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Appendix A: A general class of estimators

When estimating the PATE, our overall estimation error is a combination of our error due to the

randomized experiment for estimating νS and the difference between our survey-sampling estimate

νS and the PATE τ . We can break this error down for any estimator τ̂∗ of νS . First, given τ̂∗, we

have E[τ̂∗|S] = νS + bS , with bS being a bias term. Then

MSE[τ̂∗] = E
[
(τ̂∗ − τ)2

]
= E

[
(τ̂∗ − νS)2

]
+ E

[
(νS − τ)2

]
+ 2 ES [bS(νS − τ)] (1)

= ES [MSE[τ̂∗|S]] + MSE[νS ] + 2 ES [bS(νS − τ)]

Given a choice of νS , the first term is the expected MSE of the estimator for estimating νS when we

consider all possible randomizations of treatment assignment on the given sample S. The second

term is the MSE of νS as an estimator for τ across all samples. The third term is a cross-bias term;

it depends on how the bias of a sample is correlated with the error of its νS . We generally assume

it is small and ignore it. This gives a rough formula for the overall mean square error of

MSE[τ̂hh] ≈ ES [MSE[τ̂hh|S]] + MSE[νS ] . (2)

The first term will tend to be a function of the randomization method used and sample-dependent

parameters such as σ2
S(1), σ2

S(0), σ2
S(∆), and, importantly, the choice of estimator τ̂∗. For a given

choice of νS , if we reduce this inner term, we reduce the expectation and therefore increase the

overall precision of the estimator for PATE. We reduce this term with better estimators, e.g., ones

that exploit covariates; this is the goal of post-stratification.

The sampling scheme and choice of νS governs the second term. If we reduce it by changing

νS , we increase precision. The main way to do this is to sample better, e.g., move closer to equal

probability sampling. No estimation strategy can reduce this term.
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Alternate estimators. Given the above, our primary“double-Hàjek” estimator τ̂hh can be viewed

as doubly biased: the expected value across randomizations is approximately νS , and the expected

value of νS is approximately τ . We could instead use Horvitz-Thompson style estimators at either

or both levels to remove these biases. In particular, if we select an estimator that is unbiased at the

randomization level, i.e. E[τ∗|S] = νS , then we have

MSE[τ̂∗] = ES [Var[τ̂∗|S]] + VarS [νS ] + (ES [νS ]− τ)2

One such estimator is the “single-Hàjek” estimator of

τ̂h =
1

Zp

N∑
i=1

SiTiwiyi(1)− 1

Z(1− p)

N∑
i=1

Si(1− Ti)wiyi(0).

This estimator is tied to double-Hàjek by E[Z1|S] = pZ and E[Z0|S] = (1− p)Z. It is a Horvitz-

Thompson estimator with respect to the randomization for the two parts of our estimand νS . In-

terestingly, this estimator has the same asymptotic variance expression found in Theorem 4.1 as

τ̂hh.

Finally, if ES [νS ] = τ we have

MSE[τ̂∗] = ES [Var[τ̂∗|S]] + VarS [νS ] .

For fixed n, we have such an estimator as

τ̂sd =
1

n1

∑
i∈S

Tiwiyi(1)− 1

n− n1

∑
i∈S

(1− Ti)wiyi(0). (3)

This estimator generally pays a large price for unbiasedness with high variance.
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Appendix B: Post-Stratification for PATE in Survey Experiments

Post-stratification is motivated by viewing PATE estimation as a two step process. In particular,

estimators νS that have higher precision will give overall gains. Say we had a categorical covariate

b associated with our outcomes. We can then express our overall estimand τ as:

τ =
K∑
k=1

Nk

N

(
1

Nk

∑
i:bi=k

(yi(1)− yi(0))

)
=

K∑
k=1

fkτk

with Nk being the number of units in the population in stratum k and fk = Nk/N being the

proportion of the population in stratum k. We could then estimate the population τk with strata

level estimators of

νSk =
1

Zk

∑
i:bi=k

wi(yi(1)− yi(0)).

As before, we would then need to estimate these νSk.

