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1 Coding Instructions

The 5-category instructions for undergraduates and CrowdFlower participants for coding

sentiment are detailed below, followed by the 9-point instructions given to CrowdFlower

coders.

5-Category Coding

In this job, you will be presented with excerpts from newspaper articles. We
will ask you to read each excerpt and then answer a few questions about
whether the excerpt tells you anything about how the United States economy
is doing.

Process
1. Read the article
2. Determine if the article gives you an indication of how the economy is per-
forming.

For example, an article with this headline probably gives you an indication of
how the economy is performing: “Unemployment just went up by 2%.”

For each article, your job is to judge whether it gives YOU an indication about
how the economy is performing.

3. If it gives you an indication of how the economy is performing, tell us
whether that indication is positive, neutral, negative, or mixed – or you are
not sure.

If the text contains typos or is otherwise corrupted in some way, do your best
to make out the message of the article.

Thank You!
Thank you very much for your work!

[NEW PAGE ON CROWDFLOWER]

Read the highlighted segment below paying close attention to detail:

Headline: Administration Using Study To Push Elderly Drug Plan: Pressing
Republicans to Reach Compromise

Date: 2000-04-26
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WASHINGTON, April 25 – Prices for the 50 drugs most frequently used by older
Americans increased last year at nearly twice the rate of inflation, a study to be issued
on Wednesday at the White House says. The study found a similar trend over the
last six years. President Clinton planned to cite the data in arguing that drug costs
constitute a growing burden for the elderly and that Congress should pass legislation
to reduce the burden. The Democratic leaders of Congress, Senator Tom Daschle of
South Dakota and Representative Richard A Gephardt of Missouri, intend to join Mr
Clinton at the White House. The three will press Republicans in Congress to reach a
compromise and make drug coverage available to all 39 million Medicare beneficiaries.

Q1) Does the article provide some indication about how the U.S. economy is
performing?
◦ Yes
◦ No
◦ Not Sure

Q2) If so - is the indication:
◦ Positive
◦ Negative
◦Mixed
◦ Neutral
◦ Not Sure
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9-Point Coding

In this job, you will be presented with excerpts from newspaper articles. We
will ask you to read each excerpt and then answer a few questions about
whether the excerpt provides information about how the US economy is do-
ing.

If you complete a three-question survey and code more than 10 articles, we
will award you an extra bonus of $0.50.

Process
1. Read the article
2. Determine if the article gives an indication of how the United States econ-
omy is performing.

For example, an article with this headline probably gives you an indication of
how the U.S. economy is performing: “Unemployment just went up by 2%.”

Note that you are only being asked whether the article tells you something
about how the United States economy is doing – so articles that only contain
information about the economy in other countries are not relevant.

3. If the article gives you an indication of how the economy is performing, tell
us whether the indication is negative or positive, using a scale ranging from
1 (very negative) to 9 (very positive). You can pick a value anywhere on the
scale to indicate where the article is on the scale.

If the text contains typos or is otherwise corrupted in some way, do your best
to make out the message of the article.

Bonus
To receive an extra $0.50 bonus, please complete the survey in this link (will
open in a new window). The survey contains three simple questions and
should take only 30 seconds to complete. If you complete this survey and
code at least 10 articles, we will award you the bonus within the next 72 hours
once this task is completed.

Thank You!
Thank you very much for your work!

[NEW PAGE ON CROWDFLOWER]

Read the highlighted segment below paying close attention to detail:
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Headline: Nation’s Governors See a Dismal Economic Outlook and a Slow Re-
covery

Date: 2009-02-22

WASHINGTON – The nation’s governors said Saturday that passage of a $787 billion
bill to stimulate the economy might help them avert draconian budget cuts, but that
they did not expect to see signs of an economic recovery until late this year or early
2010. The officials, arriving here for the winter meeting of the National Governors
Association, said that state revenues were coming in far below their projections and
that the new federal measure, while helpful, would not be a panacea. Gov. Jon Hunts-
man Jr. of Utah, where the economy is better than in most states, said the revenue
figures were “still dismal”. Asked when the recovery would start, Mr. Huntsman, a
Republican, said: “We were hoping in the fourth quarter of this year.” Gov. Steven L.
Beshear of Kentucky, a Democrat, said: “If the experts are correct, next year may be
even worse than this year. I think very probably they are correct.”

Q1) Does the article provide some indication about how the U.S. economy is
performing?
◦ Yes
◦ No
◦ Not Sure

Q2) If so - is the indication:
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3 4 5 6 7 8 9
Negative Positive
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2 Details for the Training Data Used in the Analysis

Table 1: Details for Training Data Used in the Analysis
Number of Avg. Number

Data Analysis Unique Objectsa Number & Type Objects in of Coders Coding Truth
ID (Section) (Unit of Analysis) of Codersb Training Data per Objectc Scaled Datasete

1ACf Unit of Analysis 10,000 (S) 3 CF 8,642 2.16 9-point scale CF Truth
1SC (Section 3.1) 2,000 (A) 3 CF 1,790 2.26 9-point scale CF Truth

5AC Dictionary v SML 4,400 (A) 3-10 CF 4.070 2.51 9-point scale UG Truth
(Section 4) CF Truth

UG Truth 4,195 (S) 2-14 UG 250 (A) 2.13 5-category NA
CF Truth 4,400 (A) 10 CF 442 (A) 7 9-point scale NA

2SUg Coder Quality (S) 1-8 UG 420 2.91 5-category NA
2SCh (Appendix Section 6) (S) 3-6 CF 420 2.46 5-category NA
3SU 4,195 (S) 2-14 UG 1,945 2.13 5-category NA
4SC 3,885 (S) 3-6 CF 3,136 1.77 5-category NA

