A Appendix

Online Supplement
Understanding, choosing, and unifying multilevel and fixed effect approaches
Chad Hazlett & Leonard Wainstein

A1 Tables with symbols and abbreviations

Table 1. Symbols

Symbol Description Relevant model(s) Location(s)
o Coefficient vector bcMLM Section 3.2
B Coefficient vector FE, Group-FE, MLM, RI, regfFE, bcMLM Section 2.1
c Scalar FE, Group-FE, MLM, RI, bcMLM Section 3.3
Appendix A.15
éeli] Random (residual) variable FE, MLM, bcMLM Section 3.3
égand é Random (residual) vector FE, MLM, bcMLM Section 3.3
Appendix A.16
€gli] Random (error) variable FE, Group-FE, MLM, RI, regfFE, bcMLM Section 2.1
€gande Random (error) vector FE, Group-FE, MLM, RI, regfFE, bcMLM Section 2.1
e;[i] Random (error) variable MLM, RI, bcMLM Section 3.3
ez, and €* Random (error) vector MLM, RI, bcMLM Section 2.4
Yg andy Coefficient vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
w? Scalar variance RI Section 2.2
Q and Qp|ock Covariance matrix MLM, bcMLM Section 2.2
A Scalar tuning parameter regFE Section 3.1
A Matrix tuning parameter regFE Section 3.1
o? Scalar variance MLM, RI, bcMLM Section 2.2
Jgand X Covariance matrix MLM, RI, bcMLM Section 2.2
Vg andV Covariance matrix MLM, RI, bcMLM Section 2.4
Appendix A.8
Appendix A.16
Xgli] Random (covariate) vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Xg and X Random (covariate) matrix FE, Group-FE, MLM, RI, regfFE, bcMLM Section 2.1
)_(g Random (covariate) vector bcMLM Section 3.2
Xg[,-] Random (covariate) vector FE, bcMLM Section 3.2
Appendix A.8
Appendix A.16
Xg and X Random (covariate) matrix FE, bcMLM Section 3.2
Appendix A.8
Appendix A.16
Yelil Random (outcome) variable FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Yy andY Random (outcome) vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Zgli] Random (covariate) vector FE, MLM, regFE, bcMLM Section 2.1
Zgand Z Random (covariate) matrix FE, MLM, regFE, bcMLM Section 2.1

Table 2. Abbreviations for model-related terms

Abbreviation Full name Location(s)
bcMLM Bias-corrected multilevel model Section 3.2
CRSE Cluster-robust standard error Section 3.3
Appendix A.14
FE Fixed effects model Section 2.2
Group-FE Group fixed effects model Section 2.2
MLM Multilevel model Section 2.2
regFE Regularized fixed effects model Section 3.1
RI Random intercepts model Section 2.2
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A2

Extensive simulation
We present here an example in which applying the lessons of Section 3 allows users to navigate a
complicated data generating process. We consider a longitudinal setting in which

Yere) = Bo+ BiX () + BoUy" + B X1 U + (W + W W) +egg (DGP3)

where [W" w?1T " N(0,21y),
x = Wg(” + ngz) +8,41¢) Where 8z, ~ N(0,1) and cor(8¢), Sg[e+k]) = (0.75)%,

egti] ~ N(0,[U{1262) and  cor(eg e}, €g1e+k]) = (0.75)F

where Wg“) and Wg(z) are unobservedand t = 1,..., T, with T varying from 5 to 50 in different
settings. Like DGP 1, the random intercept, (SWg“) + SWg“) ngz)), is correlated with the covari-
ates, specifically the observation-level variable, X;[z], and the cross-level interaction, X:[Z] Ugf”,
threatening to bias at least 81 and Bs. Like DGP 2, the dependence structure is complex:

cov(Yepel, Yerek) | X, Z) = var(SWY + swiVwW? | X, Z) + [UV1262(0.75)%  (22)

which shows that covariance arises not only due to the random intercept but also autocorrelation
in e,[¢], With varying intensity by group.

One choice would be to employ bcMLM through a Rl model that additionally includes )_(g“) and
)_(;)U;). We consider both choices of = = o2y (bcMLM) and an AR(1) structure for each g with
constant variances (bcMLM-AR), to attempt to capture the longitudinal nature of the data.

Additionally, though we emphasize that coefficients on group-level variables or cross-level
interactions are often not clearly linked to causal quantities of direct interest, they are commonly
spoken of in practice. To this end we also employ the per-cluster regression (model+PC, when
relevant) to estimate S, after bcMLM and bcMLM-AR (note that Sng” + SWg(” Wg(z) is uncorrelated
with U;), while Ué(,” and X;[i] are correlated, so the per-cluster regression should estimate 3,
unbiasedly and bcMLM may not). We will compare these to a simple OLS of Y on X (OLS), Group-FE,
and a RI model without bias-correction and = = oI (RI). For standard errors, we use model-based
MLM standard errors (Section 2.4; model(mlm), when relevant) with RI, use CRSEs (Section 3.3;
model(crse), when relevant) with bcMLM, OLS, and Group-FE, and try both variance estimators with
bcMLM-AR.?® Furthermore, when employing the per-cluster regression, we use robust standard
errors (White et al. 1980; model(robust)) from the group-level regression in the final step of the
procedure.

The bias, coverage rates, and average standardized test mean square error for each of these
models is shown in Figures 6, 7, and 8, each across choices of T € {5, 15, 25,50} and G € {15, 50}.
Due to space limitations, we only show bias plots for the scenario in which G = 50and T = 25.
However, the pattern of results is similar across all sample sizes tried.

