Supplementary Material for
“Non-ignorable Attrition in Pairwise Randomized Experiments”

Kentaro Fukumoto
Gakushuin University, Tokyo, Japan.
E-mail: Kentaro.Fukumoto@gakushuin.ac.jp

1. INTRODUCTION

The principal goal of the Supplementary Material is to prove propositions and comments thereof
in the main manuscript. For that purpose, I prepare many lemmas. I also (re-)introduce all
notations so that the Supplementary Material are self-contained. Note that notation is different
between the main manuscript and the Supplementary Material. In the main manuscript, I use
conventional notation so that readers can easily understand the paper. If I used the same nota-
tion in the Supplementary Material, however, I'm afraid the Supplementary Material would be
much longer and harder to read. In addition, the Supplementary Material presents propositions,
sometimes with their (tedious) closed forms. The proposition and (sub-)section numbers corre-
spond to those in the main manuscript up to the third section, though the equation numbers do
not. The fourth section showcases an application. The fifth section compares this study with
Imai & Jiang| (2018). The sixth section concludes.

Pairwise randomized experiments is also called matched-pair design or study (Donner &
Klar|2000, Imai et al.[2009), pair-matched study (Hayward et al.2006), paired randomization
or (randomized) experiments (Abadie & Imbens 2008} |Glennerster & Takavarasha/2013, 158
160; Imbens & Rubin| 2015, 53-54; [Snedecor & Cochran| 1980, ch. 6), or randomized paired
(comparison) design (Box et al. 2005, 81-91; Imbens & Rubin| 2015, 52, 219). The design
follows a golden rule, “block what you can and randomize what you cannot” (Box et al.[2005,
93).

A major problem of pairwise randomized experiments is attrition; outcome values of some
units are sometimes missing (Donner & Klar 2000, p. 40; Hayes & Moulton 2009, pp. 72-74;
Glennerster & Takavarasha 2013, p. 159). This problem arises more frequently than generally
acknowledged. For instance, nurses depart from protocol requirements (Family Heart Study
Group| [1994), care homes are unable to provide regular data on outcomes (Hayward et al.
2006), no residents meet eligibility criteria for enrollment in a nursing home (Loeb et al.|[2006),
elections are uncontested (Panagopoulos & Green [2008), schools withdraw from experiments
after randomization but before outcome measurement(Angrist & Lavy|2009)), and subjects are
tired of responding to follow-up survey (Enos|2014)).

Moreover, attrition might be non-ignorable (or, in different terminology, not missing at
random (Little & Rubin/ 2002} p. 12) or not missing independent of a potential outcome (Gerber
& Green|2012, ch. 7, esp., p. 219)). For example, in the treated group of a remedial education
program, as compared with the control group, low-achieving children are more likely to do well
and remain in the program, but high-achieving children tend to leave the school because they
are unhappy that they must study with low-achieving students (Glennerster & Takavarasha
2013} pp. 307-309). In this case, attrition is associated with test scores.

Examples of studies which use the UDE are Loeb et al.| (2006), |Angrist & Lavy| (2009),
and |[Panagopoulos & Green| (2008). Application examples of the PDE are [Family Heart Study
Group| (1994)), Hayward et al. (2006), and |[Enos| (2014)).

As|Dunning| (2011)) and |Gerber & Green (2012) warn and I will also formalize , the PDE can
“lead([s] to bias when attrition is a function of potential outcomes” (243). Though King et al.
(2007) argue that the PDE is unbiased as long as units are missing “for a reason related to one
or more of the variables we matched on” (490), this manuscript shows otherwise. Additionally,
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while Imai et al.| (2009) claim that the PDE “retain[s] the benefits of randomization . . . regardless
of the missing data mechanism” (44), this manuscript demonstrates that the missing data
mechanism matters for the properties of the PDE.

2. FINITE SAMPLE

2.1. Setting

2.1.1. Notation

Realized Values. Suppose that there are n(> 2) pairs and each pair is composed of two units.
Unit @ € {1,2} in pair j € {1,2,...,n} is denoted by unit ij. We assign either treatment or
control to unit ¢j. Denote

e Y;;: the outcome of unit ¢j
e R;;: the response of unit ¢j

R 1 if Y;; is observed,
“ 7 0if Yj; is missing.

e X°: the treatment indicator of unit 7j

xT _ 1 when treatment is assigned to unit 7,
Y 1 0 when control is assigned to unit 7j.

e XC: the control indicator of unit ij

xC _ 0 when treatment is assigned to unit 77,
R 1 when control is assigned to unit 3.

Stochastic variables are denoted by upper-case letters. Note also that superscript 1" means not
transpose but treatment. Moreover, the generic assignment indicator is denoted by Xf? where
A e {T,C}. It immediately follows
A
A

where 374 =3 4ciroy-
The pairwise randomized experiments (or the matched-pair design) implies that

ZX;;? =1, (2)

where ). = Zle, namely, for every j, either XlTj = XQCJ- = 1 (and, thus, according to Equa-
tiofl] X3, = X = 0) or X[, = X§} = 0 (and thus XJ; = X{} = 1).

Potential Values. The stable unit treatment value assumption (Imbens & Rubin|2015)) is applied
not only to Y;; but also to R;;. Define

° yz; the potential outcome of unit 75 if treatment were assigned to unit 7j.

° yg: the potential outcome of unit 5 if control were assigned to unit ;.

T

o 1 the potential response of unit 75 if treatment were assigned to unit ij.

r.. =

T { 1if Y = yZT is observed with treatment assigned to unit ij,
ij

0 if Yi; = y;; is missing with treatment assigned to unit ij.
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° Tgi the potential response of unit 75 if control were assigned to unit 4j.

O { 1if Y = ylc is observed with control assigned to unit 7,
i

0 if Yj; = y;; is missing with control assigned to unit ;.

(Fixed values are denoted by lower-case letters.) It immediately follows

YU = Zyg R
zj — ZT’AXA

Let Q;; be the generic quantity of unit ¢j. Its vector is denoted by by the corresponding
bold face:

(3)

= {Qi 111 = (Q11,Q21, Q12, @22, - - ., Q1n, Qan).

Let g the generic quantity which is constant irrespective of X. When Q;; = ¢ is constant across
units, we denote

Q=q={a7

For unit ij, denote the value of the other unit of the same pair (i.e., pair mate) by Q_;;.
Specifically,

Q = ngwhenizl,
WU Qlj when ¢ = 2.
Denote
Q= {Q—U 11
2n
(h) =
ZQ - {ZQU }11’
h h
(h) — (h) 2"
HQ - {HQ” }11’
h h
h
Q"=1] @
h'=1
1Q =qQ,
QY —Q® =W + (_Q(2)),
where h is the generic counter, ), = “‘"‘* . Note that QY Q@ denote element-wise multipli-

cation, neither inner nor outer product of two vectors.
Denote the dummy variable vector space by

U= {U‘UZ] S {0, 1}}
For @ and the generic weight Z, where Z;; > 0, when Z # 0, the weighted mean operator

is defined as
> 22 ZijQij

B(Q17) = LS

(4)
where > ;= Z?:p and, by abusing notation,

E(Q|0)=0 ()
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LEMMA 1 (ARITHMETIC OF VECTORS). (1)

Q(l) + Q(Q) — Q(Q) + Q(l)

(2)
QMQ® =W
(3)
QW +£QQB = QWMQ® + QP Q®
(4)
Z Q-ij = Z Qij
(5) For U € U,
U*=U
1-UcU
U_, .
(6) When UM € U,
[[u® eu.

h

PRrROOF. (1)-(3) Obvious.
(4)

Z Q-ij = Q25 + Q1
=> Qi
(5) It is obvious that U_; € U. Since U;; € {0,1},

Ui = Ui
1-— Uz‘j S {0, 1}

The desired results immediately follow.
(6) Obvious.

O

Since Lemma (1] (1)—(3) is obvious, I do not mention them even when I invoke them in the
following proof.

LEMMA 2 (GENERIC ASSIGNMENT INDICATOR). (1)

x4=x4
(2)
[[x*=0
A
(3)
XAXx4 =0
(4)

xXAx—A=x4
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Proor. (1)
X4=1-X"" (. Equation[]
— X:Z.A (. Equation 2)
(2)
XAX 4 = X411 - X4 (. Equation[I)
— XA _ (XA)2
=X*-X* (- X*eU Lemmall] (5))
=0
(3)

XAXA = XAX~4 (- LemmalZ (1))
=0 (. Lemmal2(2))

XAX~A = (X*? (. LemmalZ (1))
=X* (X% ecULemmall](5))

LEMMA 3 (ARITHMETIC OF WEIGHTED MEAN). (1)
E(ZQ(’”‘Z> — Y EQ"|2).
h h

(2)
E(qQ|Z) = qE(Q|Z).
(8) When Z # 0,
E(q|Z) =q.
(4) When ZWZ®@ = z®),
E(zMQ|2Y) = EQ|Z®).
(5) When Z(M) 0

Ral (2)
EQ|ZY) = 227 EQ|Zz"Z%) + (1- 2 2%, E{Q|ZzM(1-z®)}.
S SESv Al
J i J =i Ty
PROOF. (1) When Z = 0, this is obvious thanks to Equation || Otherwise,
-5, QW
<ZQ ‘Z) Z gzzh Y (- Equation [)
ij
_ Z Z ZZ]QZJ
2252 Zij

Z EWQM|Z) (" Equation [4)
h
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(2) When Z = 0, this is obvious thanks to Equation 5| Otherwise,
> 2 Zij
Z Z Zij

=qF(Q|Z) (. Equation[d)

E(qQ|Z) = (. Equation [))

Z] Z@ Zijq
> 22 Zig
qZ] >i Zij
22520 Zij

E(q|Z) = (.- Equation

(4) When Z(?) = 0, this is obvious thanks to Equation |5, Otherwise,

&2%%%U

E(ZWQ|Zz®) = (" Equation [))

2272
2.
_ E]EZJ(;BJ (- Z20 20 = 7@)
> 2%
= B(Q|Z®) (. Equation [)
(5) When ZWZ® 2 0 and ZW (1~ Z®) #£ 0,
EQ|ZzY)
(1)
5 7MW,
= W (. Equation zW #£0)
2522 Zi
S n 2z + - 20,
=52
= 25 2 Zz‘(jl)Zz'(j'Q)Qij + 22 Zi(jl)(l _ Zi(Jz))Qij
252 Zz'(jl) 205 2 Zi(jl)

_za#%ﬁmziﬂ%+xzﬁm iz -z
2E$)2D3AW >3 2y 2@@u—%h
(. Z<1>Z<2> 7é 0, Z )(1—2z@) +0)

Y%z
zzz

When ZMZ @ = 0, it follows that
Sy -
J A

ZW1 - zPy=2z0 _zWZ® (- Lemmall(3))

> X252
Zj Zz szl)

EQ|ZzWZ®) (1 )E{Q|Z<1>(1—z<2>)} (. Equation )
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Therefore,
1) (2) 1) ()
. N ARSAS . AR AS
Z] Zz ij (l)z] E(Q|Z(1)Z(2)) + (1 _ Z] Zz ij (l)zj >E{Q|Z(1)(1 _ Z(Z))}
Zj > Zij Zj > Zij
0 0
= - - - (1)
ZZ-ZQ’E(Q'OH@ Z-Z-Z@)E(Q‘Z )
J Y} 7 11y
— B(Q|ZV).

The case of ZW (1 — Z®)) = 0 is similar.

2.1.2. Estimation
The vector of the unit level treatment effects is defined as

r=y’ —y°. (6)

(Unobservable quantities are denoted by Greek letters.) Thus, the main estimand of this section,
the finite sample average treatment effect, is defined as

7= E(7|1). (7)
Denote the generic realized category indicator, which is a function of X, by K¢ € U. Define
° kgl 5 the generic potential category indicator of unit ij if treatment were assigned to unit
.
° k:gl ;i the generic potential category indicator of unit ¢; if control were assigned to unit ij.
It immediately follows
Ke=) k&x* (8)
A
Denote the number of units in the treatment status A which take a value of K¢ ;; = 1 by
Ng = NY(Kg)
DI S ©
i
For K, the generic ATE estimator is defined as

’f‘G = ’f‘(Kg)
= BE(Y|KeXT) - E(Y|KgX©) (10)

only if (but not always if) N& > 1.
The full sample estimator is defined as

rr=7(KFr) (11)

only when R = 1, where

(12)

=n (" Equations [I] and [9)
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The unitwise deletion estimator (UDE) is defined as

AU = %(KU) (13)
only when Nji = N4(Ky) > 1, where
Ky=R
14
k;é =74 (14)

Let
A C when A=T
"7 ] T when A=2C.

The pairwise deletion estimator (PDE) is defined as

p=7(Kp), (15)
only when Np > 1, where
Kp=RR_;
" k:lé = rAr:ZA,
NL = NT(Kp) (16)
= NS = NY(Kp)
= Np.

The last equality follows because

Nj.f1 = Z Z Rin_in{;l- (.- Equations [9] and
7 %
= ZZR—Z]RUX:Z? ('.'Lemma (1))
i %
= Z Z Rin,ini;A (". exchanging 7 and —¢, Lemma (1] (4))
i

—A
==

Obviously, 7 is not available in the situation of interest where some outcomes are missing
(R # 1). Rather, analysis of 75, whose results are already reported in Imail (2008) and Imbens &
Rubin/ (2015, ch. 10) (without a few exceptions mentioned below), provides reference benchmarks
against which this study compares properties of 7p and 7. 1 also define potential category
indicators as kr =1, kg =T, kg =7C kp= rTrE'i.

