
Supplement: Generalized full matching

Fredrik Sävje1, Michael J. Higgins2, and Jasjeet S. Sekhon3

1Department of Political Science & Department of Statistics and Data Science, Yale University.
2Department of Statistics, Kansas State University.
3Travers Department of Political Science and Department of Statistics, UC Berkeley.

S1 Brief overview of graph theory

Graph A graph G = (V, E) consists of a set of indices V = {a, b, · · · }, called vertices, and a set of 2-element
subsets of V, called edges. If an edge {i , j } ∈ E, we say that i and j are connected in the graph. In a directed
graph (or digraph), the edges (which are called arcs in a digraph) are ordered sets (i , j ). In other words, i
can be connected to j without the reverse being true in a digraph.

Weighted graph A weighted graph assigns a weight or cost to each edge or arc. In our case, the weights are
exclusively given by the distance of the connected vertices according to the metric used in the matching
problem.

Adjacent Vertices i and j are adjacent inG if an edge (or an arc) connecting i and j exists in E.

Geodesic distance The geodesic distance between i and j inG is the number of edges or arcs (in our case, of
any directionality) in the shortest path connecting i and j inG .

Subgraph G1 = (V1, E1) is a subgraph ofG2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. In that case, we also say thatG2

is a supergraph ofG1. G1 is a spanning subgraph ofG2 if V1 = V2.

Complete graph G is complete if {i , j } ∈ E for any two vertices i , j ∈ V. If G is directed, both (i , j ) and (j , i )
must be in E.

Union The union ofG1 = (V1, E1) andG2 = (V2, E2) isG1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Graph di�erence The di�erence between two graphsG1 = (V, E1) andG2 = (V, E2) spanning the same set of
vertices isG1 −G2 = (V, E1 \ E2).

Independent set A set of vertices I ⊆ V is independent inG = (V, E) if no two vertices in the set are adjacent:

[ i , j ∈ I, {i , j } < E.

Maximal independent set An independent set of vertices I inG = (V, E)is maximal if for any additional vertex
i ∈ V the set {i } ∪ I is not independent:

[ i ∈ V \ I, \ j ∈ I, {i , j } ∈ E.

Cluster graph The (directed) cluster graph induced by some partition of V is the graph where arcs exists between
any pair of units in the same component of the partition and no other arcs exist.

Adjancency matrix The adjacency matrix A of a graphG = (V, E) with n vertices is a n-by-n binary matrix where
the entry i , j is one if the edge {i , j } or arc (i , j ) is in E, and otherwise zero.
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S2 Proofs
We here provide proofs for the propositions in the main paper. The relevant propositions from the paper are
restated with their original numbering for reference.

S2.1 Optimality
Recall the two objective functions:

LBN (M) = max
m∈M

max{d (i , j ) : i , j ∈ m},

LWBN (M) = max
m∈M

max{d (i , j ) : i , j ∈ m ∧Wi ,Wj }.

Lemma 8. The closed neighborhood of each vertex in the C-compatible nearest neighbor digraphGC = (V, EC)
satisfies the matching constraints C = (c1, · · · , ck , t ):

[i ∈ V, [x ∈ {1, · · · , k }, | N[i ] ∩wx | ≥ cx and [i ∈ V, | N[i ] | ≥ t .

Proof. This follows directly from the construction of GC . For each treatment-specific constraint, c1, · · · , ck ,
the first step of the algorithm ensures that each vertex has that many arcs pointing to units assigned to the
corresponding treatment condition. Similarly, if t > c1 + c2 + · · · + ck , the second step includes additional arcs
so that each vertex has t outward-pointing arcs in total.

Lemma S1. By the completion of Step 4 of the generalized full matching algorithm, each vertex has at least one
labeled vertex in its neighborhood inGC .