Note: All articles in the training data were randomly selected over the period 1947-2014. Data ID names are such that the
number denotes the corpus, the first letter denotes the unit of analysis, and the second letter identifies the coder pool. The
machine learning algorithm used to train the classifier uses logistic regression with an L2 penalty, where the features are the
75,000 most frequent stemmed unigrams, bigrams, and trigrams appearing in at least 3 documents and no more than 80%
of all documents (stopwords are included). The two 4,400 article datasets comprise distinct datasets.
a Sample size denotes the number of objects available to be coded. (S) denotes sentences (using the first five sentences of an
article, individually presented) and (A) article-segments, where an article-segment is defined as the first 5 sentences of an
article presented in order.
b All CrowdFlower (CF) coders were located in the U.S. (UG) coders were Penn State undergraduate students trained as a
group.
c The average number of coders per object who coded the tone of the object (excluding objects coded as irrelevant).
d The 9-point scale ranged from 1 (very negative) to 9 (very positive). Categories were collapsed such that 1-4=0 (negative),
6-9=1 (positive). We dropped responses at the midpoint (5) since earlier tests with a multinomial classifier suggested keeping
them would lead to noisier estimates. The 5-category coding scheme allowed coders to label a sentence as negative, mixed,
neutral, not sure, positive. Responses were recoded to -1 (negative), 0 (mixed, neutral, not sure), and +1 (positive) before
computing the variance.
e UG Truth is based on Dataset 2SU. The “truth” in UG Truth is based on students with high agreement. The “truth” in CF
Truth is based on 70% or higher agreement among coders.
f All the 10,000 sentences in dataset 1SC come from the same 2,000 articles in dataset 1AC.
g Dataset 2SU is the overlap of 3SU and 4SC.
h Dataset 2SC is the overlap of 4SC and 3SU.
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3 Comparing the Subject-Category and Keyword Corpora

Data for Figure 1 in the text is presented in detail in Table 2 below. In general, in years

where the keyword corpus contained relatively more articles, so, too, did the subject cat-

egory corpus (ρ = .71). But in some years the keyword corpus contained over three times

as many articles as the subject category corpus, while in others both corpora contained

similar counts, and finally, in two years (2002 and 2011), the subject category corpus con-

tained slightly more articles. Notably, there is a downward trend in the number of articles

in the keyword corpus that is not apparent in the subject category corpus.1

1Due to discrepancies in the ‘cleanliness’ and formatting of the texts, along with differences in meta-data
accuracy (e.g., date published) an exact matching approach to identifying overlap in the two corpora would
dramatically bias estimates of congruency downward. Instead, we generated a set of potential matches by
searching for articles with similar headlines and published in the same year. (Article headline similarity was
defined as having a maximum Levenshtein edit distance of 0.35.) This produced a set of articles from the
subject category corpus that were potential matches for each article in the keyword corpus (we constrained
the sets to have a maximum of ten potential matches). We then randomly sampled 25% of all potential
matches (2,600 pairs). These sampled article pairs were subsequently coded as being true or false matches
and then used as training data for an AdaBoost classification tree algorithm using the caret package in R.
We were able to achieve a 10-fold cross-validated accuracy of ∼ 99.3%. Baseline accuracy over the entire
training set was 58.7%. The resulting model was used to classify headlines as unique or matched for the
remaining 75% of potential matches. Unique articles could be labeled as matches in multiple sets of article
pairs. Pairs of articles containing non-unique article IDs were cleaned by hand. This form of duplication
was exceedingly rare; only 145 of 4,368 pairs of articles contained a non-unique article identifier.
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Table 2: Comparing the Subject Category Corpus with the Keyword Corpus: Total,
Unique, and Overlapping (Common Corpus) Article Counts from the New York Times,
1980-2011

Keyword Subject Category Common Unique Unique
Year Corpus Corpus Corpus Keyword Subject Category
1980 1767 516 73 1694 443
1981 1545 945 133 1412 812
1982 1960 1361 344 1616 1017
1983 1618 840 206 1412 634
1984 1304 629 112 1192 517
1985 1103 481 85 1018 396
1986 1020 444 84 936 360
1987 1340 552 93 1247 459
1988 1125 521 105 1020 416
1989 1016 522 139 877 383
1990 862 587 98 764 489
1991 1452 972 263 1189 709
1992 1243 925 211 1032 714
1993 962 607 125 837 482
1994 1076 588 138 938 450
1995 736 484 91 645 393
1996 769 415 65 704 350
1997 840 437 87 753 350
1998 742 471 107 635 364
1999 804 436 102 702 334
2000 608 451 83 525 368
2001 763 865 140 623 725
2002 556 558 111 445 447
2003 502 463 96 406 367
2004 545 369 99 446 270
2005 474 277 90 384 187
2006 501 325 105 396 220
2007 505 282 77 428 205
2008 784 645 179 605 466
2009 988 883 312 676 571
2010 815 564 221 594 343
2011 462 480 116 346 364
Total 30787 18895 4290 26497 14605

Note: Cell entries are annual counts of articles retrieved for each corpus. See text
for details explaining the generation of each corpus. See Footnote 1 for a descrip-
tion of the methods used to calculate article overlap.
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We report the relevance results based on the full set of worker-level codings (not

aggregated to the article level by taking the model response) in Table 3. These are nearly

identical to the results after aggregating all the coder responses to the article level re-

ported in Section 2 of the paper.

Table 3: Proportion of Relevant Articles by Corpus
Articles in both

Relevance SSW and Ours Unique Ours Unique SSW
Not Relevant 0.55 0.58 0.60
Not Sure 0.01 0.01 0.01
Relevant 0.45 0.42 0.40

Note: Cell entries indicate the proportion of sentences in each dataset (and their
overlap) coded as providing information about how the US economy is doing.
One thousand articles from each dataset were coded at the sentence level by three
CrowdFlower workers located in the US. Each coder was assigned a weight based
on her overall performance before computing the proportion of sentences deemed
relevant. If two out of three (weighted) coders concluded a sentence was relevant,
the aggregate response is coded as “relevant”.
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4 Selecting a Classifier

Preprocessing Decisions

Typically prior to training a classifier the analyst makes a number of text processing deci-

sions including whether to stem the text, how to handle stop words, and the nature and

number of features of the text to include. We consider these in turn.