2.1.3. Decomposition
In order to clarify properties of estimators, we decompose potential outcomes into three com-
ponents. We define the mean of potential outcome as

A _ A
p" = E(y”[1), (17)
the between-pair deviation of potential outcome as

(y* +y?) — pt

@
S
Il

A (18)

Aty —p

W N RN =
\:3>/-\

.
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and the within-pair deviation of potential outcome as

1
wh=yt =Syt +y)
1
= —{yfl — i(yi + yA)} (19)
= —wé

Generally, denote the sets of the generic between-pair and within-pair component of potential
outcome by

B = {88=08-} (20)
W = {wlw=-w_}, (21)

respectively, whose elements are constant irrespective of X4 (because they are part of potential
outcome). When 3 € B, we denote 5.; = 1; = [2;.

LEMMA 4 (DECOMPOSITION). (1)
S S S
(2)
T=p o —p

(3)
r=74+08" -8 + T —°

Lemma 4| (3) means that the unit treatment effects can be heterogeneous.
Proor. (1)

1 .
v = Lt tyt) st Bauation )

= put + B +w?. (. Equation [T8)

7= E{7|1} (. Equation[7)
= E{ZJT - yc|1} (. Equation [6)
=uF — ¢ (. Lemma[3, Equation [T7)

=yl —y“ (. Equation[f)
= (" + 8" +) = (u+ B+ ) (. Lemmald (1))
=7+ 08" - B +w! —w® (- Lemmald(2))

LEMMA 5 (AVERAGE OF DEVIATION). (1) When w € W,

Zwij:O, E(w\l):o.
i

(2)
> 85 =0, E@Y1)=0.
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ProoF. (1) It holds
D wij = wij +wij
i
=wijj —wi (weW)

It also holds

(2) It holds

1 .
Zﬁ? = z {5(1/{3 + yilm) — MA} (*.- Equation [I8])
J J
1 A A
=322 G Dn
Jj ot J
1
9 2”MA - nMA (".- Equation [17)
=0.
It also holds
A
> 2l
2585
N 2n
_0
a n
=0
O
LEMMA 6 (EsTIMATION ERROR: FS). (1)
r—7=FBw! +w KpXT)
= —B(w" + w |KpX°)
(2) When Np > 1,
ip—7=EB(" - B+’ +w|KpXT)
= E{(B" - B°) — (w! + w)|KpXC}
(3) When Ni > 1,
iy —7=EB" + o' |KyXT) — E(8° + w" | Ky X©).
PrOOF. Note
YX4 = (Z"JA/XA/)XA (.- Equation [3)
. (22)

=y X4 (X" eU,Lemmas[l] (5) and ] (2))
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For K¢ € U,
E(Y|KgX?)
= B(YX*KcX?) (X" €U Lemmal] (5) and 3] (4)) (23
= BE(y" X4 KsX4) (. X" €U, Equation 22)
= E(y|KgX?) (. X4 U Lemmali] (5) and ] (4) )
When Né > 1,
Ta—T
= E(Y|KaXT) - E(Y|KaX©) — (-.- N& > 1, Equation [T0)
= By KeXT) - E(yC\KgXC) (. Equation [23)

=Bl T+8" + ' KeXT) - (uc +8% +w KeX) —7 (. Lemmaff] (1))
=l + EBT + T |KeXT) — ¢ — B(BC + WY | KX -7 (- Lemma [3] (1) and (2))
= EB" +w'|KeX") - B(B° + w°|KcX“) (. Lemmafd(2))

(24)

(3) Substitute K¢ = K. When N{} > 1, it follows that N4 > 1 (- Equation@[) and, thus,
Equation [24] is equivalent to the desired result where 7¢ = 7.

(2) Note
Kp=RR_; (. Equations
=R_,R (25)
= Kp_; (. Equations [I6]
It holds

E(B* + wi|KpX1) = B84, — v |Kp_i X)) (" Equations and [25], Lemma [2| (1))
= B(B" — w?|KpX~1) (. exchanging i and —)
(26)
Substitute Kg = Kp. When Np > 1, it follows that Né‘ > 1 (. Equations |§| and and,
thus,
tp—7=EBT +WT|KpXT) - BE(B° + w°|KpXC) (. Equation 24)
= BB + wl'|KpXT) - E(B° — WY KpXT) (. Equation [26)
=EBT - BY +wl + WY KpXT) (. Lemmal3 (1))
Similarly,
tp —7 = E{(B" - B9) — (w +w)|KpX}.
(1)

> i Krig X BG
Z > KF%JXA/
A A
_ Z]’ L. 5.]' Zz Xij
A/
2100 X5
A
BA .1
- Z:%i]l (. Equation [2)
=0. (.-Lemmalj|(2))

E(BYKrXY) = (- Kp X # 0,Equation )

(" Equations [T2] and
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When we substitute R = 1, it follows that Kp = Kp,7p = 77, Np = Np =n > 2 > 1, and
thus

tp—7=EB" - B +w +w’|KpXT) (. Lemmalg(2))
= E(wT +wY KrXT) (. Equations[3| (1) and

Similarly,
#p—7=—Ew’ +w’|KpX°)

2.1.4. Assumption
Mandatory Assumption of Random Treatment Assignment. We suppose that y”, y©, 7, r©,

kL, and kg (or variables and vectors which are denoted by lower-case letters) are fixed but X4
(and, thus, Y, R, and K¢ as well as variables and vectors which are denoted by upper-case
letters) is stochastic. Let Ypax be the set of values Y;j’s can take (or Ymax = Y*, which will
appear in the next section). We assume

e Ignorability of treatment assignment: for any y™), y@ € Y.« and any (M) @ € U,

Pr{Xly" =y, 4% =y@ ¢T = r® v = r@} = pr(X*) (28)
e Independence of treatment assignment: for any i € {1, 2},

Pr(X4) = H Pr(X;}) (29)

e Isoprobability of treatment assignment:

1
Pr(Xj; =1) =Pr(X]} =0) = 3 (30)
My conjecture is that the assumption of isoprobability of treatment assignment will not be
essential. Let 7r£- = Pr(XZ-’;‘- = 1). Instead of Equations and probably we only have to
redefine
Bt = (rlyt + mhiyd) — pt
and
wi =yt = (wyt + mhyd))
so that we retain most results below.
Optional Assumption of Potential Response Match. For K € U, we define the following con-

dition:

CONDITION 1 (MATCHED ATTRITION: FS).

kg = ki

Under Condition [T], define
ng = n(ké)

=Sk, (31)
J

which is constant irrespective of X4 because k‘é . j’s are constant irrespective of X4.

While the above assumptions of random treatment assignment is mandatory, the following
five assumptions of potential response (and outcome) are optional; we may invoke one or more
of them in some lemmas and propositions below.

When K = Kp, Condition || always holds and Xgef(7¢) = Xax 18 equivalent to
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AssumpTION 1 (NO ATTRITION: FS).
rT=¢¢ =1.
When K¢ = Ky, Condition [1]is equivalent to

ASSUMPTION 2 (UNITWISE MATCHED ATTRITION: F'S).

When K = Kp, Condition [I]is equivalent to

ASsUMPTION 3 (PAIRWISE MATCHED ATTRITION: FS).

TC_TC’

—1 Z

Optional Assumption of Ignorable Potential Response. Define conditional empirical distribu-

tion by
I Q” = j =z

only when 3, >, I(Z;; = 2) > 1, where

Qs = q) = {1 when Q;; = ¢

0 otherwise.

In particular, for U € U, it follows that I(U;; = 1) = Uj;. Define (marginal) empirical distribu-
tion by

PQ@=q¢)=PQ=¢q[1=1)
_ 2 i@y =q) (33)

2n

which can be always defined.
Let YA C Ymax be the sets of all values y;‘} take, namely,

A= {yMlh e {1,. .., hmax}, YR, Fig, y") =y, Vig, 3h, y ) =y}

We define the following condition as well:

CONDITION 2 (IGNORABLE ATTRITION: FS). For any y* € Y4,
P(kg = 1|y = y*) = P(kg = 1).

Note that >, >, I(yz‘;‘ = y4) > 1 because y* € Y4,
Ingeneral when U € U,u € {0,1}, and >, >, [(Zi; = 2) > 1,

Z ZI( Uy =1-u)I(Z; = =)

PU=1-ulZ=2)= (. Equation [32)

Z ZI( Zij = z)
SN MU =l (Zy =)
Z S 1(Z; = 2) (U eU,ue{0,1}) (34)

Z > (Ui = w)I(Zij = z)
25 2 l(Zij = 2)
=1—P(U =u|lZ =%) (. Equation[32)

=1-
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Therefore, under Condition [2| for any y4 € Y,
P(ki =0ly? =yt =1- P(ki = 1|y* =y*) (. K¢ € U, Equation B4)
=1— P(kf =1) (. Condition [)
= P(k =0) (. Kg € U,Equations B3 and

When K = K, Condition [2| always holds.
When K¢ = Ky, Condition [2]is equivalent to

ASSUMPTION 4 (UNITWISE IGNORABLE ATTRITION : FS). For any y? € YT and y© e
Y,

P(r! = 1|y
P(r¢ = 1|y

")
)

Pt
P(r¢

1)
1).

=Y
Yy
Note that it always hold

PQ=0)=5- 33 1Qy=q) (- Eqution[3)

— in Z ZI(Q,” =q) (- Lemma (4))

= P(Q-;=q) (. Equation 33
Thus, when K¢ = Kp, Condition [2] is equivalent to

ASSUMPTION 5 (PAIRWISE IGNORABLE ATTRITION : FS). For anyy” € YT and y© € Y©,

P(rTrl =1y’ =y") = P(r"Tr% = 1)
= PrLaC =1y° =y°) = P(rT ¢ =1)

Unfortunately, it is unusual that attrition is ignorable in either sense. For example, in the
evaluation of a medication attrition due to poor health including death may be increased in the
control group ( ;; is more likely to be 0 as yZ becomes smaller), but “attrition due to the fact
that the subject feel[s] healthier and stop][s] complylng with the experimental protocol may be
increased in the treatment group” (r;"; is more likely to be 0 as yg becomes larger) (Duflo et al.
2008, p. 3943). Since the main object of this study is non-ignorable attrition, Assumptionsand
simply offer benchmarks against which this study compares cases of non-ignorable attrition.

Barnard et al. (2003, 304) assume (latent) ignorability where “potential outcomes are in-
dependent of missingness” (given observed covariates conditional on the compliance strata).
Their assumption means that, in terms of my framework, for any y7 € Y7, y¢ € Y% and

rM @ e {0,1},
P(rT = r(l), r¢ = r(2)|yT = yT), yC = yc) = P(rT = r(l),rc = 7,(2))
which is stronger than Assumption [4] or

LEMMA 7 (EXPECTATION REPRESENTATION OF WEIGHTED MEAN). When Z € U,Z #
0,

E(Q|Z) = ZP =q|Z =1)q

where

IEDY

q qeQ
Q2 {¢™|he {1,. ., hmax}, YA, 3ij, ™ = Qij, Vig, 3h, ¢ = Qij}.
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PRrROOF.
ST Z5:Qij
B(Ql2) = S
_ 2 i d(Zy = 1)@y
> i 1(Zij=1)
_ 2 i d(Zy =150, 1(Qi = a)q
Zj Zz I(Zz‘j =1)
-y i 1(Ziyy = D)I(Qij = q)
a 7 i 1(Ziy=1)

=Y P(Q=4q|Z=1)q (. Equation[2)
q

(. Equation 4] Z # 0)

(- Z e

LEMMA 8 (REALIZED CATEGORY AND POTENTIAL RESPONSE).
KeX* = k4ix4
PROOF.
KeX” = (kXA + kA XX (- Equation
=kEXA+ k0 (- X? €U, Lemmall] (5) and 2] (2))
= kox4

LEMMA 9 (IMPLICATION OF ASSUMPTION). (1) Under Assumption [3,

kL = kS
=kp

Np =n(kp)
=np.

(2) Under Assumption[d in addition to Lemmal9 (1),

(8) Under Assumption foranyy €Y, re{0,1}, 74 #1 -7,
Py" =ylrt =r) = Py" =y)
(4) Under Assumption@ foranyy €Y, re{0,1}, rAr:iA #1—r,
Py" =ylr'r= =)= P(y" = y)

(5) Under Assumption |9, Assumption |3 holds.
(6) Under Assumption |1, Assumption|q and[3 hold.

When K = Kr, Condition [1| always holds. Thus, I can define

ng = n(k:F)

=n (. Equations [12] and

15

(35)
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PROOF. (1)-(2) Suppose that K € U satisfies Condition

NG =) KciX{j (. Equation[)
Jjooi

= Z Z k& X5 (- Lemmalg)
i

=> k&.; Y _X{j (. Condition ) (36)
j i

- Z ké’,j (".- Equation
J

=n(kd) (. Equation [3I)

kj =r4r= (- Equation [I0)
=rAr=4 (- Assumption [3] (1))
=kz* (. Equation [I6)
=kp.

Substitute K = Kp. Under Assumption [3], it follows that Condition (1| holds. It follows that

Np = N(K$) (. Equation [I6)

=n(kp) (. Equations[} BT} and
=n(kp) (. Equation [37)

11
S
|

(2) Thanks to Lemma [9] (5), Lemma [9] (1) holds. It also holds

H kit = rTrC (. Equation [T4)
A

=7TrC, (. Assumption [2)

=kp (. Equation[16 Lemma 9] (1))

Substitute K¢ = Ky. Under Assumption [2] it follows that Condition [I] holds. According to
Equation it follows N(‘]4 = n{}.