Proof. By definition, all vertices in a closed neighborhood of a seed are labeled. That is, ` is a labeled vertex if
and only if \i ∈ S, ` ∈ N[i ]. Suppose the lemma does not hold, i.e., that some vertex i does not have a labeled
vertex in its neighborhood:

\i , [` ∈ N[i ], @j ∈ S, ` ∈ N[j ] . (1)

It follows directly that i cannot be a seed as all vertices in its neighborhood would otherwise be labeled by
definition. Note that (1) entails that i ’s neighborhood does not have any overlap with any seed’s neighborhood:

[j ∈ S,N[i ] ∩ N[j ] = ∅,

However, this violates the maximality condition in the definition of a valid set of seeds (see the third step of the
algorithm) and, subsequently, a vertex such as i is not possible.

Lemma S2. MALG is an admissible generalized full matching with respect to constraint C = (c1, · · · , ck , t ):

MALG ∈ MC .

Proof. We must show that MALG satisfies the four conditions of an admissible generalized full matching in Definition
2. Step 5 of the algorithm ensures that MALG is spanning. At this step, any vertex that lacks a label will be assigned
the same label as one of the labeled vertices in its neighborhood. Lemma S1 ensures that at least one labeled
vertex exists in the neighborhoods of the unassigned vertices.

No vertex is assigned more than one label; that is, MALG is disjoint. To see this, observe that vertices are only
assigned labels in either Step 4 or 5, but never in both. Step 3 ensures that the neighborhoods of the seeds are
non-overlapping. Thus vertices will be assigned at most one label in Step 4. In Step 5, vertices are explicitly
assigned only one label even if several labels could be represented in a vertex’s neighborhood.

The remaining two conditions in Definition 2 are ensured by Lemma 8. Step 4 of the algorithm ensures that
each matched group is a superset of a seed’s neighborhood. From Lemma 8, we have that this neighborhood will
satisfy the matching constraints.
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Lemma S3. If the arc weights in the C-compatible nearest neighbor digraphGC = (V, EC) are bounded by some
λ, the maximum within-group distance in MALG is bounded by 4λ:

[(i , j ) ∈ EC, d (i , j ) ≤ λ =⇒ max
m∈MALG

max{d (i , j ) : i , j ∈ m} ≤ 4λ.

Proof. First, consider the distance from any vertex i to the seed in its matched group, denoted j . If i is a seed,
we have i = j , as each matched group contains exactly one seed by construction. By the self-similarity property
of distance metrics, the distance is zero: d (i , j ) = 0. If i is a labeled vertex (i.e., assigned a label in Step 4 of
the algorithm), we have (j , i ) ∈ EC by definition of labeled vertices. By the premise of the lemma, d (j , i ) is
bounded by λ. Due to the symmetry property of distance metrics, this also bounds d (i , j ). If i is not a labeled
vertex (i.e., assigned a label in Step 5), Lemma S1 tells us that it will be adjacent inGC to a labeled vertex ` in its
matched group. We have (i , `) ∈ EC so the distance between i and ` is bounded by λ. As ` is labeled, we have
(j , `) ∈ EC which implies that d (j , `) ≤ λ. From the triangle inequality property of metrics, we have that the
distance between unit i and the seed j is at most 2λ.

Now consider any two vertices assigned to the same matched group. We have shown that the distance from
each of these vertices to their (common) seed is at most 2λ. By applying the triangle inequality once more, we
bound the distance between the two non-seed vertices by 4λ.

Lemma S4. The C-compatible nearest neighbor digraph has the smallest maximum arc weight among all di-
graphs compatible with C, i.e., all graphs for which each vertex’s closed neighborhood contains c1, c2, · · · , ck ver-
tices of each treatment condition and t vertices in total.

Proof. The definition of the directed neighborhoods is asymmetric in the sense that j is not necessarily in i ’s
neighborhood even if i is in j ’s neighborhood. Thus, whether a vertex’s neighborhood satisfies the constraints is
independent of whether other vertices’ neighborhoods do so. As a consequence, to minimize the maximum arc
weight, we can simply minimize the maximum arc weight in each neighborhood separately. To minimize the arc
weights in a single neighborhood, we draw arcs to the vertices closest to the vertex so that the matching constraints
are fulfilled. This is exactly how the algorithm constructs the C-compatible nearest neighbor digraph.

