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Supplementary Appendix
Monte Carlo Simulation

To show the effect of Nickell bias on the t-statistics, we impose a zero (true) effect of 
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in our Monte Carlo simulation.  All innovations are generated from iid N(0,1), with ( and ( set at 0.3 and 
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= 0.  (As we show below (equation 4), there will be no Nickell bias to investigate without the correlation between 
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.)  The initial observations of the dependent variables in equations (1) and (2) are
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.  To eliminate the impact of these initial values on the simulations, we generate 100 + T observations and discard the first 100.  Because ( and ( are small, the magnitude of the biases must be small.  We generate pseudo data for 
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, and run the following dynamic panel regression:
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where the true value of ( is zero.  In equation (3), 
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, which becomes the source of the Nickell bias of the LSDV estimator for (.  

Equations (1)-(3) satisfy both conditions mentioned above.  Equation (1) ensures that the true value of ( is zero, while equation (2) allows 
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   The reason for this is as follows.  Based on the AR(1) process in equation (1), 
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, and so on.  If, however, one runs 
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 becomes zero owing to the underlying AR(1) process. 

To illustrate the importance of the correlation between 
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, consider equation (4) from the article: 
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where 
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 for our Monte Carlo exercise.  In equation (4), the bias of the LSDV estimator for ( is dependent on two factors: (i) the bias of 
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 and (ii) the nonzero correlation between 
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.  If either of these factors becomes zero, then the LSDV estimator for ( does not suffer from any Nickell bias, given the multiplicative nature of (4). 

We demonstrate the following points by means of our Monte Carlo simulation.  When T increases, the Nickell bias becomes smaller.  If, however,  T is small relative to N, the conventional t-statistics for the LSDV estimator for (  become invalid.  For a given T,  the rejection rate of the null hypothesis increases as N increases, even when the null hypothesis is true.  However, as T increases and exceeds N, the rejection rate of the null hypothesis approaches the conventional t-statistics under the null hypothesis.  In the latter case, the over-rejection concern dissipates.

The table below indicates the results of our Monte Carlo simulation, where 10,000 iterations were performed.  We allow the number of time periods to be T = 40 or 400.  We also allow four alternative numbers of countries: N = 20, 40, 80, and 200.  When T < N, the rejection rate of the null hypothesis is anticipated to be larger than the nominal rate of 5%.  As N becomes larger for a given T, the over-rejection rate should be greater, leading to falsely rejecting a true hypothesis. When, however, T > N, the rejection rate should be similar to the nominal size of 5%.

	
	
	Rejection Rate
	Bias of 
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	T
	N
	(Nominal 5%)
	
	

	40
	20
	0.067
	–0.034
	–0.011

	40
	40
	0.076
	–0.034
	–0.010

	40
	80
	0.102
	–0.033
	–0.010

	40
	200
	0.173
	–0.033
	–0.010

	400
	20
	0.053
	–0.003
	–0.001

	400
	40
	0.052
	–0.003
	–0.001

	400
	80
	0.053
	–0.003
	–0.001

	400
	200
	0.060
	–0.003
	–0.001


The third column in the table reports the rejection rates of the null hypothesis that
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  The critical value of 1.96 (5% level) is used, so that the rejection rate should be around 0.05.  When T is 40, the biases of 
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 are small regardless of the size of N, which can be seen in the fourth and fifth columns in the top half of the table.  For T  = 400, these biases are even smaller in the bottom portion of the table.  If, moreover, N is smaller than T, the rejection rates are not much greater than 0.05, which is true for T = 400 and N = 20, 40, or 80.  However, if N is much greater than T, the rejection rates rise dramatically, as seen for T = 40 and N = 80 or 200, where the rejection rate exceeds 10% and 17%, respectively.  Thus, for N > T, one may reject the null hypothesis quite often, even when it is true.  This problem occurs not because T is small, but because 
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 is large. To reduce the rejection rate with large N panel data, one can use the subpanel or regional analysis, where the cross-sectional units number less than T. 

In the table, when T is much larger than N, the rejection rate is very near the nominal size of 5%, which verifies our claims in the main text.

Ineffectiveness of Multilevel Modeling on Dynamic Panel Regression
Next, we discuss a few details related to multilevel modeling considered by Bafumi and Gelman (2006).  Consider the following static panel regression with a single regressor:
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When the fixed effects, 
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, is correlated with the mean of the regressor 
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, the random-effects estimator for (, which can be written as 
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becomes inconsistent owing to a correlation between 
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 and the random-effects error 
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.  Arellano (1993) and Honda (1985) suggested the following model to eliminate this correlation:
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 is the time series mean of 
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.  The endogeneity is modeled by the inclusion of the time series mean of the regressor and, therefore, the resulting estimator becomes consistent.  Bafumi and Gelman (2006) followed the same approach and call it “multilevel modeling.” 

In the dynamic panel regression framework, such a method does not work; inclusion of the time series means of the lagged dependent variable and the exogenous regressors is equivalent to the within group (WG) estimation.  To see this, consider the following regression:
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Then it is straightforward to show that 
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.  This correlation becomes the source of Nickell bias.  Moreover, 
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 almost perfectly.  Hence, the bias of the pooled OLS 
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 becomes identical to Nickell bias.  After tedious algebra, the exact bias terms are derived as
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Therefore, the inclusion of the time series means does not eliminate the bias.

� From equation (2),� EMBED Equation.DSMT4 ��� and � EMBED Equation.DSMT4 ��� are correlated, so that equation (3) can be rewritten as � EMBED Equation.DSMT4 ���.  Regardless of the values of � EMBED Equation.DSMT4 ��� and � EMBED Equation.DSMT4 ���, all lagged dependent variables, except � EMBED Equation.DSMT4 ���, become insignificant as � EMBED Equation.DSMT4 ��� when � EMBED Equation.DSMT4 ��� .
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