(3)-(4) Denote >°, =3 y. Under Condition y € Y, and k& # 0, it follows that, in the
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spirit of Bayes’ Rule,
Pyt =ylkg =1)
DY kG 1w =v)
> ik

- Z > ka (Z/U
kALY, I(yw—y ij” =1

S ik Iy =
Z > >k (Y

y)
X5 Xkl = v)
- H zj:z@-:[(yé B y)} ZG zyz»jt y)y }
Z Z k;AUI( Y /)
+§HZZI%J } Z~Z'Gf(yz'jy:y)y }
('-'y7y/EY’ZZI Yij = )>1 ZZI yzg >1)

X Iy = y)P (kG =10y = y)
i Iy =y P(RE =1yl =)

(- Equation B2} k¢ € U, k& # 0,5 > I(kg 5 =1) > 1)
7 7

Y)

(38)

(. Equation B2, k& € U)

- Zj 2 I(yé y)P(ké =1 *.» Condition
TS S =g Pleg =1y ConditionD)
P(ké =1) Zj > I(y;;‘- Y)

P(kg=1)>,55, 1y =)
. ZjZil'I(y{?‘:y
- 2522t

= P(y* =y). (. Equation[B3)

When Condition [2| holds for K¢, it also holds for K ’G =1 — K because

=M

Pl-kg=rly*=y) (-Ki=1-Kg)
A=y) (- Kgel)

P(kg =rly™ = y) = P(

(kG =

(k& =1—7) (. Condition[2] 1 —r e {0,1})
(

(

1—rly

1-ki=r) (-Kgel)
kS =r) (CKL=1-Kg)

Il
T v v

Thus, when ké # 1,

Pyt=ylki=0)=Py*=y1-ki=1) (. Kgel)

A
=Py =ylk§ =1) (- Ki=1-Kg) (39)
= P(y* =y) (. Condition [} Equation B8

(3) Substitute K¢ = K. Under Assumption [4] it follows that Condition [2] holds. Equations
and [39 are equivalent to the desired results.
(4) Substitute K = Kp. Under Assumption [f] it follows that Condition [2holds. Equations
and [39] are equivalent to the desired results.
(5) and (6) Obvious.
O
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Note that [Frangakis & Rubinl (1999, 369) make Lemma [9] (3) (conditoned on the latent
compliance indicator) their assumption, rather than lemma derived from it. What matters is
that, under (latent) ignorability, “[p]Jotential outcomes and associated potential non-response
indicators are independent” (within each level of the latent compliance covariate).

2.2. Bias
For the generic function of the treatment assignment vector, f(X A), the expectation operator
is defined as

E{f(XN}= ) Pr{X*=z|X" e Xqul(f)} f () (40)
€E€Xqet(f)

only when the assignment space is not empty, that is,

Xaet(f) = {z|x € Xpax, f(x) can be defined}
?é @7

Xax = {:c‘:v € [U,inj = 1}.

Specifically, when Xget(f) = Xinax,

E{f(XN}= ) Pr(X"=2)f(z)

where

EXmax
1 1 1
=> > N Pr(xt =a)f(x)
x11=0x12=0 T1,=0
1 1 1 (41)
- Z Z Z {HPr(Xf‘j:xlj)}f(iB) (.- Equation [29)
x11=0212=0 T1,=0 J
1 1 1
= Z z Z (%) f(x) (. Equation [30]
x11=0x12=0 T1,=0

When X4 = 2 is realized and f(x(?) can be defined, Xqef(f) # 0 (" (@ € Xqer(f)) and,
therefore, E{ f(X“)} can be defined.

LEMMA 10 (ARITHMETIC OF EXPECTATION). (1) When Xge(3 ), fM) = Xdef(f(h/)) for
any b € {1,2,..., hmax},

E{ 30N} = YR}
h h
(%)
E{qf(X")} = ¢B{f(X")}

ProOOF. (1)

o3 )
h
= Z Pr{XA:m‘XAGXdef(Zf(h)>}Zf(h)(m)
h h

x€Xaet(Do, M)
=Y > Prx = 2Xt e Xaal /PP (@) (Kot (D FP) = Kaal £4)

h 2€Xqet (™) h

= > E{fM(xM}
h
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(2) Note that f/(X4) = ¢f(X4) can be defined if and only if f(X4) can be defined. Thus,
Xaet(f') = Xget(f)- It follows

E{af(XM}= Y Pr{X"=2[X" € Xalf)}af (@)

CI?EXdef(f,)
=q ), Pr{X"=2|X" € Xuu(f)}f(2)
mGXdef(f)
(. q is constant irrespective of X, Xqet(f') = Xaet(f))
= qE{f(X")}
U
LeEMMA 11 (FuLL ASSIGNMENT SPACE). (1)
1
Ay
(X)) =5
(2) For j' # j and x € {0,1},
1
E(X{ X[ =) = 3
PRrROOF. (1)
11 1
ExH =S 3 - Z {HPr 4 = )}x” (- Kot (X7) = Xnax, Bquation [i1]
x-1:0:c-2:0 . : ],
1 1 1 1 1
—Y Y Y Y P = ag) T P =) b
Ti1= xi(j”—l):O zi(_j’/+1):O T =0 ZT; _7//—0 j 75]”

(where ;" 7& 7)

_ i Z Z . Z { I1 pr(xij :ZL‘ij’)}ZUij

177170 L(]u71>70x1(]u+1) 0 qunfo j/;éj”
1
( Z Pr(X = xZ]//) = ]_)
:E»‘//—O

Z Pr(X;; = z;j)z;; (. repeating for all j"’s except j)

;=0
=Pr(X;;=1)

1
=3 (.- Equation [30])

(2) The third line of the above equalities is equal to E(X;?|ng‘j,, = z) where x € {0,1}. The
desired result immediately follows.
(]

LEMMA 12 (EXPECTATION OF WEIGHTED MEAN). Suppose w € W, 3 € B, and Ko € U
satisfies Condition [1]

(1)
E{E(w|KcX™")} = E{B(wlkiX ™)}
= B(w|kg)
=0.
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(2)
E{E(B|KcX")} = E{E(BlkEX )}
= B(BlkgX ™)
= E(BIkE).
When k4 # 0,
Zj ké,jﬁ-j

B{E(AIKGX ) = S

)

PROOF. (1) Because of Lemma
E{B(w|KeXA)} = E{E(w[kAX ™).
When ké # 0, it holds
E{E(w\kAXA)}

<ZkG JZ wl])

(" Condltlon I, k:GXA # 0, Equations |§|7 and Lemma |10 (2))
na ZE<kG j Z wlﬂ)

(. Lemma )y Xdef z k& Z Hwij) = Xaet(kG. .4 Z iiwig) = Xmax)
= niA Z kG,-jE<Z Xijwz-j) (" Lemma 10| (2), ké,j is constant irrespective of X %)
G i
= niA Z k& Z E(Xjwij) (- Lemma (1), Xdef(z Xjwij) = Xaet(Xjwij) = Ximax)
A Z kG j ZIE wij (. Lemma (10| (2), w;; is constant irrespective of x4
= % XJ: k:G,_j XZ: QWi (" Lemma [11] (1) )

1 .
=— Z ké,j -0 (. Equation [21))
G
=0.

It also holds

KA
B(w ’kG) Zz:zz:ckw (.- Equation [4] and Condition
J i VG,j
Xk Y
Zj ké,-j Zz 1
EA .0
- Z:J2GI»4'J (" Lemma [5] (1), Equation
ng
=0.

When ké = 0, the desired results follow thanks to Equation [5| and kzéX 4=0
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(2) Because of Lemma

E{E(B|KcX")} = E{E(BlkaX")}.
When kg # 0,

Zj Zz ké,.in?B‘j
X Xk, X5
_ Zj ké‘,-j/@'j Zz Xz‘?’

Xk 2 XG
. Zj ké,-j/@'j
Xk
o Z]‘ Zz ké,jﬁj
X Nike
— E(B|k{) (.- Equation [)

E(BlkAXA) = (- Condition [1}, kA X # 0, Equation {4 and

(.- Equation

Taking expectation of both sides of the previous equation, we obtain

E{E(B|k&X ")} = E{E(8|kz)}
= E(B|k&) (. Equation[10] (2))
where the second equality follows because 3 and kzé is constant irrespective of X4 and, thus,

so is B(B|kE).
When k4 = 0,

E(B|k5) =0 (. Equation
S E{EBk&)} =0 (. Lemma[0)
E{EBlkAX")} =0 (. kAX" =0,Equation [f, Lemma [0)

O

LEMMA 13 (SUBSTITUTION). Below, kLC (Equation , nLC (Equation m, Equations
through will be defined or proved in the next subsection.

(1) When K¢ = K holds, it follows that Condition[]] (. Equation[12) holds and
¢ =7p (. Equations[1( and [I1)
kL = kS = kIC = kg = kr (. Equation[T9)
nk =né =nk’ =ng =nr=n (. Bquations and [107)

(2) When K = Kp and Assumption@ hold, it follows that Condition (1| (.. Assumption @
holds and

7¢ =7p (. Equations[10 and[15)
ki =k& =kiC =kg=kp (. Lemmalq (1), Equation [107)
n&=n&=nt" =ng=np (. Lemmalq (1), Equations[31] and [108)

(3) When K = Ky and Assumption@ hold, it follows that Condition (1| (.- Assumption @)
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holds and
¢ =7u (. Equations[1( and [13)
k& =kl (. by definition)
k& =kg (- by definition)
n& =nl (. Bquations Lemmal9 (2))
n& =nS (. Bquations Lemmal[9 (2))

kLS = klC = kp (. Equation[103)
nEC =nlC =np (. Bquation [106)
PROOF. As annotated in the lemma.
PROPOSITION 1 (Bias oF ATE ESTIMATORS: FS). (1) Under Assumption ]
E(7p) — 7 =0.
(2) Under Assumption[d and np > 1,
E(7p) —7 = E(8" — 8% kp).
(8) Under Assumption @ and nf,ng > 1,
E(fy) - 7 = E(8" ki) — E(8° |kp).
(4) Under Assumptions|d and[5, and np > 1,
E(7p) — 7 =0.
(5) Under Assumptions @ and and nk,n& > 1,
E(7y) =7 =0.

PROOF. (1)—(3) Suppose that Xqef(7¢) = Xpax. Thus, for any X € Xax, it holds that
N‘G4 > 1. It follows

E(7¢) — T =E(7¢ —7) (.- Lemma [I0)
=E{E(BT + WT|KcXT) - E(B° + wY|KcXY)} (. Equation24 N4 > 1, (42)
Xaet(7e — 7) = Xaet{ E(B" + w! |KXT) — B(B% + w| KX )} = Xinax)

In addition, suppose that K¢ € U satisfies Condition [I] as well. Applying Lemmas [3] [10], and
to Equation we obtain

E(7) - 7 = E(B" |k¢) — E(B7|kG)- (43)
In particular, when k%L = kS = k¢, Equation 43| leads to
E(B"ke) — E(B|ke) = E(B" — B|k). (. Lemmal[3|(1)) (44)

(1) Under Assumption [1} it holds that Xget(7r) = Xpnax. When Kg = Kp € U, it follows
that

E(7r) —7 = E(BT — 8% kr) (. Lemmal[T3] (1), Equations 43| and
=0 (. Lemmas3|(1) and [5| (2), Equation
(2) Under Assumption[3|and Np = np > 1 (. Lemmal9 (1)), it holds that Xget(7p) = Ximax-.

When K¢ = Kp € U, according to Lemma (13| (2), it follows that Equations [43| and [44] are
equivalent to the desired result.
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(3) Under Assurnption and N[‘}‘ = né >1(- Lemma@ (2)), it holds that Xget(7v) = Xinax-
When Kg = Ky € U, according to Lemma (3), it follows that Equation 43|is equivalent to
the desired result.

(4)(5) Suppose that K € U satisfies Condition [2]. When k& # 0, it follows

E(y ki) = ZP —ylkf = 1)y (. Lemmal7} k& # 0)

= ZP y? =yl =1)y (. Equations[33]and B8 k& # 0 (45)

= E(y*1) (. Lemma D)
= pt. (. Equation [T7])

In addition, suppose that K satisfies Condition [If as well. It follows
E(BA|kE) = E(utkd) — 1 + E(BY k) + E(w?kE) (. Lemmas[3] (3) and [12 (1), w? € W)

— B(pt + B + W k) — pt (- Lemmaff (1))
— By lkd) — i (- Lemmal)
=0 (. Equation [45)
(46)

In addition, suppose that Xgef(7¢) = Xmax- It follows that

E(7) =7 = E(8 |k¢) — E(B|kG) (- Bquation [3)
=0. (.- Equation [40])

(4) Substitute K = Kp. Under Assumption [3| and [} it follows that Conditions [1] and [2
hold. When np > 1, it holds that k5 # 0 (. Lemma ( )) and Xgef(7¢) = Xmax. Equation
is equivalent to the desn"ed result.

(5) Substltute KG = Ky. Under Assumption [2] and‘ it follows that Conditions [1| and

i

hold. When n};,n§ > 1, it holds that k2 # 0 (-.- Lemma )) and Xgef(76) = Xmax. Equation
[A7] is equivalent to the de51red result.

(47)

O

It is well known that in the case of no missing values, 77 is unbiased for 7 (e.g., Imai [2008,
4861). When attrition is matched (Assumption I or ' ) but not ignorable (Assumption I or
, 7y and 7p are biased (except for knife-edge situations such as E(87 — 8%|kp) = 0 or
E(BT kL) — E(B°|kS) = 0) . This is true even if the pair matching is perfectly effective in the
sense that in every pair the realized outcome of one unit is the counter-factual outcome of the
other unit, namely, y? = yz- and y¢ = ygi. Interestingly, both advocates and critics of 7p
seem to share misunderstanding of conditions in which 7p is unbiased. That is, they mistakenly
think that matched attrition (Assumption 2 or [3]) is a sufficient condition. According to King
et al.| (2007)), proponents of 7p, “if we lose a cluster [i.e., unit] for a reason related to one or more
of the variables we matched on [i.e., Assumption , ...we would be fully protected from bias
due to any variable we were able to match on” (490). Dunning (2011), denouncing 7p, argues
similarly that, for 7p to be unbiased, “we have to assume that all units with the same values of
the blocked covariate respond similarly to treatment assignment” (15), that is, Assumption
Both statements, however, are not true according to Proposition|1](2). (Recall that Assumption
leads to Assumption [3])

LATE of Observable Pairs. When kp # 0, define the local average treatment effect (LATE) of
“always-reporting pairs” by

Tp = E(7|kp)
=EB(F+6" - B +w! —wCkp) (- Lemmalq(3))
=7+ E(B" - B%kp) (. kp+#0,Lemmas(3 (1) and (3) and [12 (1
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It follows

E(7p) — 7p = {E(7p) =T} — (Tp — T)
= B(B" — B%kp) — E(B” — 8% kp) (- Equation [A8)
= 0.