Lemma 9. The distance between any two vertices connected by an arc in the C-compatible nearest neighbor
digraphGC = (V, EC) is less or equal to the maximum within-group distance in an optimal matching:

[(i , j ) ∈ EC, d (i , j ) ≤ min
M∈MC

LBN (M).

Proof. Letw ∗ be the maximum within-group distance in an optimal matching and letw+
C be the maximum weight

of an arc inGC :
w ∗ = min

M∈MC
LBN (M) and w+

C = max{d (i , j ) : (i , j ) ∈ EC}.

Furthermore, let BC = (U, EbC) be the digraph that contains arcs between all units at a distance strictly closer
thanw+

C :
EbC = {(i , j ) : d (i , j ) < w+

C}.

BC must contain a vertex whose neighborhood does not satisfy the size constraints. If no such vertex exists,
a digraph compatible with C with a smaller maximum arc weight than inGC exists as a subgraph of BC . This
contradicts Lemma S4.

Let BOP = (U, EbOP) be the digraph that contains arcs between all units at a distance weakly closer thanw ∗:

EbOP = {(i , j ) : d (i , j ) ≤ w ∗}.

By construction, BOP is a supergraph of the cluster graph induced by the optimal matching. That is, arcs are drawn
in BOP between all units assigned to the same matched group in the optimal matching. As the optimal matching
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is admissible, each vertex’s neighborhood in BOP is compatible with C.
Suppose that the lemma does not hold: w+

C > w
∗. It follows that EbOP ⊂ EbC . Because at least one vertex’s

neighborhood does not satisfy the size constraint in BC , that must also be the case in BOP. This, however, implies
that the optimal matching is not admissible which, in turn, contradicts optimality.

Theorem 10. MALG is a 4-approximate generalized full matching with respect to the matching constraint C =

(c1, · · · , ck , t ) and matching objective LBN:

MALG ∈ MC and LBN (MALG) ≤ min
M∈MC

4LBN (M).

Proof. Admissibility follows from Lemma S2. Approximate optimality follows from Lemmas S3 and 9.

Lemma S5. When all treatment-specific constraints are less or equal to one and the overall size constraint is the
sum of the treatment-specific constraints, the distance between any two vertices connected by an arc in GC =

(V, EC) is less or equal to the maximum within-group distance in an optimal matching with LWBN as objective:

c1, c2, · · · , ck ≤ 1 ∧ t = ∑k
x=1 cx =⇒ [(i , j ) ∈ EC, d (i , j ) ≤ min

M∈MC
LWBN (M).

Proof. Letw+
s be the maximum weight of an arc connecting two units with the same treatment conditions inGC ,

and letw+
d the maximum arc weight between units with di�erent conditions:

w+
s = max{d (i , j ) : (i , j ) ∈ EC ∧Wi =Wj },

w+
d = max{d (i , j ) : (i , j ) ∈ EC ∧Wi ,Wj }.

Note that
max{d (i , j ) : (i , j ) ∈ EC} = max{w+

s ,w
+
d }.

First, considerw+
s . Since c1, c2, · · · , ck ≤ 1 and t =

∑k
x=1 cx , each unit will have at most one arc pointing to a

unit with the same treatment condition as its own:

[i , |{(i , j ) : (i , j ) ∈ EC ∧Wi =Wj }| = cWi ≤ 1.

From the self-similarity and non-negativity properties of distance metrics, we have:

[i , j , 0 = d (i , i ) ≤ d (i , j ).

By construction ofGC , all arcs in the set will be self-loops and, thus, at distance zero:

w+
s = max{d (i , i ) : (i , i ) ∈ EC} = 0.

From non-negativity, it follows that:

max{d (i , j ) : (i , j ) ∈ EC} = max{0,w+
d } = w

+
d .