First the analyst must decide whether to stem the text (truncate words to their base).

When we truncate words we are asserting that words with the same base mean the same

thing (i.e., ‘cars’ is the same as ‘car’), and thus they constitute a single feature. The main

benefits of stemming relate to the reduction of two things: i) dimensionality and ii) loss of

relevant terms. Without stemming these words, ‘car’ and ‘cars’ would appear as separate

features, which can increase the size of the document-term matrix immensely. This is

especially true when using anything greater than unigrams.2

Further, by combining words of the same root we can generally reduce the like-

lihood of throwing out potentially relevant words. When we stem words, we are only

changing the overall sparsity of the matrix by a small amount, while simultaneously de-

creasing the relative number of potential parameters to fit by a much larger amount.3

While the increase in potential parameters can be easily solved by limiting the feature-set

to the top K words, this can be problematic for the exclusion of relevant terms. If ‘car’

is the 28,000th most common word and ‘cars’ is the 42,000th most common word, neither

will be included in a feature-set of the top 25,000 terms, even though the concept of ‘car’

may be a relevant one.

This is not to say that one should always use stemming as a pre-processing tech-

nique. In certain cases stemming can actually do more harm than good. Take, for in-

2Using only unigrams in our NYT data, stemming reduces the number of features by roughly 60,000
(∼ 4.5%). This results in 3.7B fewer cells in the document-term matrix.

3For the same data as in the previous footnote, stemming increases the sparsity of the document-term
matrix by just ∼ 0.0002%, but reduces the number of features by ∼ 4.5%.

9



stance, a hypothetical question about prospective vs. retrospective media coverage fol-

lowing presidential addresses. Here the tenses of verbs would be key to the analysis,

since they are certainly features that would have distinctly different distributions across

the two classes (past and future). By stemming the verbs in such an analysis we would

be throwing away very valuable information.

Second, the analyst needs to decide how to deal with stop words (commonly used

words that do not have contain relevant information). Should all stop words from a gen-

eral list be omitted from the training data, or should the stop words be tailored to the

specific task? For instance, in our task of classifying sentiment on the economy, the words

‘down’ and ‘up’ have obvious meaning. But these words are considered stopwords to be

dropped before analysis by commonly used text processing software such as scikit learn.

Throwing out ‘down’ from a sentence with “unemployment has gone down” is obviously

not going to improve our classifier.

Third, the analyst needs to decide the nature and number of features to include. For

example, the analyst has to decide whether to include just single words (unigrams), or to

include bigrams or trigrams, or other combinations. If one is coding for topic, it might

not be as important to include bigrams and trigrams. However, in coding for economic

sentiment, where “rising unemployment” is completely different than “falling unemploy-

ment” - inclusion of bigrams seems essential. We can also go beyond N-grams to think

about co-occurrence within sentences. “Falling” does not need to immediately proceed

“unemployment” to suggest that the sentence talks about “falling unemployment”, if it

is in the same sentence, we can infer that it is likely to be modifying unemployment.

Based on these considerations we adopted a baseline set of decisions in which we

used 75,000 n-grams appearing in at least 3 documents and no more than 80% of all docu-

ments, using both stopwords and stemming. We compared results from this baseline with

six alternative preprocessing decisions: a) removing stopwords, b) using only unigrams
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Figure 1: Performance of Classifiers Depending on Feature Selection
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Note: Vertical lines indicate baseline accuracy and precision (predicting the modal category).
Performance metrics are reported using cross-validation (in-sample, 10 folds) and on the ground
truth dataset (out-of-sample).

and bigrams, c) using only unigrams, d) using only the top 25.000 n-grams, e) using up

to 100,000 top n-grams, and f) not stemming the text of the articles. We assess classifier

performance using accuracy and precision measured both using 10-fold cross-validation,

and in our ground truth dataset coded by crowd workers with high agreement. Mea-

sures of accuracy and precision using both techniques are reported in Figure 1. We do

not find any large differences in accuracy or precision as a function of feature selection.

Our baseline approach appears to combine high values on all the different performance

metrics.

Comparing Classifiers

In addition, we report the results for accuracy and precision of a number of other common

machine learning classifiers using our baseline decisions for feature selection in Figure 2.

11



A logistic regression classifier with L2 penalty (Ridge Regression) appears to yield the

best performance and is significantly faster to estimate than ensemble classifiers, such as

AdaBoost and Random Forests.

Figure 2: Performance of Different Classifiers
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We note that all of these classifiers are one-stage classifiers: we do not attempt to

combine the classification of relevance and tone here; but rather code all articles for tone.

This is treating irrelevant articles as having tone. We experimented with developing a

classifier for relevance (all articles in the training dataset were first coded for relevance,

then only coded for tone if the coder stated that the article was relevant), and applying this

classifier to filter out articles that were not relevant. What we were most worried about

with any such procedure is generating selection bias: if our relevance filter eliminated

more relevant negative articles or positive articles (or vice-versa), we would be introduc-

ing bias, when the intent was to remove noise. We found that we were not introducing

bias - but have not yet further tested the efficacy of the filter.
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5 Selecting the Unit of Analysis

As discussed in section 3.1 of the paper, whether coding based on sentences or articles—or

in our case, article-segments—is best likely depends on at least four features of the data:

1) the size of the vocabulary, 2) the distribution of positive and negative features within

sentences, 3) the distribution of positive and negative sentences within articles/article-

segments and 4) the proportion of sentences that are not relevant to tone that reside in

articles/article-segments coded as positive or negative. In Table 4, we first present the

distribution of positive and negative sentences within article-segments coded as negative

and positive based on unanimous agreement of three coders as reported in Section 3.1.

Then in Tables 5-8, we present this distribution allowing for disagreement among coders.

We report the same information allowing for disagreement among coders in Table 9.