Non-compliance. Now, we consider non-compliance cases briefly. Let R’ compliance indicator.

Define 74 accordingly. Define treatment received as
V=RXA*+(1-R)X 4 (49)

and redefine realized outcome as

Y/ = Z XA/yA
A
=> {RX*+(1-R)X *}y* (. Equation[9) (50)
A

= Z{TA’yA +(1-—rYy 11 X4 (. LemmaR)
A

Assume matched potential compliance (r4 = r4)

Denote a set of pairs which share compliance status by

, which corresponds to Assumption

Ir (9" g° {]H (1 -yt =1

It follows that Jr/(1,1), Jr/(1,0), Jr(0,1), and Jr/(0,0) are sets of compliers, always takers,
never takers, and defiers, respectively.

The general ATE estimator is defined as
#(Kg)= E(Y'|KgXT) - B(Y'|KgX©) (51)

only when Né‘ > 1.

Suppose K¢ € U satisfies Condition [1} kL = k:g = kg # 0, and monotonicity (or no defiers,



Supplementary Material 25
Jr(0,0) = 0). It follows

T C
7A_/(I(._G) Z Z kG ]Xl]}/llj B Z Z kG JXZJY;/j
Zj Zz ka,; X ij Ej Ez ka, ;X

(" Equations I and ., Lemma l Condition |1} kL = k& = kg # 0, Ng = ng > 1)
— Z kG, Z V(XL - x9)
= — Z k., Z {rllyl + (U =y 3 X5 = 05 + (=l X5

(- Lemma (5), (2), Equation
{ Z kG - Z yz]XT - yz] Z kG -J Z yzg - yz]Xc)

JE€TR(L,1) J€IR(1,0)
+ Z ka.. Z yw yZJXC)} (- Jr(0,0) =0)
]GJR/(U 1)
Z k‘G]Z y” _ + Z ijZ ym —
j€IR(1,1) j€T R/ (1,0)
+ Z ka.. Z y” =z ”} (.- Lemmas 1] (4) and [2] (1))
JGJR/(O 1)
Z kG Jz{ H +BT+W’L]) (/’Lc—i_ﬁ?_‘_wgw)}XT
jE€IR(1,1)
+ Z kG, Z{ ut+ ﬁT + Wz]) (n" + 53 + sz‘j)}XT
Jj€T R/ (1,0)
+ > ke » A+ 85 +wf) — (€ + 85 +w€ij)}xg} (- Lemma [f] (1))
JGJR/(O 1) 7
Z k‘GgZTz]—F?W” Z /{?G]ZQW
j€IR(1,1) Jj€IR/(1,0)
+ Z ka..; ZQw X } . Lemmas [4] (2) and (3) and[5 (1))
J€Jr(0,1)
(52)
Let np (ka) =3, rg’rg’kg,.j. It follows
E{# (Kg)} { 3 kGJZTZ]+2wZ] + Y kG]Z% E(X,
jE€IR(1,1) j€I R (1,0)
+ Z ka,.j Z2wCE X5 } (. Equation 52 Lemma[L0] (1))
JEJR/(O 1)
Z ka,.; Z =7;; (. Lemmas[5| (1) and [11] (1)) (53)
JGJR/(l 1)

T C/
T ka i1
2nG ZZ G.iTi)

(K
L%( G)E(T”I’T/’I’C/k(;>.
ng
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Let K, = R'R’ ;. It follows

Ar A/ —Ar
kp =

r_;
— TA/,PfA/ ( ,,,A/ — Tﬁl;) (54)
. k—A/
=Rp
= k),
which corresponds to Assumption [3 It also follows that
Np = N4(K}) (. Equation [T6)
=n(kp) (. Equation[54] Lemmal9 (1)) (55)

=np.
Specifically, the intention-to-treat estimator is denoted by
N
T =7 (KF)

:%{ Z Z(Tij+2wlﬂ —l— Z ZQwTXT—f— Z ZQwCXT} (56)

JE€IR(L,1) 4 JE€IR(L,0) @ J€IR(0,1) @
(" Kr € U satisfies Condition |1, k% = k¥ # 0, Equations [12| and

and its expectation is equal to

(k
E(#y) = "EEE) g o Bquation F3)
M (57)

When N > 1, the pairwise deletion estimator is defined as

=)
= Z Z Tij + 2w1] XT (.- Kp € U satisfies Condition |1} Equations
JEJR/(l 1) ¢
andl Np=np >1,kp #0,kp.; =1Vj € Ip/(1,1),kp.; = 0¥j € Jr/(1,0) UJp(0,1))
(58)
and its expectation is equal to
N nr (kp) T1,,Cry.t .. ;
E(7p) = ———E(r|r"'r~'kEp) (.. Equation [53)
np
59
= E(t|kp) (o rT'rkp = (Kp)? = Kp,nr (kp) = nlp, Equation (59)
= ?1/3,
which is the local average treatment effect of compliers ({jlk’» = 1} = Jr/(1,1)).
g p j P 9
When N}, > 1, denote the instrumental variable estimator by
o E(Y’\XT) - E(Y'|X°)
v = XT"XT) _ E(XT”XC) (60)

Ny -
( ) 77 (.- Equations and
n
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because
(.XT/|XT)— (XT/‘XC)
= — Z Z R! XT +(1- jo)Xg (" Equations and

= Z Z{X%r?’ X5 —rSH} (. Equations[T] (5) and 2 (2), Lemma [)
= [ZZXZ :g/{rg' } ZZXT (1-— r } (. Lemmas|[1] (4) and [2] (1))
- {ZZXZT? ol ZZXTl—T (-}

_ ZTT/ < (- Ir(0,0) = 0, Equation

N/
= —L2 (- Equations [54] and [55)

Therefore, when n/, > 1,

r -1
E(7py) = (%) E(7r) (.- Equations [55] and [60], Lemma [10] (1))
=7p (.. Equations [57] and
=E(7p) (. Equation [59)

This means that both 77,, and 7} are unbiased estimators for 7. Note that, according to

Equations [55] 56} 58] and [60}
T}V—TP——{ Z ZQwTXT—i- Z Z?wCXT}
€T (10) J€T(0,1)

which is not equal to zero except knife-edge situation.
Complete Randomization. Only in this part, we assume complete randomization instead of
pairwise randomization. That is, we keep Equation while, instead of Equations [29] and

we assume isoprobability of treatment assignment: for any a:( ), 2@ e XSE}X,

PreR( X4 = W) = PrCR(X4 = 2?), (62)

XSEX = {m‘:c € U,zZmij = n}
i

Expectation operator is denoted by

ECM{f(X = ) Pr{X"=2X" e XEH()}f(2)
zeXGL(S)

where

where

X$R(f) = {z]x € XCB | f(x) can be defined}
# 0.

We assume that K5 € U does NOT satisfy Condmon I but Né‘ > 1 for any X4 e XCR

max?
that is, ng ACR -, n, where
A CR
Z Z K i
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There are ,4.crCya ways of assigning treatment to Né units from né'CR units of {ij|ké i = 1}.
Among them there are ,a.0r_;Cna_; ways of assigning treatment to unit ij € {zg|k:G ij =1}
and NA! —1 units from né CR 1 units of {i'5'|k& ;... v = 1}\{ij}. Therefore, for ij € {2]|k‘G7ij =

1}, it follows
ECM(XAING) = Pr%(x4 = 1INg)
~ PO (X = 1, ) + Pr(VE)
_ p;CR (X{;‘- _ 1, Z X{f‘j, = N§ - 1) <+ Pr(Ng)
g E{’l J ‘kG i’ /—1}\{7’.]}

= né'CR*ICN'G“*l - né»CRCNE;A ( Equation ’
(nA-CR _ 1)| nAACR|

_ G : - G (.- Equation [T92))
{(FT=1) — (NG = DHIING = D! (g7 = NGING!
NG
- AC
(63)
It follows
1 .
ECR{E(Y|Kg X)) = ECR<W ZkG Z]X”yw> (. Equations [4] and [9))
G j i
1
ZECR{WECR< > 0 Xy + Z Xyl |Nd ) }
G zg.kcyu 0 K kG”
1
:ECR{W IECR(XA\NG)yw} (- Lemma )
G A
ijikd =1 (64)
cr(_ 1 NG 4 .
=E (7 > T(;Ryu) (. Equation [63)

1) G,ij
1 A
LACR Z Yij
G ik =1
_ AlLA
= E(y |kG)

In addition, suppose that X{§(7¢) = XEE, (thus, N4 > 1 for any A and X4 € X{R). It
follows
E(fg) = E“Y{E(Y|KeXT) — B(Y|KeX )}
(NG > 1,Xgf (7e) = XGHE(Y | KeX™) - E(Y|KeX )} = XGl)  (65)
— B(y"IKE) — ECIKG) (. Lemmal[[0] (1), Equation )
If we assume Condition [2| but not Condition [1], it follows
EM(7g) = E(y" k&) — E(y©|k&) (. Equation [65)
=pT — % (. Condition 2, Equation [5)
=7 (. Lemmal4 (2))
c ECR(Tg) 7=0.
Or if we only assume kL = kg = kg but not Condition |1} it follows

ER(7¢) = E(y" |kg) — E(y®|ke) (. Equation [63) k; = ki = ky)
= E(7|kg) (. Lemma 3| (1), Equation @
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which is the local average treatment effect of such units that kg;; = 1 or a principal effect
where the corresponding principal stratum is {ij|kq ;; = 1}.
No Attrition Match. When attrition is ignorable (Assumption [4| or but not matched (i.e.,
Assumptions 2| and [3| do not hold), 7y and 7p are unbiased for 7 under complete random-
ization, as is well known, but biased for 7 (=7p) under pairwise randomization (except for
knife-edge situations). An intuitive reason follows. Suppose that Assumption [2| does not hold
and kg,ljl =1, kazjl =0, kg,ljz = kam = 1. Denote Ngﬁj =22 2 KujXijr. In calculat-
ing E{E(Y| Ky X)}, under complete randomization, the weights for Y;;, and Y;;, are the same,
/(3222 kgw) Thus, it holds that E{E(Y|KyX)} = E(y”|kl). Under pairwise random-
ization, however, the weight for Yi;, is I[-E{1/2(]\7[7]:_j1 + 1)} (note that either unit 1jo or unit
2jo is always observed), while the weight for Yj;, is the average between E{1/ 2(]\75 i, T}
(in the case of Xij = 1, where the set of treated and observed units contains unit 1j;) and
E(1/ 2N5’ _j,) (in the case of Xy, = 0, where the set of treated and observed units contains
neither unit 1j; (not treated) nor unit 2j; (treated but not observed)). Since the weight for
Y1, is smaller than the weight for V;;,, E{E(Y|KyX)} is not equal to E(y”|k}) any more.
Relatedly, if we assume R;;(1) = R;;(0) for all i and j but not Assumption [2] and define 7y =
E{Y;;(1) = Y3;(0) | Rij(1) = R;;(0) = 1}, 7y is unbiased for 7y under complete randomization
but biased for 7y under pairwise randomization (except for knife-edge situations).

Below, we give more general argument. We assume pairwise randomization (Equations
and [30] not [62)) again. For K¢ € U and h € {0, 1,2}, let

14 = {3| Yo kb = by
Z ZKGving (66)

JeIG"

= Z Zké,ing. (. Lemma [8])

jeIgr i

NG"

For j € Jél, without loss of generality, suppose kél ;=1 ké,zj = 0 (or renumber 7 accordingly).
Specifically,

M- S0

jerde i (67)
=0,
and
NGt = > (1-X{5+0-X3))
jergt
_ A
= > Xij
jergt
and
N = 3 Sy
JjeIg i
= Z 1 (.- Equation 2) (69)
JEIE?
= |16?

= nf?.
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It follows

Ng = N&° + Ng' + N&?

2
(.- Equations H and JAM N JAY =0 for any h # I, U J&={12,...,n}) (70)

h=0

= Néﬂ + néQ. (. Equations [67] and

Note that 0 < Nél < npAl where

G,max

né,lmax = ’Jél‘
!