Letw ∗ be the maximum within-group distance between units assigned to di�erent treatment conditions when
LWBN is used as objective:

w ∗ = min
M∈MC

LWBN (M).

Let Bd = (U, Eb
d
) be the digraph that contains all arcs between units that either are strictly closer thanw+

d or have
the same treatment condition:

Ebd = {(i , j ) : d (i , j ) < w+
d ∨Wi =Wj }.
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Following the same logic as in the proof of Lemma 9, Bd must contain a vertex whose neighborhood is not
compatible with C.

Let BOP = (U, EbOP) be the digraph that contains all arcs between units that either are weakly closer thanw ∗ or
have the same treatment condition:

EbOP = {(i , j ) : d (i , j ) ≤ w ∗ ∨Wi =Wj }.

By construction, BOP is a supergraph of the cluster graph induced by the optimal matching. That is, arcs are drawn
in BOP between all units assigned to the same matched group in the optimal matching. As the optimal matching
is admissible, each vertex’s neighborhood in BOP is compatible with C.

Assumew+
d > w

∗. It follows that EbOP ⊂ Eb
d

. As at least one vertex’s neighborhood does not satisfy the size
constraint in Bd , that must be the case in BOP. This, however, implies that the optimal matching is not admissible
which, in turn, contradicts optimality. We conclude thatw+

d ≤ w
∗.

Theorem 11. MALG is a 4-approximate conventional full matching with respect to the matching constraint C =

(1, · · · , 1, k ) and matching objective LWBN:

MALG ∈ MC and LWBN (MALG) ≤ min
M∈MC

4LWBN (M).

Proof. Admissibility follows from Lemma S2. Note that all distances considered by LWBN are considered by LBN as
well. As a result, the latter acts as a bound for the former:

[M ∈ MC, LWBN (M) ≤ LBN (M).

Approximate optimality follows from Lemma S3 and S5:

LWBN (MALG) ≤ LBN (MALG) ≤ 4 min
M∈MC

LWBN (M).

S2.2 Complexity

Lemma S6. AC-compatible nearest neighbor digraph can be constructed in polynomial time using linear memory.

Proof. In the first step of the algorithm, we constructGw as the union of NN(cx ,G (U→ wx )) for each treatment
condition x . The operands of this union can be constructed using nearest neighbor searches for each treatment
condition. With a naive implementation, such searches can be done sequentially for each i ∈ U by sorting the
set {d (i , j ) : j ∈ wx } and drawing an arc from i to the first cx elements in the sorted set. When using standard
sorting algorithms, this has a time complexity ofO (n |wx | log |wx |) and a space complexity ofO (cxn) (Knuth
1998). Note that |wx | ≤ n for all treatments, so the search requiresO (n2 log n) time. The union operation can be
performed in linear time in the total number of arcs,O [(c1 + c2 + · · · + ck )n]. As each NN(cx ,G (U→ wx )) can
be derived sequentially and the size constraints are fixed, theGw digraph can be constructed inO (n2 log n) time.

In the second step, Gr can be constructed in a similar fashion. For each i ∈ U, sort the set {d (i , j ) : j ∈
U ∧ (i , j ) < Ew } and draw an arc from i to the first r = t − c1 − · · · − ck elements in that set. Like above, this has a
complexity ofO (n2 log n). Finally, the union betweenGw andGr can be constructed in linear time in the total
number of arcs. As the number of arcs per vertex is fixed at t , the union is completed inO (n) time. The steps are
sequential so the total complexity of both Step 1 and 2 isO (n2 log n).

Remark S7. For most common metrics, standard sorting algorithms are ine�icient. Storing the data points in a
structure made for the purpose, such as a kd- or bd-tree, typically leads to large improvements (Friedman, Bentley,
and Finkel 1977). Each NN(cx ,G (U→ wx )) can then be constructed inO (n log n) average time, without changing
the memory complexity. However, this approach typically requires a preprocessing step to build the search tree. In
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the proof of Lemma S6, the search set is unique for each vertex whenGr is constructed. We can, therefore, not use
these specialized algorithms if we constructGr in the way suggested there. However, the construction can easily
be transformed into a problem with a fixed search set. Note that:

NN(r ,G (U→ U) −Gw ) = NN(r ,NN(t ,G (U→ U)) −Gw ).