28. Note that bcMLM-AR still misspecifies the dependence structure, as the idiosyncratic errors are heteroskedastic in
truth, so we should expect its model-based standard errors to be incorrect.
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Figure 6. Comparison of five models on DGP 3: Estimating 31, B2, and 83
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(c) B3

Note: Results across 2000 iterations, each drawn from DGP 3 with G = 50, T = 25,and By = 81 = B2 = B3 = 1. Thered
dashed-line represents the true g,.
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Figure 7. Comparison of five models on DGP 3: Coverage of 81, 82, and B3
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Note: Results across 2000 iterations, each drawn from DGP 3 with Bo = 81 = B2 = B3 = 1.
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Figure 8. Outcome prediction error for Group-FE, bcMLM, and bcMLM-AR in DGP 3
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Note: Comparison of testing error for the predicted outcome (average standardized test MSE,

(N]E(ezm))’1 Y. (Yelil = Yeri1)?). Results are averaged across 2000 iterations, each drawn from DGP 3 with

Bo = B1 = B2 = B3 = 1. Testing data are of the same size as are the sample data. Additionally, due to the longitudinal
nature of DGP 3, testing data are for time points immediately after those of the sample data (e.g., when T = 5, the sample
dataspan1 < t < 5and testing dataspan6 < t < 10).

Regarding bias and RMSE, bcMLM-AR(+PC), bcMLM(+PC), and Group-FE all show no bias for
B1, B2, and B3. Though RI has slightly lower RMSE for 8, and 85 than do bcMLM(+PC) and Group-
FE, this comes at the cost of noticeable bias for most coefficients. OLS also shows severe bias.
bcMLM-AR(+PC) and bcMLM(+PC) perform equally well in terms of bias for each coefficient, but
bcMLM-AR(+PC) produces noticeably more efficient estimates (lower RMSE) than do bcMLM(+PC)
or Group-FE, likely because the AR(1) structure for X, more nearly resembles the true structure
than does 5, = o1,

Turning to coverage, bcMLM(crse), bcMLM-AR(crse), and Group-FE(crse) all show imperfect but
perhaps acceptable coverage rates for 81, and consistently show undercoverage for B3, particularly
when G = 15. bcMLM+PC(robust) and bcMLM-AR+PC(robust) also consistently show undercoverage
for B,. bcMLM-AR(mlm) shows acceptable coverage for 81, but is outperformed by bcMLM(crse),
bcMLM-AR(crse), and Group-FE(crse) for B3. OLS(crse) and RI(mlm) perform poorly for all coeffi-
cients due the models’ biased estimates, and in RI(mlm)’s case, a grossly misspecified dependence
structure.

As for predictive accuracy, bcMLM-AR and bcMLM are uniformly superior to Group-FE. bcMLM-AR
largely performs better than bcMLM, especially when T is larger, likely due to the former’s more
efficient coefficient estimates. That the average standardized test mean square error for the three
models first increases from T = 5to T = 15 before steadily decreasing as T increases is likely due
to the autocorrelation in both €4, and Xg“[i], and should not be expected in other DGPs.

Overall, these models perform as expected: bcMLM is equivalent to Group-FE, and together with
bcMLM-AR these models are clearly the best for estimating 81 and Bs. The per-cluster approach
is effective in recovering 3, from a bias point of view, but provides poor coverage. OLS and RI
show substantial biases, failing to account for the group level confounding. Additionally, though
more DGP-dependent, bcMLM-AR has an efficiency advantage over bcMLM while showing equally
low bias. The bias-corrected MLMs also have superior predictive accuracy over Group-FE. Finally,
bcMLM(crse), bcMLM-AR(crse), and bcMLM-AR(mIm) all achieve acceptable coverage for §;. But
given the poor coverage of bcMLM-AR(mlm) on B3, bcMLM(crse) and bcMLM-AR(crse) have the best
overall performance, at least when G is larger.
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A.3  Proof of Theorem 3.2
We prove this by applying properties of By and puLu that are proven in Czado 2017. We then
reframe these properties into the context of regFE to show the equivalence. As shown in Section 2.4,
given (2mim, Swm), and subsequently Vv by substituting for Q and X,

B = (XTI X TV Y (23)
Qum 0
MLm= Z™Valu(Y = X Buw) (24)
0 Qum

We remind readers that By is found before puLu, specifically by maximizing the likelihood of 8
given Y, Z, X, Quim, and Suim,

Bum = arg max L(B, Quim, Suwm | Y, X, 2)
B

=argmaxp(Y | X, Z, B, Luim, Suim) (25)
B

And Py is subsequently found by maximizing the posterior distribution of y given Y, Z, X, Qu.w,
Zwim and Buru,

pmm = argmax p(y | Y, X, Z, Buim, vy Smim) (26)
y

Now, consider instead an alternate procedure that estimates 8 and y simultaneously by maximizing
the joint distribution of Y and y:

argmax p(Y,y | X, Z, B, Quim, Zuim)

By
=argmax p(Y |y, X, Z, B, Luim, Ewm)p(y | X, Z, B, Cuims Swim)
By
=argﬂmax(logp(Y Ly, X, Z, B, Quim, Zmim) + log p(y | X, Z,ﬁ,QMLM,fMLM)) (27)
b
Q 0
Because Y |y, X, Z ~N(XB+ Zy,>)andy |X,Z ~ N(O, ), the problem becomes
0 Q
A1
1 1 Lyim 0
argmax(—E(Y—Xﬁ—Zy)Tfh]lM(Y—Xﬁ—Zy)—EyT y)
By
A1
0 Cuim
A1
Cuim 0
:argmin((Y—Xﬂ —Zy) S (Y = XB - Zy) +yT y) (28)
By
5-1
0 Cuim
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Let Q be the objective function in the above minimization problem, i.e.,