JEIG

Assume that Kz does NOT satisfy Condition (that is, for some A, né,lmax > 1). There are

né}xxlaxCNéél ways of assigning treatment to unit ¢ = 1 of Nél pairs from né}max

(see also Equation . Among them, there are a1 _1Cyai_; ways of assigning treatment

pairs in Jél

to unit 1j, where j € Jél, and unit ¢+ = 1 of Néﬂ — 1 pairs from né}max — 1 pairs in Jél \ {j}
Therefore, for j € Jél, it follows

E(X£|Né4) = Pr(Xi‘? = 1|N& —nd?) (. X{;‘- € {0,1}, n&? is constant)
=Pr(X{; =1|Ng§") (.- Equation [70)
=Pr(X{} =1,N4") = Pr(Ng")
— Pr (X;;? =1, > X =Ng - 1) + Pr(NAY) (- Equation [G8)

JEIE G #T
=par 1Cna 1+ par Cyav o (. Equations 29 and
= (né}m‘“‘ — V! + né}ma"! (.- Equation [192))
(0= 1) = (VT = DJNGT D (0~ NGOV
_ Mg
; né,lmax

(71)
For j € J42, it holds
E(X{}ING) = Pr(X{j = 1ING")

(X5 =1) (72)
(. Lemma [11] (1))

o= g
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In addition, assume Né > 1 for any X4 € Xpax (that is, né? >1). It follows
E{E(Y|KGXA)}

( Z Z kG i X ?/w) (. Equations [4] and 9]

:E { Z ZO Xy + Z (1 X{juiy + 0 Xgju5) + Z Zl DT
JEIEe i JETA jeIA? i
rl
—E| 7 { > BN+ D Y ECGINGS )| LemmallD)
G JETAL jeraz i
- 1 .
:E-W{ 1J + Z Z yw}] . Equations [71] and [72))
G jera Gmax jeraz i
NG 1 v+
=E(3r) +E(5 ) > DY
Gmax jeIat jeraz i
Ng' A, A A "é2 A, ALA
= Bt & ) Py (L~ kS )+ B (o o ) By Rk ).
N,qu_'_néQ {y | G( G, z)} N,Gq1+né2 (y | GG, z)

(.- Equations [} [9] and [70)

31

4]

(73)

For integers 7, nymax and a real number p, where Ny > 7 > 0,1 > p > 0, we denote binomial

distribution as ) ) )
B(ﬁ’ﬁmaxap) = Amax Cﬁpn(l - p)nmax_n
(see also Equation [192)). According to Equations [29[ and

¥~ B3

nG max o

C 1 nG,lrnax
= ngt Ol 5 :

Recall that expectation of binomial distribution is

Mmax

Z B n|nmaxyp DPNmax-
Thus,
nélmean = E(NAI)
1 .
= §né1max (. Equation [75)

In general, when q(l), q(2) > 0, since % is convex,

1 1 2
@ @ T

For ¢ > 0,

Al

1 1 A}max G max 1
E<7> - <§>nc Z = a1 O ('.'Equatioan__z[[)
n

Al NG max
NG —|—q =0 n—|-q G,

When nG max 1S an even number, let

Al
nG,max

hmax = 2

(75)

(76)

(77)

(78)
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and note that, for h = {1,2,..., hmax},

Al !
nG max” .
A1 P (. Equation [192)
MG TG e (nélmean - ) {nG max (nélmean - h)}‘
nél !
max"® .
= nG v (. Equation [76)
( max )'{nG X — ( ,2mdx _ h)}' (79)
nél !
max* .
(.- Equation [76])
{nG max (nG mean + h)}'(nG mean + h)'

Equation [192])

1 Crlmcan . (-
Equation [78] leads to
hmax

( 1 ) NG max { ( 1 . 1 ) .
2 —h
2 h=1 nélmean —h+ q nG mean + h+ q ng. ;max nG mean
1
LYy E— Chpa }( Equation [79)
nélmean + qnG max NG, mean

N pax e 1
( ) {Z ys +qnc}max0né}meafh+im +qné}mx0né?mean}

nG mean G,mean

(".- Equation . Where q( ) = nélmean + q, q( ) = =h)

Al

1 o 1\ P8 max
= Al +q Z né}max0ﬁ<§>

nG mean Aa=0
1
= —7—— (. Equation [74] and axiom of probability)
nG mean +q

(80)

When nG ‘max is an odd number, let

and note that, for h = {1,2,..., hpax} and A’ = h — 0.5,
Al C Al —h' = Al C Al +h’ (81)

NG max ~ "G ,mean NG max ~ "G, mean

Equation [78] leads to
hmax

1\ "6 max 1 1 ‘
2 Z Al / + / né’lmax Cnélmean_h/ (.'. Equatlon @
2 h=1 "Gimean — h'+q nG mean T W+ i '
( )nc max i‘
Al nG.lmax né,lmean_hl
ng ,mean t4q
- nc max ( )
nG mean A=0
1
= —g
nG,mean +4q

(82)
Therefore, whichever n4l is an even or odd number, Equations . . and (8 . lead to

G,max
1 1
E( ) > . 83

nG mean
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Therefore,
A2 A2
E< el ) > e (.- Lemma [10] (2), Equation [83| where ¢ = n4? > 0) (84)
G G G,mean G
and
(o) =B i)
A2
n .
<1l- nm—G—i—nM (. Lemma [10] Equation [34)) (85)
G,mean G
Al
_ nG,mean
né,lmean + ’I’Lé2 .
It holds
Al A
E(y”|ke)
Al A2
NG max AL A A 2nG A1, AL A
=— " —F k(1 —ko_ )+ E krky . *.» Lemma 3| (5
né,lmax + 2né2 {y ’ G( G, z)} né}max + QnéQ (y ‘ GG, z) ( ( ))
né‘,lrnean A A A né2 Al AL A :
= Al By lke(l—kg )} + 7 E(y |kgks, ;). (. Equation [70)
nG,mean + ng G, mean + G

(86)

According to Equations and it follows that E{E(Y|K5X%)} is not equal to
E(y?|k8) without knife-edge situation. Thus, Equation 43| does not hold; even if we assume
Condition [2| it does not follow that 7¢ is unbiased for 7; if we assume kL = k:g = kg, it follows
that 7¢ is not necessarily unbiased for E(7|kg) but for a particular principal effect:

E(7¢) = B{E(Y|KeX") — E(Y|KoX“)}
(- N& > 1,X4et(76) = Xaet{ E(Y| K X?) — E(Y|KcX%)} = Xinax)

B Bl (1 — k) + B B ko -]

- [E(]&%)E{quc(l — kg, )} + E(&)E(ycmcka,»] (87)

(.- Equation [73} kL = k& = k)
Ng ng
:E<7)Erk 1— ke +E<7)Erk ke i
N+ ng) PLrkalt = ke )} + B g ) B(rlkaka, )
(.- Lemma [3] (1), Equation [6)

where the corresponding principal stratum is {ij|kgi;(1 — kg,—ij) = 1} U {ijlkg,ijka,—ij = 1};
this is a local weighted average treatment effect.
Equations [84] and [85|imply that the weight for j € Jél is smaller than that for j € Jézz

Al A2
E( A]1VG A2> A11 < AT 1 A2<E< A1nG A2) ,142'
N&H+ng +ng N& +ng*/ ng

nG,mean nG,mean

Below, I will give an alternative, and more intuitive, reason. Denote

N§_; = Z Z K X5
7 [
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For j € .J]Al, assume Né’_j > 1 for any X4 € Xpax. It follows

E{E(Y|KcX™")}
=E{E(y A|k§XA)|Xf‘j = o}Pr(Xf‘j =0)+E{E(y A|kéXA)|Xf‘j = 1}Pr(X1Aj =1)

_E( DD kG X ’yw>;+E{NAj 1(ZZkG”'XA'y“+y1J>};

G A
("Equatlonsland., Lemma [11] (1), kGlj =1 k:G2j =0 NG ;=21

- [ { ZZkGU ’yzj ]\Mlﬂ(ZZkGU'X’J'yU +y17)‘NG ]H

—]]7&] i J#I 0

1 1 1
:fIE{( ) kA G EXA NG vl + ——— A.}
2 NA7j+NA 41 ZZ i NG, —5)v3; +Né‘7j+1y17

- > S i

7 EJAZ )

1 1 1 Né,_j N y
s §E{<NA TN +1>nA1 _1}<1'ylj’+0‘y2j')
J'€I&\{7} G,—Jj G,—j G,max

1

,E(7> A
Tt \Na )

)3 )

Thus, the weight for j € Jél is 1E(7+1> and that for 7/ € JéQ is %]E{(
while the difference is

1E{< 1 + 1 )1} 1IE( 1 )
- i il QU Y
2 WL\NgG NG _+1/28  27ANg 41

1
1 A A >
4\NA_, NA_+1

—_

1
T4 {Néj(Né"j + 1)}
> 0.

For instance, when K = Ky and A = T, the denominator of the weight for j € ng is the
number of other treated and observed units (N7 _ ;) and j itself (+1), though that for j' € JT?

is the number of treated and observed units including j (Ng it 1) in the case of Xi; L' =1 (half
cases) but the number of treated and observed units excluding j (NU ]) in the case of X =0

(the other half cases). Note that Ng _j does not depend on XZ] Obviously, the former welght
is smaller than the latter.

2.3. Variance

Variance. The sample deviation is defined as

D(Q|z) = Q-E(Q|Z). (83)
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where E(Q|Z) = {E(Q|Z)}?}. The weighted covariance and weighted variance operators are

defined as

v(QW,Q®?|z) Vi, (QW|z)

2
= E{ I1 D(QU”L);Z)(Z} (89)
h=1
ViQIZ) = Vviii(Ql2). (90)
It follows that
2
V2, (QW0) = {]:ll;[lD ’ } (. Equation [89) (1)
=0. (. Equation [5)
The population deviation, covariance operator, and variance operator are defined as
D{f(XM)} = FX)-E{f(X)} (92)
VWX, XYY = Vis {1 (xhy
2
= E[[]pir® (x4} (93)
h=1
VHAXN)} = Vis {f(X")} (94)
E[{f (X)) - E{f(X)?
Number of Units. For K¢q € U, let
Ki? = K59(Kg)
= KG’KG,fz
— KoK (95)
= Kg?_z ("." by definition).
We also define
N&© = N (Ke)
= Z Z KaiX{jKa,-i; X~}
= Z Z Kg% XA (" Equation [95, Lemma 2] (1)) (96)

—ZZKg%XA - X4 € U, Lemmall] (5))

This is constant irrespective of A € {T',C} because

ZZKS%X A ZZKSQ X_ (. exchanging i and —i, Lemma [1] (4))

= Z Z KS%XA " Equation [95] Lemma 2| (1))
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Specifically, when Ko = K,
S —
K@ =

when Ko = Ky,

and, when Kg = Kp,
K}iQ =

NEC =

Let

K*9(KF)

KrKp_; (. Equation 03]
1-1_; (. Equation[I2)
Kr (. Equation [12])
NTC(Kp)

ZZK?%XA
ZZKFM
7 %

Np (. Equations [J] and

.- Equation [96])

(. Equation [97)

K*9(Kyp)

KyKy_; (. Equation [95))
RR_; (. Equation[T4)
Kp (. Equation [I6])
NTC(Ky)

22 KuhXg
ZZKW
i

Np (. Equations [0 and

*.» Equation [00])

(. Equation [99)

K*?(Kp)

Kprﬁi ( Equation [95))
RR_;R_,R (. Equation [I6)
RR_; (. Re€U Lemmall(5))
Kp (. Equation [16])
NTC(Kp)

Z Z KI‘S;%XA (. Equation [96)
J

ZZKPM‘X
i

Np (. Equations [0 and

kiE = k"9 (Kg) = kGkE

and, under Condition

Specifically, under Assumption

(T; =n k:TC Zk

kLS = KTC (Ky)
= k; k:U _; (.- Equation [I03)
=rTr® (- Equation[[4] Assumption
=kp (. Lemmal9(2))

(. Equation [I01))

(97)

(98)

(99)

(100)

(101)

(102)
(103)

(104)

(105)
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and
= (k)

=K (. Equation [[03)

J
= Z kp.; (. Equation [I05)
J

=np. (. Lemmal9] (1), Equation [I).

Under Assumption
kp’ = k"“(Kp)
= kzjj;k:g’_i (. Equation [I03)
=kpkp—; (."Lemmalj](1))
= (kp)?> (. Assumption [3)
=kp (. kp €U ,Lemmal[l](5))

and,
nE¢ = n(kLC)
= Z k:}g(’; (. Equation [I04))
J
= Z kp.; (. Equation [L07)
J
=np. (. Lemma[j(2))
For h € {1,2}, let k:gf) € {kL,kS}. Under Condition define
2
(1)-(2) — (h)
nG = Z H kG,~j’
j h=1
which is constant irrespective of X 4.

LEMMA 14 (NUMBER OF UNITS). Suppose that K¢g € U.
(1) When KG = KG,—i;

K¢ = K¢
NG = N§ = N;© = Ne.

(2) Under Condition i

[T ké = K5 = KA,
A

N’GFC —_ ngc
n&” <

(8) For h € {1,2}, let k:gl) € {kL,kS}. When kg) = kg) = kg,

2
[T+ = ke
h=1

ng) = ng) = n8)~(2) =ng.

37

(106)

(107)

(108)

(109)
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(4) Under Condition |1 l, if and only if nG = 0, it holds ké = 0. If and only an
holds kTC =0.

(5)
N&© < N&
Proor. (1) Note

KgQ = KgKqg i (. Equation[95)
= (Kc)* (. Kg=Kg-i)
=Kg (. Kge U Lemmal(5))

It follows
NG = Z Z Kgi; X4 (. Equation [9)
i
= Z Z KG,—in:Z‘? ( KG = KG,—Z'; Lemma (1))
= Z Z KGJ-in;A (" exchanging i and —i, Lemma 1| (4))
i

—A
= N;
= Ng
It holds that

ZZKCS;%XA (. Equation [96)
_ZZKGU x4 (. Equation [T10)

= NG (.- Equation [9)
= N¢ (" Equation [TT1))

(2) It holds

[[%é =kEKE (. Condition )
A

= kLY (. Equation [T03)
[[%é =kE kG (.- Condition )
A

= k:gqZ (. Equation [I03)

and

=> > KaijX[;Ka X% (. Equation
i
— ZZ!{% ij kG ,]XE’” (" Lemma [8))
= Z kG ]kG 4 Z . Condition (I} Lemma [2| (4))
= Z H k&, g " Equation [2))

= ngo (.- Equation [I09)

=0, it

(110)

(111)

(112)
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and
kg% = kg,ijkg,—ij (".- Equation |'1T_E[)
< ké‘,z‘j (. kﬁé,ij € {0,1})
ngC < né (. Equations [31] and
(3)

H kgl) _ (kG)2 (. k(Gl) — kg) = k¢)
h=1
=ke (. kg e U, Lemmall (5))

It is obvious that n(Gl) = n(GZ) = ng.