That is, finding the r nearest neighbors not already connected inGw is the same as finding the r nearest neighbors
not already connected in Gw among the t nearest neighbors in the complete graph. The first nearest neighbor
search, NN(t ,G (U → U)), has a fixed search set and can thus be completed in O (n log n). The second nearest
neighbor search involves sorting at most t elements for each vertex, which is done in constant time as t is fixed.

Theorem 12. In the worst case, the generalized full matching algorithm terminates in polynomial time using linear
memory.

Proof. The algorithm runs sequentially. The first and second steps can be completed inO (n2 log n) worst-case
time as shown in Lemma S6, or, in many cases, inO (n log n) average time as discussed in Remark S7.

Steps 3 and 4 can be done by sequentially labeling seeds and their neighbors as they are selected. Any vertex
whose neighborhood does not contain any labeled vertices can be a valid seed, and any vertex that is adjacent to
labeled vertices can never become a seed. Thus, traversing the vertices in any order and greedily selecting units
as seed will yield a valid set of seeds. As the size of each seed’s neighborhood is fixed at t , this step is completed
inO (n) time.

Finally, assigning labels to unlabeled vertices in the last step can be done by traversing over their neighbor-
hoods. Thus, Step 5 also requiresO (n) time to complete.

S3 Additional simulation results
The following tables present additional results from the simulation study. Sections S3.1 and S3.2 provide results
about aggregated distances for the algorithms and the structure of the matched groups they produce. Section S3.3
gives complete results for the measures presented in the paper. These tables also include the results for 1:2-
matching without replacement.

S3.1 Distances
We investigate five di�erent functions aggregating within-group distances:

LBN (M) = max
m∈M

max{d (i , j ) : i , j ∈ m},

LWBN (M) = max
m∈M

max{d (i , j ) : i , j ∈ m ∧Wi ,Wj },

LMEAN (M) =
∑

m∈M

|w1 ∩m|
|w1 |

mean{d (i , j ) : i , j ∈ m ∧ i , j },

LWMEAN (M) =
∑

m∈M

|w1 ∩m|
|w1 |

mean{d (i , j ) : i , j ∈ m ∧Wi ,Wj },

LWSUM (M) =
∑

m∈M

∑
{d (i , j ) : i , j ∈ m ∧Wi ,Wj }.

LBN is the maximum within-group distance between any two units, and LWBN is the maximum distance between
treated and control units. They are the objectives discussed in Section 4.1 in the main paper and are the ones
used by the quickmatch package. LWMEAN is the average within-group distance between treated and control units
weighted by the number treated units in the groups. It is the objective function discussed by Rosenbaum (1991)
when he introduced full matching. As Rosenbaum notes, this objective is neutral in the sense that the size of the
matched groups matters only insofar as it a�ects the within-group distances. To contrast with LBN, we include
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LMEAN, which is a version of the mean distance objective that also considers within-group distances between units
assigned to the same treatment condition.

Finally, LWSUM is the sum of within-group distances between treated and control units. With the terminology
of Rosenbaum (1991), this function favors small subclasses and is, thus, not neutral. As a consequence, if we
were to use LWSUM as our objective, we would accept matchings with worse balance if the matched groups were
su�iciently smaller. When the matching structure is fixed (as with 1:1- and 1:k-matching without replacement),
LWSUM is proportional to LWMEAN and, thus, identical for practical purposes. Both the optmatch and Matching
packages use the sum as their objective.

Table S1 presents the distance measures for the di�erent methods. As distances have no natural scale, we
normalize the results by the results of conventional full matching in smaller sample. We see that 1:1-matching
with replacement greatly outperforms the other methods, especially on LWSUM which is the objective function it
uses. The implementations of both conventional and generalized full matching perform largely the same, with a
slight advantage to optmatch on the LWSUM measure. All versions of matching without replacement performs
considerably worse than the other methods, in particular on the measures they do not use as their objective. The
optimal implementations produce shorter distances than the greedy versions, but the di�erences are small.