This motivates a post-stratified estimator as a combination of estimates of population strata size

estimates and population strata effect estimates:

τ̂ps =
K∑
k=1

f̂kτ̂k

where f̂k = Zk/Z estimates fk, with the Z being the total weight in the sample and the

Zk =
∑
i:bi=k

wiSi for k = 1, . . . , K

being the total weights of the strata. These are not dependent on the randomization so

E[τ̂ps|S] =
K∑
k=1

f̂k E[τ̂k|S] .

If we had population knowledge we might actually know the fk and simply plug them in; this
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connects to the generalization of experiments. See, for example, Tipton (2013).

For the τk we have several options. Arguably the most natural is the double-Hàjek estimator of

τ̂k =
1

Zk1

∑
i:bi=k

SiTiwiyi(1)− 1

Zk0

∑
i:bi=k

Si(1− Ti)wiyi(0)

with Zk1 being the total weight in the treatment group in stratum k, and similarly for the control.

The τ̂k will have the usual bias from being Hàjek estimators. Here, however, this bias is of order

nk, not n (see Lemma 2.1), and so could potentially be larger than one might expect.

Regardless, combining gives our final

τ̂ps =
K∑
k=1

Zk
Z

(
1

Zk1

∑
i:bk=k

SiTiwiyi(1)− 1

Zk0

∑
i:bk=k

Si(1− Ti)wiyi(0)

)
. (4)

If we want to avoid this bias, we could instead use a single-Hàjek estimator in each strata:

τ̂
(h)
k =

nk
Zk

(
1

nTk

∑
i:bi=k

Tiwiyi(1)− 1

nk − nTk

∑
i:bi=k

(1− Ti)wiyi(0)

)
.

For the single-Hàjek, we immediately have E
[
τ̂

(h)
k |S

]
= νSk

, i.e., unbiasedness in the randomiza-

tion step. This also causes the Zk to cancel. If the weights within strata are generally homogenous,

the single-Hàjek will be essentially the same as the double. And if b is built by stratifying on

weights then we would indeed expect such homogeneity. Thus, with post-stratification, we can

remove some bias for very little cost in variance.

Variance Estimation

As discussed in the main text, the post-stratification step can be sample-dependent. For example,

if the units are divided into K quantiles by survey weight, the cut-points of those quantiles depend

on the realized weights of the sample. Because this is still pre-randomization, this does not impact
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the validity of the variance and variance-estimation formulae of the SATE estimate of τS . It does,

however, make generating appropriate population variance formulae difficult. Furthermore, even

if the strata are pre-defined, the formulae of Theorem 4.1 are actually for a linearized version of

the ratio estimators, and as the strata are smaller than the overall sample, one might be concerned

that these approximations would be not that good when applied to individual strata. This is why

we propose the bootstrap.

Appropriate implementation of the bootstrap deserves some discussion. Bootstrap is a “by

analogy” technique. To obtain the variability of an estimator we repeatedly simulate obtaining a

sample from some population using our hypothesized sampling mechanism, randomizing it into

treatment, and estimating the treatment effect using our estimator on that sample. We first, there-

fore, need to have a population to sample from. Our best estimate of this population is the sample

weighted by the weights. We then take a size-n i.i.d. sample from this population with prob-

ability proportional to the inverse of these weights. The treatment assignment being Bernoulli

means we take a case-wise bootstrap, bootstrapping the original treatment assignment along with

the outcome. This avoids any need to impute any missing potential outcomes.

The up-weighting and subsequent weighted sampling steps collapse to generating a bootstrap

sample by taking a classic with-replacement unweighted sample (i.e., a case-wise bootstrap) from

the original sample of the triples (Y obs
i , Zi, wi).

Appendix C: Derivations

In the following we derive the bias of the Hàjek estimator, show that it is small, and derive the bias

of τSATE as an estimator for the PATE. After this we show how a weighted OLS regression can

be used in practice to estimate the double-Hàjek. Finally, we derive properties of the unstratified

PATE estimators.
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Bias of the Hàjek Estimator

The proof of Lemma 2.1, that the bias of a Hàjek estimator isO(1/E[n]), follows a similar strategy

to the proof of Result 6.34 in Cochran (1977). That result is of the bias of a general ratio estimator

for a fixed sample size under simple random sampling. We adapt this result to the Hàjek estimator

(also a ratio estimator) under independent Poisson random sampling with variable sample size. A

fixed sample size correction is possible, but is not needed for our purposes.