Table 4: Article-Segment by Sentence Tone

Average # of Average # of
Positive Sentences Negative Sentences

Positive Article-Segments 0.91 0.27
Negative Article-Segments 0.08 1.00

Note: Analysis is based on Datasets 1SC and 1AC, Appendix Table
1. Article-segments are counted as positive or negative here only
if there was unanimity of the article-segment-level coding by the 3
coders. This coding rule results in 85 positive article-segments and
225 negative article-segments. The average number of positive (neg-
ative) sentences represents the number of sentences that all 3 coders
coded positive (negative) for each article-segment.

Table 5: Article-Segment by Sentence Tone (2/3) Cut-Off

Average # of Average # of Neutral Average # of
Positive Sentences or Irrelevant Sentences Negative Sentences

Positive Article-Segments 1.60 2.43 0.95
Negative Article-Segments 0.54 2.47 1.96
Note: This coding rule results in 317 positive article-segments and 667 negative article-segments. The average number of positive (negative)

sentences represents the number of sentences that at least 2 of 3 coders coded positive (negative) for each article-segment coded as either
positive or negative by at least 2 of 3 coders. Remaining sentences are coded as neutral or irrelevant.
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Table 6: Article-Segment by Sentence Tone; Averaging & (2/3) Cut-Off

Average # of Average # of Neutral Average # of
Positive Sentences or Irrelevant Sentences Negative Sentences

Positive Article-Segments 1.79 1.97 1.22
Negative Article-Segments 0.83 2.07 2.07
1 Note: This table is similar to Table 5, but the values here are the average of a within article-segment average across coders. For example,
imagine there are two positive article-segments, call them A1 and A2; further, assume that for each article-segment there are 5 sentences and 3
coders. Finally, say that we are interested in the top left cell (positive sentences in positive article-egments). For A1, we will take the number of
sentence codings greater than 5, and divide that by the number of coders (3). We do the same for A2. Then to produce the value appearing in
the table, we average those results from A1:2.
2 This coding rule results in 317 positive article-segments and 667 negative article-segments.
3 The (2/3) cut-off rule was only applied to article-segments.

Table 7: Article-Segment by Sentence Tone; Averaging & (3/3) Cut-Off

Average # of Average # of Neutral Average # of
Positive Sentences or Irrelevant Sentences Negative Sentences

Positive Article-Segments 2.22 1.58 1.16
Negative Article-Segments 0.77 1.80 2.40
1 Note: See Table 6 (Note 1) for a description of the process.
2 This coding rule results in 85 positive article-segments and 225 negative article-segments.
3 The 3/3 cut-off rule was only applied to article-segments.
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The number of irrelevant sentences in article-segments that convey tone is also

likely to affect the performance of classifiers based on sentence-level coding compared

to classifiers based on article-segment-level coding. If article-segments contain a large

number of irrelevant sentences in an otherwise toned text, an article-segment classifier

would treat those features as informative for article classification while a sentence clas-

sifier would disregard them as uninformative. For example, imagine there’s an article-

segment about Detroit, and only the fifth sentence mentions “and unemployment is at an

all-time high”. The sentence-level classifier would only learn from this sentence, but the

article-segment-level classifier might identify other features that appear in the first four

sentences that also predict negative economic tone (e.g., ‘Detroit’, ‘Michigan’) even if a

coder would not identify them as such. We see this problem in our article-segment-level

coding when dates show up as predictive features. Note, however, this only happens

if these irrelevant features are correlated with relevant features. Further, the higher the

proportion of irrelevant sentences, the more noise is added to the article-segment feature

matrix. In Table 8 we report the average number of sentences coded as relevant and irrel-

evant given that the article-segment was unanimously coded as relevant or irrelevant by

all three coders. We find that on average slightly more sentences are coded as irrelevant

by all 3 coders (2.64) as opposed to relevant (2.33) in article-segments coded as relevant,

while article-segments coded as irrelevant averaged 3.64 irrelevant sentences and 1.35

relevant sentences.

Table 8: Article-Segment by Sentence Relevance (3/3) Cut-Off

Average # of Average # of
Relevant Sentences Irrelevant Sentences

Relevant Article-Segments 2.33 2.64
Irrelevant Article-Segments 1.35 3.64
Note: This coding rule results in 812 relevant article-segments and 1,151 irrelevant article-segments. Cell

entries represent the average number of sentences all 3 coders identified as relevant or irrelevant in article-
segments coded as relevant or irrelevant.

15



Table 9: Article-Segment by Sentence Relevance (2/3) Cut-Off

Average # of Average # of
Relevant Sentences Irrelevant Sentences

Relevant Article-Segments 3.68 1.30
Irrelevant Article-Segments 2.22 2.76
Note: This coding rule results in 1,456 relevant article-segments and 507 irrelevant article-segments. Cell

entries represent the average number of sentences at least 2 of 3 coders identified as relevant or irrelevant
in article-segments coded by at least 2 of 3 coders as relevant or irrelevant.
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As a final diagnostic, we calculated the density of the sentence and article-segment

feature matrixes used to classify the text. One possibility is that removing the large num-

ber of sentences coded as irrelevant or neutral will reduce the relative sparsity (increase

the density) of the sentence feature matrix enough to lessen this threat to efficiency rela-

tive to the article-segment feature matrix. Table 10 shows the density (inverse of sparsity)

of the article-segment and sentence feature matrixes in the full training dataset (includ-

ing irrelevant objects) and in the data used to train the classifier, after having removed

the irrelevant objects. As can be seen, dropping irrelevant objects reduces the sparsity

of both feature matrixes – and does so more for the sentence feature matrix – but rel-

ative to the sentence feature matrix, the article-segment feature matrix is still nearly 3

times more dense. Similarly, the variance of the sentence feature matrix used to train the

classifier is considerably smaller (0.0037) than that of the article-segment feature matrix

(0.0221). Thus while removing irrelevant objects reduces sparsity, even with a relatively

large number of irrelevant sentences, any gains in specificity of coding at the sentence

level may still be swamped by the lack of variance in features across sentences.4

Table 10: Feature Set Size and Density (CF)

Density1 Features Observations2 Variance3

Full4 0.69% 33,640 1,963 0.0139
Article-Segment Classifier 1.07% 20,563 1,181 0.0221