QB v | Zmim> Quim)

=(Y=XB=Zy) Zylu(Y = XB=Zy) +y" Y (29)

1
0 'QMLM

Minimizing Q for g and y involves finding 8 and y that satlsfy 29 —0and aQ = 0. Itis easily found
that this amounts to

9Q . . o
o8 - XTEglwXB + X" ZuluZy - X" E5luY =0 (30)
1
aQ ‘QMLM 0
= Z7E X B+ (275 Z + Jy -z S5y =0 (31)
1
0 'QMLM

One finds that substituting g = ﬁMLM and y = pum satisfies the above equations. Therefore,

(Bums Pum) = argmin Q(B, v | Suim, Cuim) (32)
By

The results presented so far can be found in Czado 2017. Further inspection of Q leads to the equiv-
alence between MLM and regFE in the theorem. Letting = = o2I as in the theorem, maximizing Q
is equivalent to

argmin Q(B, v | Zuim, Luim)
By

uly 0
=argﬁmin(&,\]f,\,,||Y—X,B—Zy||§+yT Y)
¥
-
0 Luim
1
UMLMQMLM 0
:argﬂmin(||Y—X,B—Zy||§+y y)
¥
1
0 MLM'QMLM
G ng
=arg mln(z Z glil — ,3 [, Yg 2+ Z Ye (O-MLM MLM)Yg) (33)

g=1i=1 g=1

Letting A = O'MLM.QM:_M as in the theorem, making this substitution leads to the exact minimization

problem for regFE,

G nNg G
arg mln( Z Z 2lil — XgpB -~ ZgT[i]Yg]z + Z V;Ayg) (34)
g=1

g=1i=1

So, given the conditions for the theorem, /?MLM and yuLm solve the minimization problem for regFE,
giving the equivalence.
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A4

A.5

Simulated example: biased Byu for group-level variables in the presence of corre-

lated random effects
Consider the following DGP:

Yerr = Bo+ BiXyih + Balg” + (WY + W) + 6,1 (DGP 4)
where [W," w217 " N(0,21y),
M _
Xg[i] = Wg + N(O,1)g[;]
U = w4 N, 1),

-
eg1i] < N(0,07)

Here, there is an observed lower-level variable, X;[I?], and an observed group-level variable, U“),
which are both correlated with the unobserved random intercept (Wg(” + Wg(z)). Comparing the
analogous OLS, Group-FE, and RI models in draws from this DGP with 8y = 81 = 8, = 1, we again

see, in Figures 9 and 10, consistent biases in estimates of 81 and B, from the RI model.

Figure 9. Comparison of estimates of 81 from OLS, Group-FE, and Rl in DGP 4
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Note: Results across 1000 iterations, each drawn from DGP 4 with By = 81 = B2 = 1. The red dashed-line represents the true

Be.

Rlis between OLS and Group-FE in terms of bias in estimating 1, and improves as n, increases
just like it does in DGP 1. However, in terms of estimating S, Rl is just as poor as is OLS at both
choices of ng, and does not improve as ng increases. This is because the conditional mean of Wg(z)
is linearin Ugf”, so that portion of (Wg(” + Wg(z)) is explained just as well by UV astheincluded
random intercept, y,, regardless of ng or G. So, MLM automatically chooses Ug(ﬁ over y, to explain
that portion of Y ;] due to the shrinkage imposed on y,.

Proof of the unbiasedness of an OLS including X, in DGP 1

This result stems from an equivalence between the ,31 from an OLS including )_(g (Equation (13))
and that from a regression of Y, ;) on (X, ;] — )?g), which is also unbiased (and, in fact, the same
as that from a Group-FE model). Letting X;[iJ = Xg[i] — Xg and W, = Wg(” + Wéfz), a pi froma
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Figure 10. Comparison of estimates of g, from OLS and Rl in DGP 4
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regression of Yz (;; on Xgl[l.] yields (by the FWL theorem)

5 - Zei Yelil (X5
Zg,/(X;[,-])z
Zg,i(ﬁo + i Xg[i) + We + eg[i])(X;[/])
) Zei (X))
Zg,/(ﬁo + Br(Xg[i] — Xg + Xg) + Wy + €g[i])(X;[,-J)
B T (X2 )2
Zg,i(ﬁ1 X;[,] +(Bo+ PrXg + We) + sg[i])(X;[/])
B Zei (X))
Zgi(Bo+ BrXg + We) (X)) N Zei€glit( X))
Zegi(Xgii))? L (X

(35)

=pi+

22.i(Bo+ B Xg + Wg)(X;[I.]) = 0 because within each group, X, and W, are constant and X;[/] is
mean-zero. More rigorously,

G ng G ng
23 Do B + W) ) = X 6o+ i + W Y X
8= =

g=1i=1

G g
= Z(ﬂo + B Xy + Wg)( Z(Xg[i] - )_(g))
g:] i=1

Mo

(Bo + 1 Xg + Wg)(”g)_(g - ”g)_(g)

I
e 9

(36)
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A.6

So, continuing Equation (35),

Zg,i €glil (Xgl[;])

ﬂ1 - ﬁ1 i Zg,i(X;[,'])z

(37)
Because [E(eg[i) | X, Z) = 0in DGP 1, taking the expectation of the above yields E(B) = Bi.
Finally, because X, and X;UJ are uncorrelated (as X;liJ is mean-zero and X ; )_(g(X;UJ) = Ofor
the same reason as why Equation (36) simplifies to 0) and 81 X,[;; + a1 X can be rewritten as
B X;[,.] + (a1 + B1) Xg, this B is the the same as the estimate one would obtain from running an

OLS including )_(g as in Equation (13), proving the latter’s unbiasedness.