We extend the notation described in Section 2.1. Denote Zy =
∑N

i=1
π̄
πi
Siyi so that we can

write ŷH = Zy

Z
. The expected values of both the numerator and denominator are

E[Zy] = Nπ̄µ, (5)

E[Z] = Nπ̄.

These results alone should motivate why the Hàjek estimator should be approximately unbiased,

but let us be a bit more rigorous. By first manipulating the difference of the estimator and its

target and then applying the first order Taylor approximation, (1 +A)−1 =̇ (1−A), we can get the

approximate difference.

ŷH − µ =
Zy
Z
− µ =

Zy − µZ
Z

= (Zy − µZ)
1

Z

= (Zy − µZ)
1

Nπ̄

Nπ̄

Z
= (Zy − µZ)

1

Nπ̄

(
Z

Nπ̄

)−1

= (Zy − µZ)
1

Nπ̄

(
Nπ̄ + (Z −Nπ̄)

Nπ̄

)−1

= (Zy − µZ)
1

Nπ̄

(
1 +

Z −Nπ̄
Nπ̄

)−1

=̇ (Zy − µZ)
1

Nπ̄

(
1− Z −Nπ̄

Nπ̄

)

Taking expectations and noting that E[Zy − µZ] = 0 by Equation 5 leads to the approximate
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bias:

E[ŷH ]− µ =̇ − 1

(Nπ̄)2
E [(Zy − µZ)(Z −Nπ̄)] (6)

= − 1

(Nπ̄)2

(
E[ZyZ]−Nπ̄ E [Zy] +Nπ̄µ E [Z]− µ E [Z2]

)
.

These expanded terms can be calculated individually for our estimator using properties of variance

and covariance.

E[ZyZ] = Cov(Zy, Z) + E[Zy] E [Z] (7)

=
N∑
i=1

N∑
j=1

π̄2

πiπj
yi Cov(Si, Sj) + (Nπ̄µ)(Nπ̄)

=
N∑
i=1

π̄2

π2
i

yi V ar(Si) +N2π̄2µ

= π̄2

N∑
i=1

1− πi
πi

yi +N2π̄2µ

= π̄2

N∑
i=1

yi
πi
−Nπ̄2µ+N2π̄2µ

E[Z2] = V ar(Z) + E[Z]2 (8)

=
N∑
i=1

π̄2

π2
i

var(Si) +N2π̄2

= π̄2

N∑
i=1

(
1

πi
− 1

)
+N2π̄2

= π̄2

N∑
i=1

1

πi
−Nπ̄2 +N2π̄2
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Finally, substitute Equations 5, 7 and 8 into Equation 6 and simplify:

E[ŷH ]− µ =̇− 1

(Nπ̄)2

(
π̄2

N∑
i=1

yi
πi
−Nπ̄2µ+N2π̄2µ

−N2π̄2µ+N2π̄2µ

− µπ̄2

N∑
i=1

1

πi
+Nπ̄2µ+N2π̄2

)

= − 1

Nπ̄

(
π̄

1

N

N∑
i=1

yi
πi
− µπ̄ 1

N

N∑
i=1

1

πi

)

= − 1

E[n]

(
π̄

1

N

N∑
i=1

yi − µ
πi

)

= − 1

E[n]

(
1

N

N∑
i=1

(yi − µ)
π̄

πi

)
.

We finally use the relation

Cov[A,B] = E
[
(A− Ā)(B − B̄)

]
= E

[
(A− Ā)B

]
− E

[
(A− Ā)B̄

]
= E

[
(A− Ā)B

]
to get our final covariance formulation.

We have ignored a mild technical issue of an undefined estimator with probability P{Z = 0}.

For the Poisson selection scheme, with the Si independent, P{Z = 0} =
∏

(1 − πi) which will

be exponentially small in n. Letting the estimator be defined as 0 under this circumstance gives a

bounded, exponentially small term far less in magnitude than other bias terms.
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Bias of the SATE for the PATE

To see that τ̂SATE (or τS) is a biased estimate for PATE, assume fixed sample size n to obtain:

E[τ̂SATE] = ES [E[τ̂SATE|S]] = ES [τS ] = ES

[
1

n

N∑
i=1

Si(yi(1)− yi(0))

]

=
1

N

N∑
i=1

Nπi
n

(yi(1)− yi(0)) .