% ∆ 55.69% −38.87%

Full 0.16% 34,236 9,774 0.0021
Sentence Classifier 0.29% 18,503 5,062 0.0037

% ∆ 78.95% −45.95%
Note: Values of the cell contents are calculated by taking a single random sample from each article-segment (sentence): i.e.,

ignoring multiple codings.
1 Feature density is defined as the inverse of sparsity: density= |Xm,n 6=0|

m×n
2 Number of observations (rows) in the feature matrix after removing irrelevant objects. The original article-segment fea-
ture matrix contained 2,000 objects while the original sentence feature matrix contained 10,000 objects (2,000 times 5).
3 The variance refers to the variance in the sentence and article-segment feature matrixes used to train the classifier.
4 The full dataset refers to the set of objects coded, including irrelevant and neutral codings while the classifier dataset
excludes all objects coded as irrelevant or neutral. The classifier dataset is used to train the classifier.

4We do end up with more sentences than article-segments, thus even if sentences have smaller variances
than article-segments the additional number of sentences could compensate, but the ratio is high enough
here to suggest that article-segments have the advantage.
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6 Choosing Between Types of Coders: Low Quality and Low Cost vs.

High Quality and High Cost

Who should the analyst have code the data in the training dataset? There are many pos-

sible sources of coders, including the analysts themselves. But for large tasks, we can

imagine an analyst considering either hiring undergraduate or graduate students or out-

sourcing the task to a broader labor pool such as those contracted by CrowdFlower or

Amazon’s MTurk. The main advantage of using students is that they can be carefully

trained as a group. This training likely produces higher quality coding than that of un-

trained crowd coders by (a) instructing coders to evaluate texts based on the agreed-upon

codebook (thus minimizing any effect of individual bias), thereby (b) yielding higher

inter-coder reliability, and (c) yielding codings that are more precise (i.e., codings with

less variance per object coded)—a point that will be crucial in our discussion below. The

main advantage of using crowd coders, however, is that because the labor pool is so large,

crowd coders can code the same number of documents much more quickly and, typically,

at a much lower cost. Cost and time being equal, we prefer to use high-quality coders.

However, even low-quality coders can provide useful information if we aggregate the re-

sponses in order to take advantage of the ‘wisdom of the crowds’ (Benoit et al. 2016). The

quality of coders also informs how many total codings (i.e., instances of an object being

coded) are needed; the higher the quality of coders, the fewer total codings are needed.

How are we to gauge coder quality? Normally analysts evaluate inter-coder reliabil-

ity, or agreement, among coders. Such measures are useful for evaluating a coding scheme

but less so for evaluating coder quality because high agreement between coders may in-

dicate consistent miscoding.5 It is important to verify the validity of a coding scheme,

5See Grimmer, King and Superti for a discussion of the problem of inter-coder reliability, and a novel
solution to account for human coder uncertainty, thus reducing bias in the coding estimates (2015). We do
not apply their method here, since our aim is to test and report to the reader the relative benefits of making
different decisions of which coders to choose. But once the analyst has made a decision, we suggest also
using Grimmer et al.’s method for minimizing biased coder estimates.
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namely by minimizing coder disagreement, and thus analysts should report inter-coder

reliability statistics. But once inter-coder reliability is established, we wish to minimize

measurement error in the training dataset. Given a fixed budget, this could be accom-

plished either by having high-quality coders coding fewer documents or by having low-

quality coders coding more documents. In order to assess this tradeoff, we first propose a

measure of coder quality—average object-specific coding variance (AOCV )—that reflects

the amount of measurement error in the mean estimate of tone across coders. We then

show how analysts can use this AOCV measure, along with the relative cost of two coder

pools, to decide which coder pool to use.

We motivate our analysis of coder-choice by considering multiple coders coding a

single object. We begin by assuming that each coder produces an unbiased estimate of

the object to be coded.6.,7

Given this assumption of unbiased estimates, any given coding by coder j ∈ J

about some object i ∈ I will be the truth (θi) plus some error (εij). We can then define

the ‘quality’ of a coder j in terms of the average amount of error or the variance in their

codings, σ2
j . Because we have assumed unbiasedness, this variance is the variance about

the true tone of the object. Since some objects will be more ambiguous and thus harder

to code, they will differ in the amount of error they generate. We can thus refine our

6We note that this is an assumption of convenience here, not necessity. In comparing coder pools, we
would want to minimize mean squared error about the truth. But to simplify things here, we assume the
coders are unbiased, and thus compare variance across the groups. Of course, we recognize that all human
beings are biased. Compared to the general population, for example, undergraduates tend to be more
liberal and from higher socioeconomic families (Krupnikov & Levine 2014), whereas crowd coders tend to
be more liberal and of lower socioeconomic status (Levay, Freese & Druckman 2016). Both characteristics
could result in biased codings. Thus, analysts should take measures to minimize individual-level bias, such
as pilot testing coding instructions and redacting metadata from documents. Most importantly, in order to
satisfy the assumption of unbiased estimates, the analyst should assess the degree to which each individual
coder is able to conform to the ground truth as established by a ‘gold standard’ subset of coded texts,
usually coded by the analysts themselves, that adheres to the measurement intentions of the codebook.
In order to minimize bias, coders who do not demonstrate inter-coder reliability with this gold standard
sample of text should be excluded. In the analyses we present below, we performed exactly this culling
exercise with both the undergraduate and crowd coders.

7If we have a coding scheme that is binary, then talking about the variance of coding and maintaining our
unbiasedness assumption would be less tenable. With ordinal schemes this assumption seems reasonable.
Below we consider two different coding schemes: a 5-point and 9-point scale.
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description to say that coder j has some variance in their coding about each object i, σ2
j,i,

and for two different objects, k and l: σ2
j,k 6= σ2

j,l, ∀ k, l. If we assume the errors coders

make are independent, then it follows immediately that the variance in our estimate of

the truth of a single object drops as we add additional coders for that object.