Comparisons in aggregated distances between methods that impose di�erent matching constraints can be
awkward because the methods solve di�erent types of matching problems. For example, 1:2-matching will
necessarily lead to larger distances than 1:1-matching, but the former can be preferable if, for example, we are
interested in ATT and control units vastly outnumbers treated units. Comparisons between methods using the
same matching constraints should, however, be informative.

Table S1. Aggregated distances for matching methods with samples of 1,000 and 10,000 units.

1,000 units 10,000 units
LBN LWBN LMEAN LWMEAN LWSUM LBN LWBN LMEAN LWMEAN LWSUM

Greedy 1:1 1.87 2.67 1.41 1.50 0.43 2.20 3.14 0.89 0.95 2.69
Optimal 1:1 1.29 1.85 1.20 1.27 0.36 1.87 2.68 0.80 0.85 2.41
Replacement 1:1 0.45 0.51 0.65 0.66 0.19 0.19 0.20 0.20 0.21 0.59
Greedy 1:2 3.66 5.23 3.21 4.31 2.46 3.99 5.71 2.51 3.69 20.97
Optimal 1:2 3.27 4.68 3.17 3.79 2.17 3.93 5.62 2.96 3.50 19.87
Full matching 1.00 1.00 1.00 1.00 1.00 0.39 0.38 0.31 0.31 3.10
GFM 1.00 1.00 0.99 0.98 1.05 0.39 0.38 0.31 0.30 3.25
Refined GFM 0.95 1.25 0.98 1.10 1.19 0.37 0.49 0.31 0.34 3.70
Notes: The measures are normalized by the result for conventional full matching in the sample with 1,000 units. Results are based on 10,000
simulation rounds. Simulation errors are negligible.

S3.2 Group structure
Table S2 presents measures of the group structure for the di�erent matching methods. The first measure is the
average size of the matched groups. 1:1- and 1:2-matching without replacement have a fixed group size of either
two or three units. The group size for matching with replacement depends on the sparseness of the control units.
Overlap is reasonably good with the current data generating process, and the average group size increases with
only 20% compared to matching without replacement. The full matching methods lead to larger groups since
they do not discard units. Given the unconditional propensity score of 26.5%, the expected minimum group
size among matchings that do not discard units is 3.77 units, which is close to what the methods produce. The
groups are slightly smaller with conventional full matching. This is likely a result of both that implementation’s
optimality and its use of a non-neutral objective function (i.e., LWSUM). In the second column, we present the
standard deviation of the group sizes. We see that the full matching methods have considerably higher variability.
This is a consequence of their ability to adapt the matching to the distribution of units in the covariate space.
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Next, we investigate the share of the sample that is discarded. For a given level of balance, we want to drop as
few units as possible. Predictably, 1:1-matching leads to that a sizable portion of the sample is le� unassigned.
This is especially the case when we match with replacement. Fewer units are discarded with 1:2-matching, and
by construction, no units are discarded with the full matching methods.

The fourth column reports the standard deviation of the weights implicitly used for the adjustment in the
estimator. Weight variation is necessary to balance an unbalanced sample. However, for a given level of balance,
we want the weights to be as uniform as possible. Since we are estimating ATT, the implied weights for treated
units are fixed at |w1 |−1 for all methods. Weights for controls do, however, vary. The implied weight for control
unit i assigned to matched group m is

wghi =
|w1 ∩m|

|w1 | × |w0 ∩m| ,

and zero if not assigned to a group.
Examining the results, we see that the amount of variation is correlated with how well the methods are able to

minimize distances. For example, 1:1-matching with replacement produces the shortest distances, but as a result,
also the most weight variation. The choice of method depends on how one resolves the trade-o� between weight
variation and balance, which, in turn, depends on how strongly the covariates are correlated with the outcome
and treatment assignment. For this reason, the best choice of matching method will di�er depending on the
data generating process. It appears, however, that all full matching methods lead to matchings with substantially
smaller distances than 1:1-matching without replacement with only slightly higher weight variation (i.e., close
to a Pareto improvement). Similarly, but less pronounced, the optmatch package dominates the quickmatch
package; the former produces about the same distances but with less weight variation.