2

ne @ =S"TI#&. (. Equation [[09)
j h=1

zj:( G3)° (kg G e) (113)

= Z kg.;j (. kg€ U,Lemmall|(5))
J

=ng (.- Equations [36)

(4) If k4 = 0, it follows that ng = 0 due to Equation
Suppose that ké £ 0. Since K¢ € U, there is j such that k:é’,j = 1 (for, otherwise, ké =0).

Thus, according to Equation né > 0.
Therefore, kzé = 0 is equivalent to né =0.
Similarly, we can show that k:gc = 0 is equivalent to ngc = 0.

(5)
Kg% = KqijKq—ij (. Equation [I03)
< Kgij (. Kg-ij€{0,1})
Ngc < Né (. Equations [9] and [96] )

LEMMA 15 (ARITHMETIC OF DEVIATION AND VARIANCE). (1) When Z®) # 0,
D{D(Q|z")|2*} = D(Q|Z®)

(2)
Vi {D(QM|2)|2} = Vi, (Q™|2)

(3) When ZWU =U €U for h € {1,2},
V2 (2MQM ) = V2, (@MIU)
(4) 2
V(@ + dn@"12) = (T abs) Vi (@1 2)
h=1

(5)
D(Y Q"|z) =3 D@Q"|2)
h

h
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In particular,

DY £Q%|z)=D(Q"|2) £ D(Q®2)

(6)
Hina (1) Hinax (2) wx(h)
S V@M HMZ) = v 1( Z hH(h))‘ z)

H(1)=1 H(2)=1

In particular,

2
> VIQW|Z) +2viL,(@M2) = v2(QY £ Q¥ 2)
h=1

(7)
Vi (@W|Z) = (ﬁ "|z) - f[ Q"M)z)

h=1 h=1

(S)PVhen I(G :ilfgf_b
V(Q Qi|KcX") =V(Q,Qi|KaX ™).
These hold even if we replace E(-), D(-), and V(-) by E(-), D(-), and V(-), repsectively.

ProOF. (1)

E{D(Q|Z2")|2®} = E{Q - E(Q|2")|Z®} (- Equation B§)
= BE(Q|Z2®) - E{EQ|Z")|Z®)} (. Lemmalf (1)) (114)
= E(Q|Z?) - B(Q|ZV) (. Lemmalfy(3),Z® #0).

Thus,

D{D(Q|z")|Zz?}
= D(Q|ZzY) - E{D(Q|Z")|Z®} (- Equation Bg)
~ (Q- F(QIZV)} - {E(QIZ®) - B(@Q|ZV)} (- Equations 5§ and [[T4))
= Q- E@Q|Z?)
=D(Q|Zz?%) (. Equation [88])

(2) When Z = 0, this is obvious thanks to Equations [f| and [88] (or Equation [91]). Otherwise,
2
VA {D@Q"|2) 2} = B[ [[ DID@Q™"|2)12}|Z] (- Equation
h=1

2
- E{ }ED(Q(}”]Z)‘Z} (- Lemmal[T5] (1), Z # 0)

=V2,(QW|Z) (. BEquation
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Ve (2" QM)

= E{ ﬁ D(Z(h)Q(h)|U)‘U} (" Equation
h=1
=F ﬁ{Z(h)Q(h) - E(Z(h)Q(h)|U)}‘U] (".- Equation
—E ﬁ{Z(h)Q(h) - E(Q“lHU)}‘U] (.- Lemma [3] (4))
h=1
=E f[ u{zMqQ™ — E(Q(h)|U)}‘U] (U € U, Lemmas|[1] (5) and ] (4))

—E HU{Q EQW|U) }‘U] (- ZWU = Ufor h € {1,2})

=F H{Q(h EQM|U) }‘U} - U € U, Lemmas 1] (5) and [3] (4))

= E{ H D(Q(h)|U)’U} (" Equation 88)

h=1
= V}?:l(Q(h)\U) (".- Equation

(4) When Z = 0, thanks to Equation both sides of the equation are equal to each other
(zero). Below, suppose Z # 0. Note

D(Qconst + QmultiQ’Z)
= Geonst + qmulti®Q — E(Geonst + gmuti®@|Z) (" Equation
= {qeonst + qmutiQ} — {Qeonst + gmui E(Q|Z)} (- Z # 0, Lemma 3] (1), (2), and (3))
= tmui{Q — E(Q|Z)}

= gmutiD(Q|Z) (. Equation [8§)
(115)

Thus,

2
h .
Vh2=1(q((?01)15t + qmultlQ(h |Z E{ H D qconst + qmultlQ(h ‘Z ‘Z} Equatlon

2
= E{ H qmult1 h)\Z ‘Z} " Equation [115))

(H ) E{ H D(Q™"|2)|Zz} (. Lemmaff(2)

<H qmultl) Viii(Q™|2) (. Equation i)
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()

D(;Q(h)‘z> = Xh:Q(h) - E(ZQ“”’Z) (" Equation [88))
=> QW ZE Q™|Z) (. Lemmalfg (1))
h

= Z D(Q *.» Equation [88)

In particular,

= QY +QY)—{EQY|Z2)+ EW@Q"7|2)} (. Lemmaf(1))

-E@QY(2)} +{QY - E(QY)|2)}
=D(QW|2)+ D(Q?|Z) (. Equation [88)

(6)
Hs (1) 2 Huwn)
V2, < H(%::l QU H(h))‘Z> - E{ ;‘[1 D( oy Q" HUL))‘Z) ‘Z} (.- Equation [00)
BT S D@27} Lemma 1 5)

H(1)=1 H(2)=1 h=1

- V(@) Z)

>

In particular,

2
> viQM|z) +2vi, (@™ Z)
h=1
2 2
=3 BUD@Q™|2)*|2) + 25{ ] D(Q(h)|Z)‘Z} (.~ Equation
h=1 h=1
2 2
= B[ > (D@ |2)* +2][ DQ"|2)|z] (- Lemmaf (1))
h=1 h=1
= E{D(Q" |Z> +D(QY|2)}?|Z]
= E{DQV £Q®|2)}*|Z] (. LemmallF (5))
=v2QW + ]Z) (" Lemma [00)

h
ax( 2
= Z Z E{ HD(Q(h’H(h))\Z))Z} (. Lemmas [3] (1

) and [ (1))
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Vi, (Q™|2)
= E[{Q(l) - E(Q(l)]Z)}{Q(Q) - E(Q(Q)]Z)HZ] (" Equation [90])
= E{QYQY + EQV|2)E(Q?|2) - QVEQY|2) - EQ"V|2)Q? |z}
=B(QMQY|2) + E{E(QY|2)E(Q?|2)|z} - E{QVE(QY|2)|Z}
- E{E(Q“)\Z)E{Q ®2)|Z} (. Equation[3 (1))
=EB(QMQY|2) + EQW|2)E(QY|2) - EQW|2)E(Q?)|2)
—-EQY|Z)E <Q<2>\Z> (. Equation [3] (2))

2
=5(I1e"|2) - HE Q")2)
h=1
(8) Note
v(QYW,QY|z) = E{D(QW|2)D(Q?|2)|Z2} (. Equation
= E{D(Q"|2)D(Q"|2)|Z} (116)
= V(Q(Z), Q(l)!Z) (".- Equation
Thus,
V(Q,£Q_i|KeX™)
=£V(Q—i, Q|KG,71'X:{A) (. K¢ = Kg,—i, Equation Lemmas [2| (1) and [15] (4))

= V(Q,+Q_;|KgX ). (. exchanging i and —i, Lemma [17] (4))
(117)

O

LEMMA 16 (SQUARE OF SUM). Let [ be index of Q where, in the case of =1 and L =1=
{1,2}, given j,

Q=Qiji > =Y,
lell i€l
in the case of l=j and L=J] C{1,2,...,n},
Ql = Q]7 Z = Za
lell 7€l

in the case of l =17 and L =1 x ],

Ql = Q’L]) Z = Z Za
lel jel el
and, in the case of | € L = {0, 1},

IS

lell le{0,1}
(1)
2
S Y Mew-11 ¥ o
)EL(2) h=1

1(1)eL(1) 1(2 h=11(h)€L(h)
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(2) For h € {1,2}, suppose that, for some fx(-), q(h),ﬁEQ, and f2pp, all of which are constant
irrespective of XM ¢ {XT X},

(h)  _ (h) y (h)
Quiy = Ix(Xy)a (118)

2 o) .
Pug if (1) =12
s{ [Loxxii)} = {f?ii if zglgﬂgzi e

fur 3 T1,) =%l TLCL) (120

It follows

(5, 3 M) Faon [l ¥ ¥

) U(2)€L(2) h=1 leN?_, L(h) h=1 1)eL(1) !

>, > HQI = ). 2 QuQe

1(1)€L(1) 1(2)€L(2) h=1 1(1)eL(1) I(2)€L(2)

Z Qi) Z Qi2)

I(1)eL(1) 1(2)€eL(2)

Z Ql )( Z Q1(2)>

l(l)e]L 1(2)€eL(2)

= H Z Ql(h

h=11(h)eL(h

(X)) (h))} (.- Equations [TT8)
(121)
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Therefore,

Z 2 HQ/”)

(1) [(2)eL(2) h=1

2
Z Z < H ) . Lemma [10] (1), Equation

1(2)el( h=1

2)
. =(ITef)+ ¥ 3 s(ITef)

leM?_, L(h) I(1)eL(1) 1(2)eL@\{1(1)}  h=1
2
= Z e H q " Z Z I?pr H ql((hh)) (".- Equations and [121))
len;_, L(h) I(1)eL(1) I(2)eL(2)\{I(1)} h=1
_r2 (h) . 79 (h)
=Prq ). qu +/p ( Z > H l(h > qu )
1€M;,—; L(h) h=1 [(2)€L(2) h=1 Zemi L L(h) h=1
) ) (h (h
= (*pqg — *DF) Z qu)+f2DF Z Z qu)

leN;_, L(h) h=1 (1) I(2)eL(2

O

LEMMA 17 (SQUARED MEAN). Suppose that K¢ € U satisfies Condition [l For h € {1,2},
let w® € W, kg, kI € (KL, kG}, XM € {XT, XCY}.
(1)
2 2
B kox") = (H o)
h=1

= Vi (wke)

(2) When k 7é 0,
2 ) n(1)~(2) 2 o
h h _ 1) 2 G 2 h
E{ h”lE(w( ks X ))} ={2.-1(xW =x®) 1}n(c) & Vi 1(w( >‘h||1k:G )

In particular, when kg # 0,
1
E{E(wlkaX*)}?] = @VQ(w\kG)

PrOOF. (1) When kg =0,

2

E( I1 w(h)‘ngA> - E( I1 w<h>(kG> (- keXA = kg = 0)
B ? :lEquatlon b))

(".- Equation [97))

>
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When kg # 0,

E(ﬁ w(h)‘k:gXA)

)

Ny J> . Equations [2] and

_ Zj Zz kG, Hh:l Wij
Zj > kG,
2

= E( H w® ‘kig) (. Equation [)

It also holds that

Vi (@ "k) = B( I w® |k ) - 1 B@®lke) (- LemmalTH (7)
o i
= B( ﬁ w<h>(kG) (- Lemma [ (1))
o
(2) Denote
X2po{i(1),i(2)) = E(ﬁX%J (122)
and, for any j(1) # j(2).
Xopr = E(}f[le((hh)n(m)
E{Xza)a VBB Xidin) (123)

,E( B (-;j(l) # j(2), Lemmas [T0] (2) and [T1] (2))
(- Lemma [11] (1))

NN
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It holds that

2
h
E{ I1 E(w(h)\k(G)X(h))}
h=1
X 0

2 i Sion K
(h) £~i(h) Gzh h)“*i i(h)j . h
:E(H J ()J() ()((h)) ()()) (','Equatlonsand "’(0)750)

h)
h=1 Z‘ (h) Zz’(h kGi(h)j( h)“*i(h)j(h)

= 1 ( H Z Z k X(};Z)J(h) l((h)) (h)> (. ( )ng) is constant irrespective of XA)
h=1j(h) i
- (ZZZZ T A2, 0 Xl ) Lomma [T (1),
(1) G B (h)j(h)“i(h)j(h)

where I(h) = i(h)j(h),L(h) =T x J,J = {1,2,...,n}, Qi) = k&0 X0 o@siimsom)

(1) ZZ( 2po{i(1),i(2)} = X2or] Y TT kG imscn
J

G i(1) i(2) h=1
+X2DFZZHk(h z(hh J(h))
j(2) h=1

(- Lemma (2), where I(h) = j(h),L(h) ={1,2,...,n}, fX(Xl((f;z))) _ Xi((hh))j(h)’
h) — __
ql(( )) k(G )J(h) (h)J (h)’ g = X2peli(1),i(2)}, FPpr = X?pr)

2
- n<1>1n<2>{ > ( 1 KG) 2D [Xeali(1).i(2)} - X7or| [T wii,
G ‘G j  h=1 i(1) i(2) h=1

2

’pr Z Z Z Z H k‘GJ(h z(h g(h)} (".- Equation [123))

(1) 4(2) (1) i(2)

=W{z<ﬁkﬁzz>z{{xzmm or T )

¢ 7 ha i h=1
(gt T3]+ T S TS Kl
(-,-Lemma(1), where I(h) = i(h),L(h) = {1,2}, Ql = fj(h)wg(h;f)j(h))
L PR
(- Lemma(l), Equation [21)
(1) Z(ﬁ G])Z{XzEQH XQEQ(i,—i)}}ﬁlwf?)