For simplicity’s sake, we assume there are two types of coders: CrowdFlower (CF)

coders and undergraduate (UG) coders. We also assume that each CF coder has variance

σ2
cf,i and each UG coder has variance σ2

ug,i for object i. In other words, we assume that all

CF coders are of identical quality to one another and all UG coders are of identical quality

to one another. Under these assumptions, given the relative cost per coding in each coder

pool and the analyst’s overall budget constraints, we can select the combination of the

type and number of coders most likely to produce a training dataset that minimizes the

error for the mean coding of an object (Y ). Say that, over all of our objects to be coded,

the average variance of CF coders is σ2
cf , and the average variance of UG coders is σ2

ug.8

Assume that σ2
cf is higher than σ2

ug. If we measure the tone of an object i as the mean

coding of that object, the choice between UG coders and CF coders is based on the relative

variance of the mean coding of the object i by each group. If we have J1 UG coders, and

J2 CF coders, then the variance of the mean coding over all objects—that is, the average

object-specific coder variance (AOCV )—will be σ2
ug/J1 for UG coders and σ2

cf/J2 for CF

coders. This is the relevant comparison of coder quality, where higher quality coders have

smaller variance. We care not about the error from a single coder (Yi − Ŷi,j). Rather, we

care about the error from the mean coding of an object: (Yi − ¯̂
Yi).

Given a fixed budget constraint, we need to account both for quality and for cost in

our comparison. Say that each UG coding costs z times as much as each CF coding. Then

if we have a fixed budget constraint, implying that J2 = z × J1, the relevant comparison

is between AOCVug = σ2
ug/J1, and between a new cost-adjusted calculation for the crowd

8Note that each object has its own variance, so we can estimate the variance for our coders for each object
σ2
cf,i and σ2

ug,i and then average each of those object-specific variances over all objects in our sample to get
σ̄2
cf and σ̄2

ug . To keep the notation manageable we use σ2
cf and σ2

ug to represent these averages over objects.
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coders, AOCVcf = σ2
cf/(z×J1). If each group of coders would be coding exactly the same

set of objects, and if we are simply choosing based on cost, we pick CF coders if:
σ2
cf

σ2
ug

< z.

In other words, we should choose the CF coders over UG coders if the ratio of the

variance of coding of CF coders to the variance of coding of UG coders is less than the ratio

of the cost of the two types of coders. In that case the higher number of less precise CF

codings will lead to a more precise estimate than the smaller number of more precise UG

codings. Thus, this choice is easy to make given estimates on the two variance parameters,

obtained from a sample of objects coded by multiple coders from each coding pool. As

we describe below, knowing the variance of the coders is crucial to another (joint) the

number of objects to code and how many coders to use.

Below we assess the quality of UG coders vis-à-vis CF coders (at least those of each

type we used for our data) by applying our AOCV measure to a subset of sentences

coded by each group and a broader set of sentence codings within each group. We believe

trained UG coders will have lower variance than crowd workers. To test this expectation,

we calculate the AOCV and compare it to a traditional measure of coder quality (average

pairwise inter-coder agreement, APIA).

For this analysis, between one and ten undergraduates were asked to code 4,195

unique sentences (Dataset 3SU in Appendix Table 1). Of these, two or more coders coded

1,051 as relevant. A subset of these sentences (3,885) was also coded by 3-6 CrowdFlower

workers (Dataset 4SC). At least two coders coded 1,788 of these sentences as relevant. A

total of 420 sentences were coded as relevant by at least two coders in each coder pool

(Datasets 2SU and 2SC). For each coder pool we compute the variance of the codings for

each sentence and then average the object-specific variance. This takes into account the

varying number of coders per sentence.9

9Sentences were coded by each group using a 5-category scheme. Codings were recoded to -1 (negative),
0 (mixed, neutral, not sure), and +1 (positive) before computing the variance. This analysis was carried out
before we standardized on a 9-point ordinal scale.
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Table 11 reports both measures. As expected, UG codings exhibit lower AOCV and

higher average (APIA) than do CF codings. In the set of sentences coded by both groups,

AOCVcf was 0.53 while AOCVug was almost half that (0.28). (See Column 1, Rows 3 and

4.) In the population of sentences coded by each group,AOCVcf was similarly larger (0.57)

thanAOCVug (0.31). (See Column 1, Rows 1 and 2.) The APIA is also higher for UG coders

than for CF coders (Column 2). For the overlapping sample of sentences, APIA for UG

coders is 0.84 while for CF workers it is 0.70. The comparisons are similar for the full set

of sentences coded by each group (0.83 for UG and 0.72 for CF).

Table 11: Comparison of Inter-coder Reliability of Sentences Coded by Undergraduate
Students and by Crowd Workers

Coders Variance APIA Sentences Codings
Undergraduate Students (all) 0.31 0.83 1051 3254
Crowd workers (all) 0.57 0.72 1788 4227
Undergraduate Students (overlap) 0.28 0.84 420 1032
Crowd workers (overlap) 0.53 0.70 420 1226

Note: Variance is average variance of codings within sentences, APIA is the aver-
age pairwise inter-coder agreement, sentences indicates the total number of unique
sentences coded, and codings indicates the number of relevant codings. Sentences
coded as not relevant are excluded from the analysis. The first two rows corre-
spond to all the sentences coded by undergraduate and crowd coders, respectively,
Datasets 3SU and 4SC. The second two rows correspond to the subset of sentences
coded by both students and crowd coders, Datasets 2SU and 2SC.

With this information in hand and still assuming coders are unbiased, we can de-

termine the number of CF coders (J∗) needed to get an AOCV similar to the codings of

the J1 UG coders for a fixed number of objects coded by all J1 UG coders. We can ap-

proximate J∗ as AOCVcf/AOCVug = 0.57
0.31

= 1.84, which implies we need nearly twice as

many CF coders per sentence as UG coders to get the same variance. Given an estimate of

the relative cost of coding for each type of coder, the analyst can determine the most cost

effective way to proceed. In our example, if the relative cost of CF coders is about half (or

less) that of UG coders, the analyst would choose the CF coders. However, choosing CF
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coders does not imply that we should have multiple CF coders code each object, as we

explain in the next section. It simply implies that we get more coding effectiveness per

dollar spent using CF coders than UG coders.