O

Simulated example: adding group-level means may not debias By v for group-level
variables in the presence of correlated random effects

Consider again DGP 4 from Appendix A.4. As adding Ug(,” = U;) to a model a second time is
impossible, adding the group-level means of all included variables to a Rl model will not eliminate
the bias in estimating ;. However, adding )_(g“[)] does debias estimates of ;. See Figures 11 and
12 for the bias and RMSE of coefficient estimates in DGP 4 after adding )_(g“?

(71
comparison, we also show the results from an OLS model that includes )?gf;?] and a Group-FE model.
However, the estimates from each model are exactly the same, with the exception of the nonexistent

estimate of 3, for Group-FE.

to a Rl model. For

Figure 11. Comparison of estimates of 81 from a R modelincluding )_(;1), anOLSincluding )_(“), and Group-FE
in DGP 4
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Note: The Rl and OLS models have been debiased for 81 by including X;” as a covariate. Results across 1000 iterations,
each drawn from DGP 4 with By = 81 = B2 = 1. The red dashed-line represents the true S,.
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A.8

Figure 12. Comparison of estimates of B, from a RI model including )_(g“) and an OLS including )_(;]) in DGP 4
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Note: The Rl and OLS models including )?g(” as a covariate are still referred to here as "debiased" because they unbiasedly

estimate B1, unlike Rl and OLS models that omit )_(g(”, as can be seen in Figure 9. However, including )_(;1) clearly does not
debias their estimates of ;. Results across 1000 iterations, each drawn from DGP 4 with By = 81 = B2 = 1. The red
dashed-line represents the true 8,.

Simulated example: adding group-level means may induce bias in By.u for group-

level variables when they are correlated with lower-level variables
Consider the following DGP:

Yeii) = Bo + P xg“[,?] + U + W+ wEIW) +egp (DGP 5)

where [Wé” Wéfz)]T Y N(0,21y),

M _w (2)
Xg[i] =Wy + W, + N(O, )i

ut” = wiP £ N, 1),
€gli] i!vd N(O, 0'2)

Here, there is an observed lower-level variable, Xg“[?], and an observed group-level variable, U;).

x4

gli]
Ugf” is correlated with Wéf2>, itis uncorrelated with the random intercept because it is independent
of Wg“). The inclusion of )_(g(,” in a Rl model will therefore correct the bias in estimating 1, and
because Ug(.” is uncorrelated with the random intercept, one would imagine that such a model

would also produce unbiased estimates of 8,. However, because Xg“[,).] and Ug(,” are correlated, the

is correlated with the unobserved random intercept, (Wg(” + Wéf” Wg(z)), but even though

inclusion of )_(;1) in fact induces bias in estimates of 8, which we see in Figure 13. All of the models
show biases in estimates of 3, at all sample sizes tried, with the Rl model including )_(;1) showing
the most bias. However, unlike the estimates from an OLS and the Rl model including )?g(”, the
estimates from the Rl model without )_(;” here actually improve as n, increases.

Proof of the unbiasedness of bcMLM with X = o2y under the conditional inde-
pendence assumption

This proof has been adapted from Snijders and Berkhof 2008. For simplicity, we prove the result
for when we have correctly assumed that Sy = 0 in Equation (3), so the intercept term has been
removed from Xg;}, Xg, X, and B. Note that this does not prohibit an intercept term from being
includedin Z, ;).
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Figure 13. Comparison of estimates of 8, from an OLS, a Rl model without )_(5(,1), and an RI model including
x{VinDGP5
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RMSE: 0.532 RMSE: 0.503 RMSE: 0.627 RMSE: 0.438 RMSE: 0.291 RMSE: 0.563
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Note: The RI model including )_(g“) as a covariate is referred to here as "debiased" because it unbiasedly estimates 81,

whereas the Rl model omitting X;U would not. However, including )_(;1) clearly does not debias RI’s estimate of 8. Results
across 1000 iterations, each drawn from DGP 5 with By = 81 = B2 = 1. The red dashed-line represents the true S,.

First consider the projections of Y; and X, onto Z,:

Ye=2Z,(2]Z,)7'Z, Y, (38)
Xe=Zg(2]Z5) ' 2] X, (39)

and then partialing out these projections from both Y, and X, giving Y, and X;:

Y=Y -V,

=[In, - Z,(Z; Zg) ' Z] 1Y, (40)
X;=Xg— X

=[In, - Zg(Z; Zg) ' Z] 11X, (41)

Thenlet Y, X, Y*,and X~ be the (ordered) block matrices of the Y, X,, Y-, and X, respectively
(as X isto the X;). These matrices can also be written as

Y=2(ZT2)"'ZTy (42)
X=2(Z"2)""Z"x (43)
and
yt=y-v
=[In-2(Z272)'Z7]Y (44)
Xt=X-X
=[In-2(Z272)'ZT]1X (45)

Then, consider an OLS predicting Y+ with X*. The resulting estimate of 8 would be
B=1(XHT XN (XHTy (46)
We will show that this 3 is unbiased, and is exactly equal to the estimate of B obtained from bcMLM.
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Usingthat Y = XB + Zy + € and the definition of Y+ in Equation (44), one finds

