is a handy result because it makes computing the inverse 

Hessian much easier to accomplish.  
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The second derivative for the variance is: 

    
2 1 2

*

2 2 4 6
1 1

( 1) 1
ln ln

4

q q

jm jm

j m j

n q q
d d



   



  

 
  

 
             (A4) 

Substituting (A3) into (A4) it is easy to show that 

2

2 2
0

n

 




 
 so 

that when the global maximum for the Zjk is found σ
2
 will be a 

maximum as well. 

The second derivatives for the coordinates are: 

    
 

      
2* *

2
2

4 4 2 2

ln ln ln ln 1
4 2 2

q q q
jm jm jm jmjk mk

jk mk

j m j m j mjk jk jm jm jm

d d d dZ Zn
Z Z

Z Z d d d



  

             
    

  

  

(A5) 

    
 

      
2* *

2
2

4 4 2

ln ln ln ln
4 2 2

jm jm jm jmjk mk

jk mk

jk mk jm jm jm

d d d dZ Zn
Z Z

Z Z d d d

  
   

 
 (A6) 

In more than one dimension   

  
    

2
*

4
2 2 ln ln 1

q
jk mk j m

jm jm

j mjk j jm

Z Z Z Zn
d d

Z Z d





                  

          (A7) 

  
    

2
*

4
2 2 ln ln 1

jk mk j m

jm jm

jk m jm

Z Z Z Zn
d d

Z Z d

      
  

   (A8) 

where 1,..., s  and ℓ≠k. 

Unfolding: The first derivatives for the unfolding problem 

are: 
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    
 

*

2 2 2
1

ln ln1
 -  

q
ij ij

ik
ik jk

jik ij

d d Xn
X Z

X d
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and 
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Hence, we get the usual result for the variance term for the 

unfolding model: 
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Note that if ζ
2
 and κ

2
 are vague priors, the practical 

effect is that at an inflection point we have 

2

2
0

ik ik

n n

X X

 



 
 

 
.   

The second derivative for the variance is: 
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Substituting (A12) into (A13) it is easy to show that 
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so that when the global maximum for the Xik and Zjk is found σ
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will be a maximum as well. 

The second derivatives for the coordinates are: 
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Where h=1,...,n and h≠i.  In more than one dimension  
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