Ultimately budgets—time and money—constrain coding decisions. We recommend

the analyst have each potential coding pool code a small set of objects (ideally by the same

number of coders) and then compare the ratio of the AOCV in each group with the ratio

of the per-coder cost in each group. If the AOCV ratio is greater than the cost ratio, the

analyst should use larger numbers of the lower quality coders. This calculation does not

tell us how many coders to use nor give us any purchase on the number of objects to code

in the creation of the training dataset. We turn to these questions next.

Choosing Between Types of Coders: Low Cost/Quality vs. High Cost/Quality

Advantages:
Low Cost/Quality Coders: Less expensive, faster completion.
High Cost/Quality Coders: More precise codings (i.e., lower average object-specific coding
variance, or AOCV).

Findings: By calculating the ratio of AOCV between the lower cost/quality (Crowd-
Flower) coders and the higher cost/quality (undergraduate) coders, we found that if
the cost of hiring lower cost/quality coders was less than half as much as hiring higher
cost/quality coders, then given a fixed budget we should use the lower cost/quality
coders.

Advice: Collect a sample of codes from each coding pool and compute the AOCV for
each. If the ratio of the AOCV of lower cost/quality coders to higher cost/quality coders
is LESS than the ratio of the cost of lower cost/quality in the two groups, then use the
lower cost/quality coders.

7 Allocating Total Codings: More Documents vs More Coders

The analysis in section 3.2 of the paper can also be used to demonstrate the accuracy for

different combinations of number of coders and number of documents. Using the same
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approach described in the paper, we(1) generate 20,000 documents that have a true value

between 0 and 1 based an underlying linear model using 50 independent variables, (2)

convert each to a probability with a logit link function, (3) simulate unbiased coders with

AOCV = 0.81 to produce a continuous coding of a subset of documents and (4), we con-

vert each continuous coding to a binary (0/1) classification. Using these codings we esti-

mate an L2 logit where we vary the number of unique documents in the training dataset

from n = 60 to n = 600 by increments of 60, and the number of coders per document

from j = 1 to j = 10. For each combination of parameters we drew 15,000 samples of

generated data, estimated the model on the training dataset, and then used the estimated

parameters to compute accuracy on the test dataset.

In Figure 3 we show the accuracy measured as the percent correctly predicted for

different combinations of number of coders and number of documents. The results con-

firm (a) coding more unique documents, n, improves predictive accuracy for any number

of coders, j,: PCPn∗j < PCP(n+r)∗j ∀ r > 0 and (b) for any given number of unique ob-

jects coded, n, additional coders improves predictive accuracy, although the benefits are

smaller than those gained by adding objects.
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Figure 3: Heat Map of Accuracy by Number of Coders and Number of Documents
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8 Dictionaries vs SML: Accuracy and Precision in UG Truth

Table 12 below presents the top predictive n-grams for the classifier used in the analysis

in the paper. Prima facia inspection indicates we are capturing tone when we apply our

classifier to this dataset. The top predictive negative n-grams (stemmed) include “declin”,

“recess”, “cost”, “unemploy”, “slump”, “deficit”, “plung”, “fear”, “loss”, and “layoff”,

words closely associated with a poor economy. Similarly the list of top predictive positive

n-grams begins with words we associate with a strong or improving economy: “gain”,

“strong”, “rise”, “growth”,“advanc”, “recoveri”. The lists also include less obvious n-

grams, namely “washington”, “american”, “school”, “day” (negative n-grams) and “new

york”, “januari”, and “person” (positive n-grams). But if these words frequently co-occur

in articles with other highly predictive n-grams, these too will contribute to accurate pre-

dictions of article tone.

Table 12: Top Predictive N-grams in Classifier
Negative n-grams
declin, recess, cost, unemploy, their, slump, off, offic, fell, down,
deficit, loss, drop, plung, washington, american, school, day,
problem, hous, fear, presid, chief, case, anoth, system, adjust,
much, peopl, friday, worst, lend, layoff, part, the most, limit, our,
need, be, health

Positive n-grams
gain, strong, rise, growth, advanc, recoveri, year, januari, per-
son, sale, earlier, rose, meet, incom, better, save, the fed, expect
the, continu, into, improv, gold, manufactur, current, optim, also,
activ, new york, increas, while, set, spend, three, york, market,
good, two, survey, progress, payrol

Note: Analysis is based on Dataset 5AC, Appendix Table 1. These lists include the
n-grams associated with the highest and lowest coefficients, as estimated by our
machine learning classifier.

We also assessed accuracy (the percent correctly classified) and precision (the per-

cent of positive articles classified as positive) of each of our classifiers with respect to UG
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Truth. The results are presented in Figure 4. The left panel presents the accuracy of the

classifiers while the right panel presents their relative precision as in the body of the text.

We again include a dotted line in each panel of the figure to represent the percentage of

articles in the modal category. These findings parallel those with respect to CF Truth.

Specifically, our baseline SML classifier correctly predicted coding by undergraduates in

74.0% of the articles they coded. In comparison, SentiStrength correctly predicted 71.2%,

Lexicoder 64.8% and the Hopkins 21-Word Method 58.0% of the articles in UG Truth. With

respect to precision, which is the more difficult task here as positive articles are the rare

category, the SML classifier even more starkly outperforms the dictionaries. The baseline

SML model correctly predicts positive articles 66.7% of the time while SentiStrength does

so 50.0% of the time and Lexicoder and Hopkins 21-Word Method do so 37.9% and 16.3%

of the time, respectively. In sum, all dictionaries are both less accurate and less likely to

identify an article as positive when it was coded as such by humans than our baseline

SML model.