B=[(XHTX (XN [In=-2(Z72) "' ZTI(XB + Zy +¢)
= (XX (XY In-Z(ZT2) ZTI(XB +e) (47)

where the second equality in the above comes from the fact that [Iy - Z(Z7Z2)'Z7]Z = 0.
Then, using the definition of X* in Equation (45) and that [Iy — Z(Z7 Z)~'Z "] isidempotent,
the above becomes

B=[(XHTXTUXHTXHB+ [(XHTXH (X Te
=B+ [(XH)TX (XN e (48)

which meansthatIE(8) = B, because E(e | X, Z) = 0bythe conditional independence assumption.
So, we have shown that an OLS of Y+ on X+ yields an unbiased estimate of 3.

Now we consider the optimization problem solved in bcMLM to find an estimate of 8, and
show it yields the unbiased 4 above. bcMLM with = = o2y operates under the assumption that
Yo | X, Z " N(Xgf + Xga, V) where Vy = Z,QZ] + 021, . This implies that contribution of

the g™ group to the assumed log likelihood for the model is:
1 1 o _ -
£LPM) —5log Vel = 51V = X — Real TV, "[Yg = Xz B - Xgal (49)
Using that

-1 -2
V' =07l - ZgA. Z,
where Ay =072(Z] Z,) ' = (2] Zp) ' [0%(Z] Zp) "' + 217 (2] Z) ™ (50)

andthat Yy — Xz — Xga = [V — X;-B] + [V, — Xg(B + )], it can be shown that

1 . o o
LM —E(log|vg| + oY = XLBIR + [V = Xy (B+ )]V, [V, — Xy (B +a)]) (51)

So, the whole likelihood maximization procedure, given Q and o2 (which one estimates first in
bcMLM before finding estimates of 8 and a) is

G
arg max Z Zg(,bCMLM)
a.B g=1

G
1 . o U
-argmax - > (loglVg| r oV - X1BIR+ [Yg—xg(ﬁ+a)]Tvg1[Yg—xg(ﬁ+a)])
a, 2=

G
- argr;in Z(HY; — X2BIE + 0 [V, — Xg(B+a)] TV, [V, - Xy (B + a)])
a 2=

G
=argmin (112 = X“BIE + 02 3 [V = Xg(B+ )]V, [V - Xg (B + @)]) (52)
a, 2=

We see in the above minimization problem that when choosing 3, the only part of the objective
function that mattersis ||Y* - Xiﬁ||§, which is the same objective function as that in an OLS
predicting Y+ with X*. This means that the estimate of 8 from bcMLM here is exactly the 3 defined
earlier in the proof (Equation (46)), which we have shown is unbiased. Therefore, bcMLM with
J = oIy will produce an unbiased estimate of .
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Proof of the equivalance of FE and bcMLM with 5 = 021y

Another consequence of the proof of the unbiasedness of bcMLM with ¥ = ¢?Iy provided in
Appendix A.8 is that there is an exact equivalence between the estimates of 8 from bcMLM and FE.
This is because, like bcMLM, FE produces the same estimate of 8 as does an OLS regression of Y+
on X+ (defined in Appendix A.8), as FE can be reparametrized as

Y=XB+Zy+e¢
=[IN-Z(ZT2)"ZTIXB+[Z2(ZT2) ' ZTIXB+ Zy +¢€
=X'B+Zy+e (53)

where 7 = (Z7Z)7'ZT X + y. Because X* and Z are orthogonal (i.e., ZT X+ = 0), the estimate
of B obtained by FE is therefore

A

Bre = [(XHTX (XY
(X)X ' XT[In-2Z(Z72)' Z7 )Y
(XXX [In-2Z(Z72) 27y
[

(XL)TXL]71(XL)TYL (54)

where we have used in the third line of Equation (54) above that [Iy—Z(ZT Z)™' ZT] isidempotent.

O

Simulated example: biased Bu.v with a random slope
While we are primarily concerned with the Rl specification of MLM, we also consider here when
MLM produces biased Bu.u due to a random slope. Consider the DGP

g[/ ﬂO + (ﬁ1 W;1))Xg(1[,)] + €gli] (55)

where ng” is an unobserved group-level variable. If the above were fit by a simple OLS of Y on X or
MLM, we would expect a biased estimate of ; when cov(Xé(,][;], Wg“)X:[}]) # 0. Assuming Xg“[,?]

and Wg“) are both mean-zero, this occurs when
cov( X Wi X = B 1PweP ) - B EwW X )
— E[W“)E([X(U]]Q | W(1))]
#0 (56)
There are many ways for the above to hold, but if Xg ;| = Wg“)N(O, g(i) + N(O, 1)z, then the

above would require IE([W;”P) #0,ie, Wg“) has an asymmetric distribution. We consider such
acase in DGP 6 below:

Yeiip = Bo+ (B + Wg“))Xg“[,?] + €gli] (DGP 6)
where W“) id X2 -
X;[/)] W(UN(O’ Delip + N, g
iid

€gri] ~ N0, 0 2)
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InDGP 6, Wg(” isacentered chi-squared with one degree of freedom, and thus satisfies IE]([Wg“)]3) *
0. We see biases in estimates of 81 from a simple OLS and a MLM with a random intercept and slope

for X:[?] across draws from DGP 6 with By = 81 = 1in Figure 14.

) in
!

Figure 14. Comparison of estimates of 81 from OLS and a MLM with a random intercept and slope for Xéf[ !