For a random sample size, there is an additional, but negligible, a bias term. We can see that the

above is a first order approximation of the overall bias by replacing ES
[
Si/n
]

with ES[Si]/ES[n]. The

difference in these terms is of order 1/n, as with our bias lemma.

The double-Hàjek as weighted OLS

In Section 4.1 we introduced the “double-Hàjek” estimator. Here we show that this estimate is

equivalent to a weighted OLS where the weights are wi = π̄
πi

and we regress on the treatment

indicator. In other words we fit the model

yi = α + τTi + εi

with weights wi. The weighted OLS estimates α̂ and τ̂ are the solutions to the normal equations:

∑
i∈S

wi(yi − α̂− τ̂Ti) = 0, (9)

∑
i∈S

wiTi(yi − α̂− τ̂Ti) = 0. (10)

These are obtained by taking derivatives with respect to α and τ of the weighted sum of squares,∑
i∈S wi(yi − α − τTi)

2, and setting them to 0. Grouping by treatment indicators, we get the
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following:

∑
i:Ti=1

wi(yi − α̂− τ̂) +
∑
i:Ti=0

wi(yi − α̂) = 0,

∑
i:Ti=1

wi(yi − α̂− τ̂) = 0.

Taking the difference of these equations implies that

α̂ =

∑
i:Ti=0wiyi∑
i:Ti=0 wi

.

To make the connection to the “double-Hàjek” estimate, denote Z0 =
∑

i:Ti=0 wi and Z1 =∑
i:Ti=1wi, as before. If we distribute the summation in the second normal equation (Equation 10),

we get

∑
i:Ti=1

wiyi − α̂Z1 − τ̂Z1 = 0

∑
i:Ti=1

wiyi −
Z1

Z0

∑
i:Ti=0

wiyi − τ̂Z1 = 0

τ̂ =
1

Z1

∑
i:Ti=1

wiyi −
1

Z0

∑
i:Ti=0

wiyi

Written in the most general sense and replacing the weights, we get back our “double-Hàjek”

estimate.

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

Z0

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)

Hence one way of calculating τ̂hh is by fitting a weighted OLS regression onto the treatment

indicator and inspecting the coefficients.
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Properties of τ̂hh

Our estimator can be expressed as

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

Z0

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)

= µ̂(1)− µ̂(0).

For the expectation of τ̂hh, we have

E[τ̂hh|S] ≈ E

[
1

E[Z1|S]

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

E[Z0|S]

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)|S

]

=
1

Z

N∑
i=1

Si
π̄

πi
yi(1)− 1

Z

N∑
i=1

Si
π̄

πi
yi(0) = νS

For variance we use results and notation from Särndal, Swensson and Wretman (2003) to obtain

approximate variance terms as follows. Define S̃i = SiTi as the event of unit i being selected and

also treated. We then have π̃i = E
[
S̃i

]
= pπi and the probability that units j and k are both

selected and treated is

π̃jk = E
[
S̃j = 1 and S̃k = 1

]
= P{Tj = 1 and Tk = 1|Sj = 1, Sk = 1} πjk

For the treatment group specifically we have

µ̂(1) =
π̄
∑N

i=1 SiTi
yi(1)
pπi

π̄
∑N

i=1 SiTi
1
pπi

=

∑N
i=1 SiTi

yi(1)
pπi∑N

i=1 SiTi
ri
pπi

=

∑
S̃ y̌i∑
S̃ ři

=
t̂y

t̂r
.

with ri = 1. The check notation denotes a value divided by its probability of being included in the

sample: ǎi = ai/πi. The above is a classic ratio estimator with selection probabilities of π̃j for the
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ratio of

R =
ty
tr

=

∑N
i=1 yi(1)∑N
i=1 ri

=

∑N
i=1 yi(1)

N
= µ(1)

since tr =
∑N

i=1 ri = N .