Table S2. Group composition for matching methods with samples of 1,000 and 10,000 units.

1,000 units 10,000 units
Size σ (Size) % drop σ (wgh) Size σ (Size) % drop σ (wgh)

Greedy 1:1 2.00 0.00 46.96 1.81 2.00 0.00 47.03 1.81
Optimal 1:1 2.00 0.00 46.96 1.81 2.00 0.00 47.03 1.81
Replacement 1:1 2.41 0.86 54.70 2.85 2.41 0.87 54.73 2.85
Greedy 1:2 3.00 0.00 20.44 0.84 3.00 0.00 20.54 0.85
Optimal 1:2 3.00 0.00 20.44 0.84 3.00 0.00 20.54 0.85
Full matching 4.24 3.50 0.00 1.93 4.24 3.51 0.00 1.97
GFM 4.74 3.54 0.00 2.13 4.73 3.55 0.00 2.15
Refined GFM 4.55 3.26 0.00 2.04 4.54 3.30 0.00 2.07
Notes: The columns report the average group size, the standard deviation of the size, share of units not assigned to a group and the standard
deviation in the weights of the control units implied by the matchings. Results are based on 10,000 simulation rounds. Simulation errors are
negligible.
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S3.3 Complexity and matching quality
.

Table S3. Covariate balance for matching methods with samples of 1,000 and 10,000 units.

1,000 units 10,000 units
X1 X2 X 2

1 X 2
2 X1X2 X1 X2 X 2

1 X 2
2 X1X2

Unadjusted 52.48 52.73 10.72 10.91 13.11 52.528 52.735 10.707 10.874 12.588
Greedy 1:1 5.93 5.94 7.21 7.31 13.87 5.270 5.286 6.647 6.756 13.332
Optimal 1:1 5.94 5.95 7.08 7.19 14.09 5.260 5.279 6.594 6.704 13.396
Replacement 1:1 0.44 0.44 0.76 0.76 0.80 0.043 0.043 0.077 0.079 0.077
Greedy 1:2 26.23 26.39 15.48 15.76 35.59 25.662 25.741 15.410 15.667 36.914
Optimal 1:2 26.18 26.34 15.22 15.48 36.11 25.668 25.759 15.495 15.749 36.745
Full matching 1.00 1.00 1.00 1.00 1.00 0.105 0.105 0.106 0.108 0.096
GFM 0.74 0.75 0.77 0.77 0.80 0.074 0.075 0.075 0.077 0.073
Refined GFM 1.04 1.05 0.99 0.99 1.08 0.108 0.108 0.103 0.104 0.105
Notes: The measures are normalized by the result for conventional full matching in the sample with 1,000 units.

Table S4. Estimator performance for matching methods with samples of 1,000 and 10,000 units.

1,000 units 10,000 units
Bias SE RMSE Bias

RMSE Bias SE RMSE Bias
RMSE

Unadjusted 83.34 1.47 12.70 0.993 83.390 0.47 12.64 0.999
Greedy 1:1 4.86 1.04 1.26 0.583 4.118 0.33 0.71 0.884
Optimal 1:1 4.96 1.04 1.27 0.590 4.153 0.33 0.71 0.885
Replacement 1:1 0.11 1.17 1.16 0.015 0.024 0.38 0.37 0.010
Greedy 1:2 33.97 1.61 5.38 0.956 32.980 0.52 5.02 0.995
Optimal 1:2 34.08 1.59 5.39 0.957 32.939 0.51 5.01 0.995
Full matching 1.00 1.00 1.00 0.151 0.077 0.32 0.32 0.037
GFM 0.77 1.03 1.03 0.113 0.043 0.33 0.33 0.020
Refined GFM 1.20 1.02 1.02 0.178 0.091 0.32 0.32 0.043
Notes: The first three measures in each panel are normalized by the result for conventional full matching.
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S4 Additional extrapolation results
The following tables provide unadjusted and adjusted covariate averages for all treatment conditions in the full
population and in the subpopulation of voters in the 2004 general election.