DGP 6
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Note: Results across 1000 iterations, each drawn from DGP 6 with Sy = 81 = 1. The red dashed-line represents the true ;.

Simulated example: including (X, — X)T ® Z,(;; in MLM does not alleviate bias

from DGP 6
We consider here the proposed solution to correlated random effects of including (Xg — X) T ® Zgy;)
as fixed effect variables presented in Snijders and Bosker 2011 and Wooldridge 2013.

In DGP 6 from Appendix A.10, this proposal would imply the MLM

_ (1 () _ 2 (D) _ () y (D
Yeti) = Bo+ Bi Xy, +ao(Xg - XMy +ay (X" - X ¢ ))Xg[i]
1)
i T+ Celil

where [yo, 11" & N(0,Q) (57)

+ Yog + Y1ng(

and eg ;| g N(0, o%). However, the above model does not correct the bias shown by a MLM with a
random intercept and slope in DGP 6, as we see Figure 15. Estimates from a per-cluster regression
(introduced by Bates et al. 2014, and described in Appendix A.13), on the other hand, are unbiased.

Simulated example: per-cluster regression to unbiasedly estimate coefficients of

group-level variables that are uncorrelated with random effects
Consider again DPG 5 introduced in Appendix A.7. After estimating 81 with an unbiased $; obtained

by FE or adding the group-mean of Xg(;?] to a Rl model, one can apply the per-cluster regression to

unbiasedly estimate 3, because Ué” is uncorrelated with the random intercept, (Wg“) + Wg(” Wg(z)).
The first step in the per-cluster regression is to subtract the estimated marginal effect of X:[,?]
from Y}, like so:

Y;[I.] = Yeli] - B X:[I?] (Per-cluster Regression: Step 1)
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Figure 15. Comparison of estimates of 81 from a standard MLM, the MLM in Equation (57), and a per-cluster
regression in DGP 6
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Note: "PC" refers to the per-cluster regression, and the MLM in Equation (57) is referred to as "interactive" because it
includes the interaction of (X, — X) with all variables in Z[;1. Results across 1000 iterations, each drawn from DGP 6 with
Bo = B1 = 1. The red dashed-line represents the true S,.

The next step is to calculate the group-means of Ygl[,.]:

fog = — Yl[,.] (Per-cluster Regression: Step 2)
Finally, regressing Ao, on Ug) and an intercept term in a group-level OLS provides an unbiased
estimate of B,:

Estimate oz = Bo + ﬂZUé(,” + 80g by OLS (Per-cluster Regression: Step 3)

where o acts as the residual. In Figure 16, we see that the estimate of 8, from a per-cluster
regression is unbiased in DGP 5, unlike that from OLS, and Rl including or without )_(é” .

Figure 16. Estimates of B, from a per-cluster regression in DGP 5
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Note: Results across 1000 iterations, each drawn from DGP 5 with 8y = 81 = B2 = 1. The red dashed-line represents the true
Be.
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Per-cluster regression for varying slopes and cross-level interactions

As noted in the text, another example of over-identification in bcMLM is when the slope for X;f,?]

is allowed to vary, i.e., X(e?] is included in Zg[;). Because bcMLM includes as extra covariates

the predictions ofX( ) usmg 2i], and Zg ;) predicts Xg(f?] perfectly, including this “prediction"
as an extra variable S|mply includes X;f)] in the model twice. Therefore, one of the X;?] will be

dropped out of the model, and the “prediction” ofX;f;] cannot soak up the bias from any potentially
correlated random effects when estimating B,. This is also true of coefficients for any cross-level
interactions, ngf,?] Ug(,k).

The per-cluster regression provides an option for users who are interested in those coefficients.
Let X(f”Jb) be the sub-vector of X, ;) containing the variables that are not predicted perfectly by
(i.e., colinear with) Z, ;) (e.g., neither the variables in both X, ;) and Z, ;] nor their cross-level
interactions included in X, ;1) with corresponding coefficients BU) and let X(S”b) be the corre-

sponding sub-matrix of X,. Furthermore, letX([) the (£+1)th element of X, W|th coefficient S,
also be the (£ + 1)th element Z; (i.e., Z;fl)] X;fl) ), and let (X(e) U“) .. X(e,)] Ué(,’)) be the r
cross-level interactions of X;fl?] included in X, ;) with corresponding coefficients (Be1, . .., Besr).

A per-cluster regression approach proceeds by first unbiasedly estimating 8(“®), using bcMLM
or FE. The estimated marginal effects of X(S"b) must then be purged from Y, forming YgL =
Ve — Xg(sub)ﬁ(s“b). Next, regress each of the G vectors YgL on Z individually by OLS, obtaining G
coefficient vectors 4, = (ZgTZg)‘1 ZJY; . Finally, letting fi¢g be the (£ + 1)th element of each /i,
(i.e., the coefficient for Z;f?l from the OLS in the previous step), regress fjg, on an intercept term

and (U“), cee, Ué(,’)) in a group-level regression fit by OLS, as in an assumed model:

,
Neg = Be + Z ,B€+kU;k) + 8¢ (58)
k=1

where 8., acts as the residual. If E(ye, | ulh, .., Ug(')) = 0, the estimated coefficients from this
final step are unbiased for (B, ..., Be+r). Note that in the case where there are no cross-level
interactions with X;?], this final step amounts to simply taking the mean of /j,; over the G groups
as the estimate of B,, and the condition for its unbiasedness is that the y,, are unconditionally
mean-zero. Furthermore, note that if X;f,?] =1, then (Be+1, - - ., Besr) are the coefficients for the
group-level variables, (Ug“), e, U;r)).