The approximate variance of a ratio estimator (Särndal, Swensson and Wretman, 2003) is:

AV (µ̂(1)) =
1

t2r

N∑
j=1

N∑
k=1

∆̃jk
yj(1)−Rrj

π̃j

yk(1)−Rrk
π̃k

=
1

N2

∑∑
∆̃jk

yj(1)− µ(1)

pπj

yk(1)− µ(1)

pπk

=
1

N2

∑∑ ∆̃jk

p2πjπk
(yj(1)− µ(1)) (yk(1)− µ(1))

with

∆̃jk ≡ π̃jk − π̃jπ̃k = π̃jk − p2πjπk.

We can estimate this variance with a sum over the treatment group of

V̂ (µ̂(1)) =
1

N̂2

N∑
j=1

N∑
k=1

SjTjSkTk
∆̃jk

π̃jkp2πjπk
(yj(1)− µ̂(1)) (yk(1)− µ̂(1))

with µ̂(1) = 1

N̂

∑N
i=1 SiTiy̌i(1) and N̂ =

∑
SiTi/πip.

The Poisson-Bernoulli Model. Under Poisson selection we have πjk = πjπk for j 6= k (with

πjj = πj). With Bernoulli assignment we have π̃jk = p2πjπk for j 6= k (with π̃jj = pπj) giving
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∆̃jk = 0 for j 6= k and ∆̃jj = pπj(1− pπj) for j = k. This gives

AV (µ̂(1)) =
1

N2

N∑
j=1

1− pπj
pπj

(yj(1)− µ(1))2

and

V̂ (µ̂(1)) =
1

N̂2

N∑
j=1

SjTj
1− pπj
p2π2

j

(yj(1)− µ̂(1))2 .

The above formula are problematic in that they depend on our πj rather than the weights wj =

p̄i/πj). However, if we assume N � n we can make progress. In particular, in this case, under

mild regularity conditions on the sampling probabilities, we can assume πj � 1 for all j. This

means that 1− pπj ≈ 1. Couple this with Nπ̄ = E[n] to get a fairly tight upper bound on our two

formula of

AV (µ̂(1)) ≤ 1

p E[n]

1

N

N∑
j=1

wj (yj(1)− µ(1))2

and, using N̂ = Z1/(π̄p) with Z1 =
∑
SjTjwj ,

V̂ (µ̂(1)) =
π̄2

Z2
1

N∑
j=1

SjTj
1− pπj
π2
j

(yj(1)− µ̂(1))2

≤ 1

Z2
1

N∑
j=1

SjTjw
2
j (yj(1)− µ̂(1))2 .

Finally, to get overall variance presented in Theorem 4.1 we first view the sample into the

treatment arm as independent of the sample into the control arm, which is again motivated by the

N � n assumption. For the control arm, we then do the above derivation with S̃i = Si(1 − Ti)

and π̃i = (1 − p)πi. More lengthy derivations that account for the dependence structure will give

higher-order terms which are in the end negligible. See Wood (2008) for an approach.
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Appendix D: The simulation’s DGP

In this section we provide additional simulation details and explanations of some of the choices

made throughout the simulations of Section 5. In all our simulations, the potential outcomes are

simulated as nonlinear functions of the weights.

To generate our populations we use the following algorithm: let γ ∈ [0, 1] be a correlation

measuring the strength of the relationship between the weights and outcomes. We then generate

two latent parameters (εi, ε̃i) as a bivariate standard normal draw with correlation γ. (We do this

by generating εi ∼ N(0, 1), and ε̃ = γεi +
√

1− γ2ηi, with ηi ∼ N(0, 1).)

We then generate uniformly distributed weights on pre-specified interval (a, b) by using the

c.d.f. transformation:

wi = a+ b Φ(εi),

where Φ is the standard normal c.d.f. We also generate shadow weights

w̃i = a+ b Φ(ε̃i),

also uniform, and with the same distribution as wi.