Table S6. Covariate balance before and a�er matching adjustment in full QVF population.

Panel A: Covariate balance before matching
Control Civic Duty Hawthorne Self Neighbors Non-experiment

Birth year 1956.19 1956.34 1956.30 1956.21 1956.15 1957.96
Female (%) 49.89 50.02 49.90 49.96 50.00 53.32
Voted Aug 2000 (%) 25.19 25.36 25.04 25.11 25.12 14.65
Voted Aug 2002 (%) 38.94 38.88 39.43 39.19 38.66 22.59
Voted Aug 2004 (%) 40.03 39.94 40.32 40.25 40.67 18.71
Voted Nov 2000 (%) 84.34 84.17 84.44 84.04 84.17 52.49
Voted Nov 2002 (%) 81.09 81.11 81.30 81.15 81.13 41.93
Voted Nov 2004 (%) 100.00 100.00 100.00 100.00 100.00 67.57

Panel B: Covariate balance a�er matching
Control Civic Duty Hawthorne Self Neighbors Non-experiment

Birth year 1958.16 1958.49 1958.44 1958.57 1958.51 1957.87
Female (%) 53.29 53.28 53.28 53.29 53.28 53.15
Voted Aug 2000 (%) 15.19 15.19 15.19 15.19 15.19 15.19
Voted Aug 2002 (%) 23.42 23.42 23.42 23.42 23.42 23.43
Voted Aug 2004 (%) 19.80 19.80 19.80 19.80 19.80 19.80
Voted Nov 2000 (%) 54.11 54.14 54.13 54.13 54.13 54.11
Voted Nov 2002 (%) 43.94 43.94 43.94 43.94 43.94 43.92
Voted Nov 2004 (%) 100.00 100.00 100.00 100.00 100.00 68.76
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Table S7. Covariate balance before and a�er adjustment among voters in 2004 general election.

Panel A: Covariate balance before matching
Control Civic Duty Hawthorne Self Neighbors Non-experiment

Birth year 1956.19 1956.34 1956.30 1956.21 1956.15 1955.71
Female (%) 49.89 50.02 49.90 49.96 50.00 54.51
Voted Aug 2000 (%) 25.19 25.36 25.04 25.11 25.12 20.49
Voted Aug 2002 (%) 38.94 38.88 39.43 39.19 38.66 31.94
Voted Aug 2004 (%) 40.03 39.94 40.32 40.25 40.67 26.94
Voted Nov 2000 (%) 84.34 84.17 84.44 84.04 84.17 70.16
Voted Nov 2002 (%) 81.09 81.11 81.30 81.15 81.13 58.81
Voted Nov 2004 (%) 100.00 100.00 100.00 100.00 100.00 100.00

Panel B: Covariate balance a�er matching
Control Civic Duty Hawthorne Self Neighbors Non-experiment

Birth year 1955.90 1956.11 1956.25 1956.26 1956.20 1955.74
Female (%) 54.17 54.16 54.17 54.17 54.16 54.17
Voted Aug 2000 (%) 20.83 20.83 20.81 20.83 20.83 20.83
Voted Aug 2002 (%) 32.46 32.46 32.46 32.46 32.46 32.46
Voted Aug 2004 (%) 27.92 27.92 27.92 27.92 27.92 27.92
Voted Nov 2000 (%) 71.20 71.22 71.21 71.20 71.21 71.20
Voted Nov 2002 (%) 60.44 60.45 60.45 60.45 60.45 60.45
Voted Nov 2004 (%) 100.00 100.00 100.00 100.00 100.00 100.00
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