9 Convergent Validity

Yet another way analysts evaluate the face validity of classifiers is via convergent valid-

ity. The ‘convergent validity’ approach estimates the extent to which two measures that

should, in theory, be related are, in fact, empirically related. We expect that media tone of

the economy is highly correlated with both real world economic conditions and subjec-

tive evaluations of the economy. Thus if our classifiers are producing accurate measures

of tone, those measures should also be correlated with these quantities.10

10To create monthly measures of tone, we aggregated the article level scores for both SML classifiers and
for SentiStrength and Lexicoder by summing the article level scores multiplied by the number of words
per article in a given month and dividing by the total number of words in all articles in that month. This
procedure allows longer articles to be given more weight. Monthly scores of the Hopkins et al. 21-Word
Method are generated as in Hopkins et al. (2017) by a) calculating the fraction of articles per month men-
tioning each of 21 economic terms/stems and b) summing these fractions, with positive and negative words
having opposite signs.

27



Figure 4: Performance of Machine Learning and Dictionary Methods—Accuracy and
Precision
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Note: Accuracy (percentage of articles correctly classified) and precision (percent-
age of positive articles predicted to be positive) are reported for the ground truth
dataset coded by undergraduate students (left) and by 10 CrowdFlower coders
(right). The dashed vertical lines indicate the baseline level of accuracy if the modal
category is always predicted. The corpus used in the analysis is based on the key-
word search of The New York Times 1980-2011 (see the text for details).

In Figure 5 we report the correlation of tone produced by each of the dictionary mea-

sures and our SML baseline classifier (the baseline SML classifier and the SML classifier

with directional terms are perfectly correlated) with each of: a) the unemployment rate

(negative), b) changes in the unemployment rate (negative), c) the Conference Board’s

leading economic indicator index, and d) the University of Michigan Index of Consumer

Confidence. The series generated by the article-level classifier consistently correlated

more highly with each indicator than did SentiStrength and Lexicoder. Hopkins 21-Word

Method, which was optimized to maximize these correlations, produced a series more

highly correlated with changes in the unemployment rate than any of the other classi-

fiers. In particular, tone, as measured by the baseline machine learning classifier, corre-
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lated most strongly with the ICS (0.56). Hopkins 21-Word Method generated a correla-

tion with the ICS that is almost as large (0.50), while Lexicoder and SentiStrength were

only mildly correlated with the ICS (0.10 and 0.13, respectively). The SML classifier and

Hopkins 21-Word Method produced the same correlation with the unemployment rate

(-0.49) and nearly the same correlation with the leading indicator index (0.30 and 0.32,

respectively). In contrast, Sentistrength and Lexicoder correlated at -0.17 and -0.08 with

the unemployment rate and 0.15 and 0.26, respectively, with the leading indicator index.

Finally, Hopkins-21 Word method was the most strongly related to changes in the unem-

ployment rate (-0.21) with the SML classifiers correlated at -0.11 and SentiStrength and

Lexicoder at -0.02 and -0.05, respectively. In general, the dictionary methods did not pro-

duce measures of tone that maximize convergent validity. Hopkins 21-Word Method is

an exception, but, as we noted, it was optimized to maximize these correlations.

Figure 5: Performance of Machine Learning Classifier and Dictionary Methods—
Convergent Validity
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Note: The period of analysis is 1948–2014 (unemployment), 1959–2014 (leading
indicator), 1978–2014 (index of consumer confidence). Points are jittered and cor-
relations involving unemployment or change in unemployment are multiplied by
-1 for visual clarity. The corpus used in the analysis is based on the keyword search
of The New York Times 1980-2011 (see the text for details).
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10 SML Classifier Performance as a Function of the Size of the Training

Dataset

In Section 4 of the paper we analyzed the accuracy of our baseline SML classifier as a

function of the size of the training dataset. Here we present our findings for recall (Table 6)

and precision (Table 7). Recall that we drew 10 random samples of 250 articles each from

the full training dataset. Using the same method as discussed in the text, we estimated the

parameters of our SML classifier on each of these 10 samples. We then used each of these

estimates of our classifier to predict the tone of articles in CF Truth, recording accuracy,

precision, and recall for each replication. We repeated this process for sample sizes of 250

to 8,750 by increments of 250. The x-axis gives the size of the training data set and y-axis

reports the average recall or precision in CF Truth for the given sample size. The figures

include a 95% confidence interval for all subsets of the complete training dataset.

As the size of the training dataset increases, recall–the fraction of articles identified

as positive that were positive–improves consistently from about 20% when the sample

training dataset contains 250 articles to about 50% for training datasets containing 4,000

articles. Further increases in the size of the training dataset appear to have no effect.

Precision–the fraction of items classified as positive that really are positive, however, is

quite low (about 47%) for N = 250 but jumps up and remains relatively flat between 65

and 70% for all sized training datasets 500 and greater.
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Figure 6: Recall of the Baseline Machine Learning Classifier as a Function of Size of
the Training Datasety
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Note: We drew 10 random samples of 250 articles each from the full training dataset (dataset
6AC, Table 1) of 8,750 unique codings of 4,400 unique articles (three to five crowd coders labeled
each article) in the New York Times randomly sampled from the years 1947 to 2014. Using the
same method as discussed in the text, we estimated the parameters of our SML classifier on each
of these 10 samples. We then used each of these estimates of our classifier to predict the tone of
articles in CF Truth. We repeated this process for sample sizes of 250 to 8,750 by increments of
250, recording the proportion of articles classified as positive that were coded as positive by the
crowd workers.
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Figure 7: Precision of the Baseline Machine Learning Classifier as a Function of Size of
the Training Dataset
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Note: We drew 10 random samples of 250 articles each from the full training dataset (dataset
6AC, Table 1) of 8,750 unique codings of 4,400 unique articles (three to five crowd coders labeled
each article) in the New York Times randomly sampled from the years 1947 to 2014. Using the
same method as discussed in the text, we estimated the parameters of our SML classifier on each
of these 10 samples. We then used each of these estimates of our classifier to predict the tone of
articles in CF Truth. We repeated this process for sample sizes of 250 to 8,750 by increments of
250, recording the proportion of articles classified as positive that were coded as positive by the
crowd workers.
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