(124)
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When X = X@ = X4 it follows that

2
X2p0li(1),i(2)} = E( I1 X;(‘h)j) (. Equation [[22)
h=1

) (125)
{2 it §(1)=i(2) (. Lemmas[](5) and[[T(1)

0 if (1) #4(2) (. Lemmal2(3))

and, therefore,

2 2
IE{ H E(w(h)|kgL)X(h))} = (1)1 @ Z (H kgL)j> Z % H wg-b) (.- Equations [124] and [125))
J

h=1 ng g h=1 i h=1
g ( w(h)‘ ﬁk(h))
(1), G
G h= h=1
(1)-(2) 2
_ g 2 h (h) ..
= thzl (w( )‘ kG ) ( Lemma (1))
ng Ng h=1

(126)

In addition, when w® = w® = w, kg) = kg) = kg, it follows that

2 2
IE{ H E(w(h)\k:gl)X(h))} = T%V,?:1 (w‘ H kg> (".- Equation Lemma [14] (3))
h=1 ¢ h=1

1
= —V3(wlka) (. kg €U, Lemmal[] (5), Equation[50)
G
Similarly, when X = X4, X = X =4, it follows that
?EQ{i(l)v i(2)} = E(X{?Uin?;;j) (. Equation [122)

0 ifi(1)=4(2) (. Lemmal2(3)) (127)
% ifi(1) #i(2) (- Lemmas[g (4) and [[T] (1))

and, therefore,

h=1
2 2
= n(l)ln(g) Z ( H kg)j> Z ( — %) H wg-L) (. Equations and
G "G J h=1 7 h=1
ng)‘@) ) . 2 "
_ _thzl (w ‘ H kg )
ngng h=1

PROPOSITION 2 (VARIANCE OF ATE ESTIMATORS: FS). (1) Under Assumption [1]

1
V2(#p) = — V3w’ + wC|kp).
ng
(2) Under Assumption@ and np > 1,

) 1
V3(7p) = EVQ(wT + wYkp).
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(8) Under Assumption @ and n,n& > 1,

1 1 2
V(i) = —= V2T kD) + 5 VAW k) + e V(W wCkp).
ny ny nyng

PROOF. Suppose that K € U satisfies Condition [I| and Xgef(7g) = Xpax. Thus and
according to Equation for any X € Xpax, it holds that Né‘ = né > 1. According to Lemma
(4), it holds that kg, # 0. It follows that

V2 (7g)
=E[{7¢ — E(%G)}Q] (".- Equation (94| where f(XA) =17q)
= E([(fe — 7) — {E(7c) — T}*)
=E({E(B" +w'|KaX") - BB + w°|KaX )} — {E(B" |kG) — E(B°|KG)})
(.- Condition 1} Xger(7¢) = Xmax, NG > 1 for any X € Xpax, Equations [24] and
_ B([{B(F7 + wTKEXT) - B(8C + wCkGX )} — (B(ATIREXT) — B(ECKGX)}P)
(" Lemmas |8 and [12] (2))
E{ BT K5XT) — B@CREX)] (. Lemma (1))
E[{ BT KEXT)} + {BwC kS X)) — 2B(wT [KEXT) B(wC kG X))
B[{B(wT K5XT)}] + B B(WCIRE X)) — 2B (o kG XT) E(wC kG XC)}
(- Lemma [10] (1))

L o 1 Lo ooy, 2068 C\.TC
— V(W' |kg) + V(W k) + T CV( ,wkg)
e ng rellve
(. k:T,k:G;éOLemmasu ) and [17] (2)).

(128)

In particular, when kL = kg = kg,

1 1 2
V2(7g) = @VQ(wT|kg) + %V2(wc k) + %V(wT,wC |kc) (- Equation Lemma [14] (3))
R I R e .
= n—V (w' +w"lkg) (.- Lemmall5 (6)).
G

(129)

(1) Under Assumption 1} it holds that Xqef(77) = Xmax. When K¢ = Kp € U, according
to Lemma, (1), it follows that Equation is equivalent to the desired result.

(2) Under Assumption [3jand Np = np > 1 (. Lemma[9] (1)), it holds that Xqef(7p) = Xmax-
When K = Kp € U, according to Lemma (13 (2), it follows that Equation is equivalent
to the desired result.

(3) Under Assumption and N} =nit > 1 (- Lemma@ (2)), it holds that Xgef(70) = Xmax-
When K¢ = Ky € U, according to Lemma (13 (3), it follows that Equation is equivalent

to the desired result.
O

In terms of my notation, Imbens & Rubin| (2015} 227) and Imai| (2008}, 4861, Equation (8))
formalize V2(7r) as

2n/2

> WS+ uly) — 05 + vap)}?

i=1

1
(2n)?
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which leads to

1
1z 2 AW+ B W) + (uF + BT + W)
J

— (% + B5; + w§) — (u" + B3; +wy;)}? (. Lemmald] (1))

1 .
= in2 Z{(wg + Wﬂ) - (chj + ngj)}2 (" Equation [I8])
J

— 471# > {2(wf; +wl})}? (. Equations [[9))
1 ZijS +w])?
PR S
- %E{(wc +w )21} (- Bquation[iZ (2))
where B = (W + w')? = {- (W& + W)} = (WG +w!;)* = B)
_ %VQ(wT +wCkp) (- Lemmal[[7 (1))
= V?(#r) (. Proposition 2] (1))

Thus, our representation and theirs of V2(71) are equivalent.
It follows:

V2(fy) — V(7p)

1 1 2np
= V2w |k) + 5 V2w k) + 7 V(w”, wCkp)
ny ny nyng

1 1 2
VAT ) + V2 ) + V(T )
np np npnp
(" Proposition [2| (3), Equation [128))
_ {”Pvz(“’T”’”g) — 1}LV2(lenp) + {nPVQ(wC‘”g) - 1} !

npV(w”kg) R Ie
nLV2(w?|kp) np n§V2(wCkp) np (W lkr)

n 1 T C
+2<nTnC—1)EV(w ,wC ke p).
U''U

Note that
V(wik) = B{(w")’|k(} (. Lemmall7] (1))

- Z’gmwp} + (1= TR B{@ kgt~ kp} (- Lemma[B](5), v} # 0)

U
U
np np
= %V2(w‘4|lﬂjp) + (1 — 77/6)‘/2({")14“{’6 N K/P) ( Lemma (1))

Therefore,

n — N
V3w ng) = V3w kp) = VAWK — mp) = Vi kp)}.

(130)
U

A
ny

In the case of n%np > 0, if and only if V?(

wilkft — kp) > V2(wh|kp), it follows that
U
V2(wA|kf) > V2(wh|kp).
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2.4. \Variance Estimator
2.4.1. Derivation
Neyman Variance Estimator. First, I derive Neyman variance estimator in a different way from

Imbens & Rubin| (2015, 92). For K¢ € U, suppose Né‘ > 2. According to Lemma (1),
A_yA_ A gA

A natural estimator of p? is E(Y |KgX4). When we observe X{} = 1,Kgi; = 1 and, thus,
y” Y;; and regard B4 as 0, we may estimate w . by

&) =Yy —0— BE(Y|KeX™?).

Therefore, we may estimate w” by
A= KaXAD(Y|KgXA). (131)

A natural estimator of V2 (wﬂké) is

NG VZ( A|KGXA)

NA
NA
NAG VHK;X*D(Y|KeX")|KeX"} (. Equation [[31)
NA
NAG 1V2( (Y\KGXA)]KgXA) ('.'Lemma (3),Kg,XA e U, Lemma (5) and (6))
NG 2 A
= NA V (Y|KgX*) (. Lemma (15[ (2)).

(132)

By estimating V2(wA|ké) in Equation m by Equation 132|, replacing né in Equation m
by Né‘, and dismissing the third term of Equation 128|, in the case of Né‘ > 2, I derive Neyman
variance estimator of V2(7g) as

3 ) 1
Neman () = 7 1v2(YyKGXA), (133)
A G

though we do not suppose Condition [I| and Xget(7¢) = Xmax (as we do in deriving Equation

128). Note Equations |12 and

In terms of my notation, Imbens & Rubin (2015, 92, 228) regard a pairwise randomized
experiment as a completely randomized experiment and apply VNe™an(75) which they define

PP 33X - B XY
A

and which leads to

Zin_lz = XAZZXA{YU B(Y|XA)?
2 .

3

= Z i 1E[{Y - E(Y|XA)}2|XA] (. Equation [)
A

1
= Z VQ(Y’XA) (.- Equations [89 and

ol
_ VNeyman(%F) (".- Equations and [133))

Thus, our definition and theirs of VNeY™an (7.) are equivalent.
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Adjusted Neyman Variance Estimator. Actually, thanks to pairwise randomization, we do not
have to give up estimating the third term of Equation Even if X {J‘- =1, noting w4 = —w=A

—i
due to Equation in the case of Kg _;; = 1, we may estimate wi;A by (I)ZGA = —d):f]‘- =
—{Y_;; — BE(Y|KgX~*)}, which is available because X:Zf? = 1 and y:f; = Y_;; is observed.
When Ngc > 2, it follows that KgQXT # 0 (for, otherwise, due to Equation Ngc =0, a
contradiction) and we may estimate V(w?, w®|kL") by

Ngc T C T C
WV(GJ 7_(:)72‘KGX KG,—Zsz)
G
NE© T T c c SQxT
= _WV{KGX DY|KgX" ), Kg_i XZ,D(Y_;j|Kg_; X=,)| K" X" }
G
(".- Equations [95| and Lemmas [2| (4) and [15] (4))
NIC
G

S
- _WV{D(Y\KGXT), D(Y_i| K¢ i X%)| K52 X))

(- Kg, X* € U,Equation Lemmas (5),12 (4), and [15] (3), where Z(M) = Ko X7,
QY =D(Y|KeX"), 2% = K¢ i X%, QP = D(Y_i|K¢ . X%),U = K;0XT)

NTC

— B [D{DYIKX"| KXY D{ DY Ke X KX KX
ZC —

(.- Equation [R9)

NTC’
zC —
NTC g

- —ﬁV(Y, Y—i|KGQXT) (" Equation [90))
¢ —
NTC s

- _ﬁV(Y7Y—i’KGQXA) (.- Equation 95, Lemma [15] (8)).
zC —

(134)

By estimating V (w”?, w®|kLC) by Equation and replacing n5¢ by NL in the third term
of Equation and estimating the first and second terms of Equation by YNey man(z-) in
the case of NZ© > 2 (which implies N4 > 2 according to Lemma [14] (5)), I propose adjusted
Neyman variance estimator of V2(7g) as

2(NEC)?
NINGIVET — 1)

~ . man / ~ 1 S

VAT ) = D a V(Y IKeX ) - V(Y. YL|K2 X, (135)
A

though we do not suppose Condition and Xget(7a) = Xmax- Note Equations through

LO2)

Pairwise Variance Estimator. Suppose K¢ = K¢ —; and Ng > 2 (c.f. Lemma|14] (1)). Note

ol =% = KgX"D(Y|KegXT") - Ko XY, D(Y_i|Kg_;X%) (. Equation [I31)
= KeXT{Y - E(Y|KcXT)} - K XT{Y_ ;- E(Y_|KgX")}
(.- Equation [88) K¢ = K¢,—;, Lemma [2| (1)) (136)
=KoXT{(Y -Y_))—E(Y - Y_i|KgXT)} (. Lemmal3(1))
= KeX'D(Y - Y_i|KgXT) (. Equation [8g)

By estimating w* by Equations [19| and we may estimate VZ(w” 4 w®|kg) by

Ng

2T o KeXT). 137
Ne 1 (@8 —@Z|KeX7) (137)
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When Ng > 2, by substituting Equation [137| and replacing ng by Ng in Equation [129] 1
define the pairwise variance estimator of V2(7¢5) as

TP (7) = Nlc{Niv Ve - aKexT)
NG - 1V2{K(;XTD(Y Y |KcXT)|KgXT} (. Equation [T36)
- NGl— VDY - Y |[KoX ") KX} (. Lemma 5] (3)) (138)
_ NGl_ VY — Yo KeX") (- Lemmal[F(2))
_ NGl_ VY —Y[KoX4) (- Lemmal[T ()

Note that we can define Vpair(%p) (- Kp = Kp_;j, Nr > 2, Equation and, in the case
of Np > 2, VPar(7p) (- Equation [25) but not VP () (because it is not always true that
Ky = Ky ;). Note that Equations [12| and

In terms of my notation, Imbens & Rubin| (2015 227) and Imai (2008, 4861, Equation (9))
define VP2 (7 as

A2
2n — Z{T — 7r}7, (139)
where
#5) = _2X] - 1Yy (140)
Note
= E(Y|KrXT) - E(Y|KrX®) (. Equation[IT]and
= E(Y|KrX") - E(Y|Kr_;XT,) (. Lemmal (1), Equation (141)
= BE(Y|KpX") - BE(Y_i|/KrXT) (. exchanging i and —i)
= EBE(Y - Y |KrXT) (. Lemma[3)
Equation leads to
1 2
m Z { Z(sz — )Yy - BY — Y_i\KFXT)} (.- Equations [[40] and [[7)
=0 =D ZZKFJ @X5 - 1)V + X%, - )Yy — B(Y — Y_i|KpXT)}?
== Z Z Kpil{2(X5)? = xWi; + exExT, — XDV — XEE(Y — Yo | KpXT))?

= m Z > Kpi{X5Yi; — XYy - XEE(Y - Yo |[KpXT)} (- Lemmal] (5) and 2] (

= ! n v T\12

Tl 1) T, 5 KX ;ZKFWXW{% Vo) = B(Y = Yoi| KpXT)}

- ni 1E[{(Y ~Y.) - E(Y - Y ;| Kr X1} KrXT] (. Equations[3] (1) and
1

= CE{D(Y - Y | KrXT)}?|KrXT] (. Equation S8)

n_

= VA(Y — Y |KrXT) (. Equation [90)
NF 1

_ Vpalr(TF)_ ( Equations and [138)

3))
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Thus, our definition and theirs of Vpair(ﬁ:) are equivalent. Note that, in deriving the variance
estimator, Imbens & Rubin! (2015 “assume that the treatment effect is constant and additive,
not only within pairs but also across pairs” (226), namely, according to Lemmas 4| (3) and

(1), w" —w® = 0 and, thus, B — B = 0, though we assume 87 = 3¢ = 0.