Our potential outcomes are then a function of the shadow weights w̃i:

Yi(0) = 120− 20
√
w̃i + 5εi

Yi(1) = Yi(0) + 10
√
b− w̃i

with εi as independent Gaussian noise. The treatment potential outcomes are generated to give a

non-linear heterogeneous treatment effect. When γ = 1, w̃i = wi, giving the strongest possible

relationship between outcome and weight. Conversely when γ = 0 the weights are completely

unrelated to the potential outcomes, so stratifying on them should not help improve estimation.
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Once we have a population, we then sample inversely proportional to the weight wi. For

example, in Simulation A we take a fixed sample size of n = 500 (5% of the population). Our

post-stratification estimator stratifies based on the weight wi to increase precision. The stratifying

variable bi is defined in Section 4.3.

Simulation A has maximal covariance, with γ = 1. Figure 1 shows a subset of the popula-

tion and a sample from this scenario to illustrate the structure of our DGP. Figure 1a shows the

characteristics of the simulated population while Figure 1b shows how a weighted sample might

look.

Overall, Figure 1 shows that the weight wi and potential outcome distributions differ in the

sample and population. Furthermore, because the potential outcomes are related to the weights

they are consequently related to the post-stratification levels bi in the sample.

For Simulation B we simply replace the formula for Yi(1) with a constant treatment effect of

30, so Yi(1) = Yi(0) + 30. We still have the sample general relationships between the sample and

population, but as we see in Section 5 the estimators behave quite differently.

For Simulation C we varied γ, which controls the relationship between the weight and the

potential outcomes. The top two right-most panels of Figure 1b show there is smaller variability

within strata for Yi(0) and Yi(1) than if we consider the entire sample at once. As our weights

become less predictive of outcome, this variability will increase. Our formulation, however, main-

tains the marginal distributions of wi, Yi(0), and Yi(1) as γ changes so that any benefits we see

from post-stratification can only be attributed to the changing relationship.

Appendix E: Further Details and Results of the Real Data Ap-

plication

As mentioned in the main text, the 92 survey experiments analyzed in Section 6 were generated

from 18 unique randomizations on 7 separate surveys. We split each randomization by subject
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party identification and considered multiple outcomes per treatment randomization. One might

worry that the potential correlation of the multiple outcomes might be influencing the results, so

we append here the results when considering only one unique outcome per randomization.

The 18 unique randomizations give rise to 36 survey experiments after splitting each random-

ization by subject party identification, considering only the larger Democratic and Republican

leaning subgroups. 28 of them (78%) showed SATEs that were significantly different from zero.

Once the weights were taken into account to estimate the PATE (via the double-Hàjek estimate)

25 experiments (69%) had significant effects. Even though more experiments showed significant

PATE than SATE estimates, incorporating weights still increased standard errors: there was a

31.6% average increase in variance of τ̂hh over τ̂SATE across experiments. The raw SE increases

can be seen in Figure 2(a).

We further examined whether there is evidence of some experiments having a PATE substan-

tially different from the SATE. We calculated the 36 δ̂ values and compared them to a standard

normal with a qq-plot (Figure 2(b)). While visually there do seem to be some distributional depar-

tures from a standard Normal, a KolmogorovSmirnov test does not support this hypothesis (with

a p-value of 0.14). Furthermore, an FDR test also fails to find any experiments with significant

differences. All of this suggests a general equivalence between the SATE and the PATE in this

subset of experiments as well.

To explore whether post-stratification on weights improved precision, we compared the esti-

mated SEs. The estimated SEs of τ̂ps are very similar to those for τ̂hh, with an average increase

of about 0.2%. Post-stratifying on party ID on the original 18 experiments led to modest variance

reduction. Relative to no stratification, we see an average reduction of 2.6% in variance across

experiments with participants of both major parties. If we post-stratify on both party ID and the

weights, we see an average reduction of 2.3%. These findings, similar to the main text, show that

while post-stratification should help reduce the variance in theory the gains can be rather modest

in practice.
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(a) Population characteristics for Simulation A where the heterogeneous treatment effect varies in connec-
tion to the weight. Yi(1) and Yi(0) are respectively the treatment and control potential outcomes, wi is the
unit weight (units are sampled inversely proportional to this) and ∆i is the individual treatment effect.
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sample.

Figure 1: Characteristics of the Population and a Sample from Simulation A
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Figure 2: (a) Standardized efficiency of estimates of τ̂hh vs τ̂SATE . (b) quantile-quantile compari-
son plot of the relative difference δ̂ of the estimates for the 36 experiments grouped by containing
survey.
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