Discussion of cluster-robust standard errors
To see why CRSEs work in theory, consider forming them after an OLS of Y on X, where Y, =
XgPB + €5 and the e, € R are mutually independent and mean-zero given X, but have unknown
covariance matrices, var(ey | X) = ]E(e;ez,T | X). The OLS estimate of B is Bois = (XTX) ' XTY
meaning
var(Bos | X) = (XT X)X var(Y | X)X (X7 X)™!
E(eje;™ | X) 0
=(XTX)'XT X(XTx)™! (59)
0 E(eges | X)
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That CRSEs use ECRSE(€;[-]€2[i/] | X) =cX ég[,'J ég[;/J where ég[;J = Yg[,'J - X7 ],BAOLS implies

! gli
& éel118g(2] -~ €g118g(n,]
ECRSE(€2€ZT | X) =cx ég[Z].ég“] é;[Z] o 8g[218g(n]
Belns18el1]  Eglng1Cel2) - €51,
=CcXég8, (60)

where ég = Yg - Xg,BOLS- Therefore, @CRSE(,BOLS) is

é1é] 0
varcrse(Bots) = ¢ x (XTX) ' XT X(XTX)™! (61)
0 éé[
Xi
Remembering that X = | : | allows one to rewrite this as
Xe

G G G
varcgse (Bois) = ¢ X (Z XgTXg)_] (Z XgTégégTXg)(Z XgTXg)_1
g=1 g=1 g=1

G G G
c 1 T 1 T A AT 1 T -1
- EX(E;Xg X;) (E;Xg egegxg)(aggxg X,) (62)

and the averaging over the G groups in each of the summations above is why CRSEs can “learn"
any dependence structure when G is sufficiently large.”’

Choice of ¢ for CRSEs with MLM and bcMLM
In choosing ¢, Cameron and Miller 2015 write that the common choice for a simple OLS of Y on X is

c=& x—:;. This is the typical ¢ employed in MLM as well, but the decision is more complicated
for bcMLM. In the case of solely varying intercepts, it would be tempting to employ ¢ = 2 #}:]@

in bcMLM, where p is the number group-level means that have been added. However, since there is
an exact equivalence between estimates of 8 from Group-FE and bias-corrected Rl when 3 = 021y,
we suggest using ¢ = %#‘éq) This is the common choice for Group-FE (Cameron and Miller
2015), as it accounts for the extra G — 1 group indicator variables included in the model. For a
general bcMLM, we make a similar recommendation. Every extra group-varying slope in a FE model
requires an extra G — 1 variables, as G — 1 group indicator variables are interacted with the variable
whose slope is to vary. Therefore, an FE model that allows d varying coefficients would require
27 NTprgic=T- For a general bcMLM with d varying slopes or intercepts, we also suggest
this choice of c.

C =

Proof of the equivalance of CRSEs from bcMLM with = = 21 and FE
Like in Appendix A.8, we prove this for the case where intercept term has been removed from X, |},
Xg, X, and B, meaning B8 = (B, ..., Bp-1). Additionally, we largely here use the notation from

29. As mentioned in Section 3.3, G = 50 is generally viewed as the large enough (Cameron and Miller 2015). However,
there is far from a consensus, and the true benchmark will differ by the situation.
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Appendix A.8, but review it for convenience.

Let [(Xg—Xg) Xg] bethe matrix, for group g, of variables included as fixed effect variables in an
equivalent form of bcMLM where X, has been centered by Xg = Zg(Z;Zg)“ ZgTXg. Then, let X
be the stacked matrix of X, (as X isto X, and let (3, &) be the coefficient vector for [ (X, —X,) X,]
to be estimated. X can also be expressedas X = Z(Z7 Z)™'ZT X. Furthermore, let the bcMLM
estimate of var(Y | X, Z) = V be

Q 0
V=2 ZT + 621y
0 Q
ZQZ7 + 621, 0
0 Z6RZ] + 621,
Vi 0
- (63)
0 Vo

where V, = Zg.QAZgT +62I,, and (2, 82) is the bcMLM estimate of (R, o'2).
Similarly, we consider the alternate, but isomorphic, form of FE where X, has been centered by
Xg. Note that this form of FE is equivalent to that introduced in Section 2.2 because:

(Xgi — g[,) .B"'Z i1Ye g[,ﬂ ZT](ZT Zg)” ZT XgB + ;[,']Yg
g[,ﬂ Z] ,]}’g (64)

where 7, = (Z;Zg)‘1 Zng,B + yg. Note that we consider the X, [;-centered versions of bcMLM
and FE because X, — X, is orthogonal to Z, and X, (i.e., (X, — Xg)TZ; = (Xg — X;) " X, = 0),
and likewise X — X is orthogonal to Z and X. This greatly simplifies the matrix algebra.

Finally, let  be the estimate of 8 that comes from bcMLM and FE (as a reminder, they are
equivalent), let y, be the estimate of y, from FE, and let & be the estimate of a from bcMLM. With
this notation, the residual vectors for group g from each model are

éébcMLM) =Y, - (Xg - ;(g)’é - Xg& (bcMLM Residual)
ééFE) =Y, — (Xg— Xg)B — Ze¥se (FE Residual)

For FE, the CRSE estimator of the variance of 8 is the first p — 1 rows and columns of

¢ x BB x M (FB) 5 B(FE) (65)
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where

(X-X)T . -1
B(FE) — _
(|7 [lx=% 2]
[Z - X T - %) (x-XTZ|
ZT(X - X) Z7Z
: o N
(2% e -%0) 0 6)
0 (Z72)
and
N )? T é1(FE) [é1(FE)]T 0
MO — ( _T ) (X-X) Z (67)
z 0 égE)[égE)]T

Given Equation (65), and because B(FE) is block diagonal, the only portion of M (FE) that contributes
to the variance of A is its first p — 1 rows and columns, i.e.,

A(FE) y A(FE
e relfoT 0

(X-X)" (X = X)

A~(FE) 1 A(FE
0 e(G )[e(G )]T

C/ A~(FE) r A(FE v
(Xg — Xg) 76 [T (X, - X)

Do T

((Xg - )?g)TééFE))((Xg - Xg)TééFE))T (68)

0
l

Expanding (X, — )?g)TééFE) in Equation (68) yields

(Xg = X)T8l™ = (Xg = Xp)T[Ve = (Xg = Xg)B = Zg¥e]
= (Xg - Xg)T(Yg - Xg,é) (69)

which substituting into Equation (68) yields

G
D (Xg = Kg) (Vg = XgB) (Vg = XgB)T (X = Xg) (70)
g=1
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Therefore, as Equation (70) is the first p — 1 rows and columns of M (FE)| the CRSEs for B from FE are

FLEB) = ox( 306 - KT - %)

g=1

Q

X( D0 (Xe = Xe) (Vg = XeB) (Y = XgB)T (Xg = X))

&=1

Q

X( (X = Xe)T (X - )?g))_1 (71)

&=1

Turning to bcMLM, its CRSE variance estimator for 3 is the first p — 1 rows and columns of

¢ s B(BMLM) o p g (BCMLM) o g (bcMLM) (72)
where
X -X N N _1\ !
B (X207 (x-%) x|)
XT
o . Ty -1
_ [2;11 (Xg = Xg) TV (Xg = Xg) 2E1(Xg - xg)T 73
Yo Xg Vo (X - Xg) Py ' Xe
and
M (beMLM) (X j X)T Vel
XT
'é1(bcMLM) [é1(bcMLM)]T 0
X
0 é(GbcMLM) [éébcMLM)]-r
(X-X) X (74)

Starting with B(PMM) we first show that the off-diagonal matrices are 0. Like in Appendix A.8, we
use the fact that

-1 -2
V' =071, - ZzA  Z]
where Ay =072(Z] Z,) ' = (Z] Zg) ' [0%(Z] Zo) ' + 217 (2] Zp) ™ (75)

Therefore, the off-diagonal matrices in B(°™M) given in Equation (73) are

Mo
MQ

, (67°1,, - nggng)(Xg - Xg)

oy
JIN

Il

e

(76)

Moving to the first p — 1 rows and columns of B(*MM) given in Equation (73), we can again use the
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expression for V" in Equation (75) to obtain

G G
DX = K) TV (Xg = Xg) = D (Xg = Kg) (6720, — ZgAg Z])(Xg — Xg)
g=1 g=1
G
=672 (Xg = Xg) T (Xg = Xg) (77)

g=1
Substituting Equations (76) and (77) into Equation (73), we find

-1

s i i
gbeMLm) _ 67 Dig=1(Xg = Xg) T (Xg — Xg) 0 l
0 o XV X,
[ - - -1
(67728 (X - X) T (X, - X)) 0 o8)
= -1
G y -1y
0 (28, %7 vi %)

Because of Equation (72), this means, like in the FE setting, that the only portion of M (P<MM) that
contributes to the estimated variance of 4 in the bcMLM setting is its first p — 1 rows and columns,
i.e.,

é1(bcMLM) [é](bcMLM)]-r 0
(X - X)Tv V(X - X)

0 éébcMLM) [é(c;bcMLM)]-r

v =1 A(bcMLM) r A(bcMLM A

Do o

~ A ~ A T
((Xg - Xg)-r\(g,_1 éébCMLM)) ((Xg - Xg)-r\(ﬁ,_1 éébCMLM)) (79)
1

[
Il

Expanding (Xg — X¢) TV, 6y"™™ in Equation (79) using the definition of &*"""

o and the expres-
sion for Vg‘l in Equation (75), we get

=672(Xg = Xg) T [Ve — (Xg — Xg)B — X, 6]
=672 Xg - Xg) T (Vg — X, ) (80)

Plugging Equation (80) above into Equation (79), the first p — 1 rows and columns of M (P<MLM) |
yields

G
57D (Xg = Xg) T (Vg = XgB) (Vg = XgB)T (X = Xg) (81)
g=1
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Therefore, the CRSEs for 4 from bcMLM are
beMLM) - 4 S o o
Var(CRCSE )(ﬁ) = CX(‘A772 Z(Xg - Xg) T (Xg - Xg))
g=1
G
X(674 Y2 (X = Xo) (Y = XgB) (Vg = XgB)T (X — Ky))
g=1
G . R
x(672 )X = Xp) (X, - X))
g=1

G -
= ox( D1 (Xg = Xo)T (X, - X)) 1
g=1

G
X( D (Xe = )T (Vg = XeP) (Y = XeB) (X = X))
g=1
G _
X( DX = %) (X - X)) 1 (82)
g=1

which, if ¢ is chosen to be the same in bcMLM and FE as we recommend in Appendix A.15, is exactly
equal to @é’;?E(,B) in Equation (71). Therefore, the CRSEs from both FE and bcMLM for 3 are

equivalent.
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