2.4.2. Properties

LEMMA 18 (FS EXPECTATION OF F'S COVARIANCE). Suppose that Kg € U satisfies Con-

dition[]l For h e {1,2}, let w,w™ € W, 8,8M € B, k¢ € {kL,kS}.
(1)
E{Vi_, (B ke X )} = Vil (8" k)
(2) When kg # 0,
ng — 1

E{Vizy (@™ |kaX ™)} = Vi (0" k)

(3)
E{V(8,wlkeX ™)} =0

Proor. (1) Note
D(B"keX") = B" - B(B™[keX™") (. Equation[B8)
=" —E(B"|kc) (. Lemmal[lZ(2))
= D(8"|kg), (. Equation[sg)

Let )
g =11 DB"ke)
h=1
It follows
2
BLi= H D(,@(,hl)“cc) (. Equation [I43)
h=1
2
= H D(ﬂ(h)lkc) (. Equation [20)
h=1
=3 (. Equation [[43))
B eB
Thus,
E{Vi_1 (B ke X )}
2
=E [E{ H D(/B(h)’kGXA)‘kGXA}] (.- Equation [89]
h=1
2
=E [E{ H D(/B(h)’kG)‘kGXA}] (. Equation [I42)
h=1
2
= E{ H D(,B(h)’k(;)‘k(;} (- Lemma (2), Equations and [144))
h=1
= V2, (BW|kg) (. Equation
(2) Note

D(wlkg) =w — E(wlkg) (.- Equation [88)
=w (. Lemmall2] (1))

(142)

(143)

(144)

(145)
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Let
2
g = [
h=1
It follows
2
B = H w(_}? (.- Equation [I46])
h=1
2
= H —w® (- Equation [21)
h=1
2
- H w
h=1
= 3" (.- Equation [T40)
3 eB
It holds
(B(([1 k)
E{B( T]w® |kax"
h=1
2
= E( H w() ‘kﬁg) (" Lemma [12] (2), Equations and [147)
h=1
2
= E{ H D(w(h)’kg)‘kg}. (.- Equation [I45))
h=1
_ V2 (h) .. :
=V (w'kg) (. Equation [90)
Thus,

ng — 1
= Vi (@M k)
ng
(3) Let
W = PBw
It follows

w'; =pP_w_; (. Equation[49)
= B(—w) (-." Equations[20] and
= —w' (.- Equation [T49)
swew

55

(146)

(147)

(148)

(149)

(150)
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Thus,

E{V (8, wlkcX")}
= E{E(Bw|kcX*) — E(Blka X ") E(w|kaX )} (. LemmallF (7))
= E{E(w'|[kg X))} — E(Blkg)E{E(w|kgX™)} (. Lemmal[l0and[12 (2), Equation
=0— E(Blkg)-0 (.- Lemma[12) (1), Equation [L50)
=0
(151)

0

PROPOSITION 3 (B1AS OF THE NEYMAN VARIANCE ESTIMATORS: FS). (1) Under Assump-
tion [1]
1

BTV ()~ VA(r) = o (VAT k) + VA8 i)} — Vi ).

(2) Under Assumption[d and np > 2,

B{TNmn (7))~ VA(p) = (VAT k) + VAE i)} — VW)

(3) Under Assumption@ and n,n§ > 2,

irNeyman [~ A 1 1 2np
E{VNevman (7)) — V2 (7y) = ———V2(BT|k{;) + ———V2(BC|kG) — V(0" ,w kp).
ngy — 1 ng — 1 nyng

PRroor. Note

D(y*|Z) =y* - E(y*|Z) (. Equation[8)
:“A+BA+WA_E(HA+ﬂA+wA|Z) (‘.'Lemma(l))
= (u' — p*) + {8* - E(8Y2)} + {w" — Ew"|2)} (. Lemmal)
:D(:@A|Z)+D(WA’Z) (. Equation [8§).

(152)

Suppose that Kg € U satisfies Condition |1 and Xdef{VNeyman(%G)} = Xpax. It follows that
nd > 2, k& # 0 (due to Lemma [14] (4)), and
E{V*(Y|KcX")}
= E{VH Y XA KeX"} (. X*eU Lemmall (5) and [15] (3))
= E{(V2(y" XA|kAX")} (. Equation 22, Lemma[g)
=E{V2(y* k& X} (. Lemmall5(3))
= E(E[{D(y kXN kAXA]) (.- Equation
= E(E[{D(B k& X ") + D(wkAX )V kAXA]) (. Equation [T52)
= E(E{D (B k& X )P kG X)) + E(E{D(w? kg X 1)} (kG X A))
+ 2E[E{D(B|kAX ") D(w kA X ") kAXA}] (. Lemma [I0)
=E{V* (B kX ")} + E{V2(w’|kGX ")} + 2E{V (8", 0" |kGX ")} (. Equation

(153)

1
— V3 wk§) +0 (. k& #0,Lemmal[I8)

A _
= V(B kE) + ~Cm
g
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Since Xpax = Xde f{VNeyman( )} € Xaef(7a) € Xax, it holds that Xger(7¢) = Xmax. Therefore,

E{vNeyman( )} V ( )
1 onLC
- E{ Z NA VQ(YiKGXA)} {Z —AV2(wA‘k;é) + TGCV(WT,WCVCEC)}
RRKE nAN

GG
(. Equatlons [128) and Xaet(Ta) = Xmax)

_ V2 A4y 4 ng — 1V2 Ay LVQ Al 2ngc v C|RLC
Z (B7kG) + —— (w”[kg) TVI(WIkG) | — (W', W k)
ng ng n&ng

(. Equatlons . 36] and [153] Lemma [10] )

_ Z 2nTC

T VABkG) - SV (W wh ke
71 e~ ”G”G

(154)

(1) Under Assumption [1} it holds that Xge{VNeyman(7:)} = X,y (- Equation Ng =
n > 2). When Kg = Kp € U, according to Lemma [13] (1), it follows that Equatlon is
equivalent to the desired result.

(2) Under Assumption I 3land Nj = Np = np > 2 (- Equation Lemma |9 (1)), it holds
that Xdef{VNeyman( P)} = Xmax- When Ko = Kp € U, according to Lemma [13[ (2), it follows
that Equation [154]is equivalent to the desured result.

(3) Under Assumptionand N =nit >2(. Lemma@ (2)), it holds that Xgee{ VNeyman (7)) =
Xmax- When K = Ky € U, according to Lemma [13] (3), it follows that Equation is equiv-
alent to the desired result.

O

PROPOSITION 4 (B1AS OF THE ADJUSTED NEYMAN VARIANCE ESTIMATORS: FS). (1) Un-
der Assumption

1
R{GAGNman (i)}~ () = —— V(BT - k) 2 0
-
(2) Under Assumption[3 and np > 2,
1
E{YAGTNamn(zp)} — V3 (7p) = —— V(8" — B%kp) > 0
p—
(3) Under Assumption@ and np > 2,
E{VAdj Neyman( )} V2(TU)
2n2
_ v2(aT kT V2ECIkS) — —— 2P (8T, 8% kp).
VBT ¢ VBT — v (8T 8 )

Note that, unlike Proposition (3), one of the conditions of Proposition (3) is not n¥;, n§ >
2 but np > 2.

PROOF. Suppose that Kg € U. Note

KX = KoKe i XT"XC, (- Equation 05 Lemma 2] (4))
= kEXTEE _XE (- Lemmal) (155)
=kiCXTXC, (. Equation [[03)

Suppose that K¢ satisfies Condition |1 I and Xgep{ VAd-Neyman(z )1 — x . Tt follows that
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ngc > 2 and

E{V(Y,Y_;|K;°X")}
=R{V(Y X" Y, X Akl XAX )
(X4 X" € U, Lemmas[I] (5) and [15] (3), Equation [I55) X7 X ¢, = X9 XT))
=E{V(y" X, yC, XAk XAX =Y} (. Equation 22)
=E{V(y",y% kI XA X))} (. Lemmal[l5 (3))
= E[E{D(yT|k£CXA) (y 9i|kgCXA)|k£CXA}] (. Equation B9, Lemma[Z] (1) and (4))
E(E{D(B" kX ™) + D(w" k& XHHD(BS|kET X ) + D(wS kG X )} REE X))
(. Equation [I52)
= E[E{D(B" |kE" X ) D(BC [k XA |kEC XY
+E[E{D(w" kG X 1) D(—w kG X ) }HRES XY
+E[E{D(B" [k&" X ) D(—w kG X))} kEE XY
+E[E{D(B° |k X ) D(w” (kG XA kEC XY
(.- Lemmas 3| (1) and [10| (1), Equations |18 and
= E{V(8", Bk X )} — B{V (", kG XA} - E{V (BT, C\kTCXA»
+E{V(8Y,wT|kE° X))} (" Equation 89, Lemma, [10] (2) and [15] (4)
= V(" BOKES) - " VT WO 040
ng

(- nEC > 2, kLY # 0, Lemmas [14] (4) and [I8] Equation [T09)
(156)

Since Xax = Xde f{VAdJ Neym"m( c)} C Xqge f{VNeyma“(Tg)} C Xpax, it holds that Xdef{VNeyman( 7¢)} =
Xmax. Therefore,

E{VAdJ Neyman( )} V(TG)

7Neyman ( » 2n ngo SQ vy A A
= B{Veme (o) - Splo 1V(Y,Y_z~\KG X4} - V()
(" Equations n and. Lemm 2), nd > nkt > 2)
Neyman 2”20 ngc SQ y A
= (BTN (i6)} — Vide)| — B 78 € V(Y YL KGOXH) |
reilteRlZe]
(. 'Lemma( ) Xdef{VAdJ Neyman( )} Xd f{VNeyman( )} Xmax) (157)
2
=3 Ve k) - "Gy (T, wC )
1 ellle
2ng” ngc { T acpTey N 1 C(1.TC
v (87, 3C|kLC) — 1% kL }
- (VST B - M T W)
(. Xge f{VNeyman( a)} = XmaX,Equatlonsnand-, Lemma [10] (2))
2nLC ngC

— V2 AkA G 174 T CkTC
ZA:n /3| ) ngng g() 1(ﬁ7/6|G)
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When kzg = kg =kqa,
1

V(B4 ka) — V(BT 8% ke)

ng — 1 ng —

E{@Adj'Neyman(f_G) i V(%G)} _ Z :
A

(".- Equation Lemma [14] (3)) (158)

— 1 26T - 8Oe) (- LemmalTH (6))

ng — 1

(1) Under Assumption |1} it holds that Xdef{VAdj‘Neyman(%F)} = Xmax (.- Equations [12| and
NEC = Np =n > 2). When K = Kr € U, according to Lemma [13| (1), it follows that
Equation [158|is equivalent to the desired result.

(2) Under Assumption and NL¢ = Np =np > 2 (- Equation Lemma@ (1)), it holds
that Xdef{VAdj‘Neyman(%p)} = Xpax. When Kg = Kp € U, according to Lemma (2), it
follows that Equation is equivalent to the desired result.

(3) Under Assumption and NJ¢ = Np =np >2 (- Equation Lemma@ (2)), it holds
that Xdef{@Adj'Neyman(fU)} = Xmax- When Kg = Ky € U, according to Lemma (3), it
follows that Equation is equivalent to the desired result.

[l

PROPOSITION 5 (EQUIVALENCE BETWEEN VARIANCE ESTIMATORS). (1)
vAdj-Neyman(f_F) _ Vpair(f_F).

(2)

VAdj—Neyman (%P) — Vpair(,f_P) )

PROOF. When K¢ = K¢, _; and Ng > 2 (c.f. Lemma [14] (1)),
VAdj-Neyman ( ,IA_G)

1, - 1
- Y|KoX
NG—1V( K )+Ng—1

(.- Equation Lemma [14] (1))

— Nal - [E{D(Y|KcXT)?|K;X"} + E{D(Y|KcX“)} Ko X}
—2E{D(Y|KcXT")D(Y|KcXY)|KsXT}] (. Equations 89 and

— Nal_ - [E{D(Y|KcX")?|Kc X"} + E{D(Y|Kqg_: XL} Kq_ XL}
—2E{D(Y|KcX")D(Y|K¢g ;X)) KcX"}] (. Lemmal (1), K¢ = Kg ;)

— o IEID(Y KX PIKGXT} + E{D(Y- Ko X" KaX")
—2E{D(Y|KcXT)D(Y_;|KaXT)|KgXT}] (. exchanging i and —i)

— 5 BID(Y KX + DY KoX")? - 2D(Y KX )D(Y- | Ko XT) KaXT)

(. Lemma [3] (1))

VAY|KgX©) - N 2
o

: V(Y,Y_;|KeXT)

1

=N 1E[{D(Y]K0XT) — D(Y|Ka X)) KeXT]
1

= 5. PUD(Y - Y. ;| KeXT)} | KeXT] (.- Lemmall5 (5))

o

1

= VXY - Y_i|KgXT) (. Lemma [0)

Ng—1

= VP (74) (. Equation [I3)
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By substituting K¢ = K or K¢ = Kp and noting Equations and the
desired results follow.
(]

Brief comments follow. First, unlike Proposition I , one of the conditions of Proposition
(3) is not ng, > 2 but np > 2 because NTC(KU) Np = np should be not fewer than
two. Second, Pr0p081t10ns 3] and [ hold whether or not Assumption [4 or [5] holds.

Note that VAdi-Neyman 2.y — ypair(z.) and YAd-Neyman 2,y — ypair(2,) have positive bias,
though the directions of the other variance estimators’ bias are unknown. Note that

E{VAdJ Neyman( ) } V? ( )

23

—z{

In a similar way to Eqution we can easily show that VQ(BA\kg‘) can be either larger or
n2
HG”EAED"P—U '

2
V2 A kA o np Vv T aC k
VB ~ V(T 6 )
2n2
V2 A k I
(B 1ki)) - ninf(np —1)

2n?2
VQ(,BA“CP)}—F —a P

nyng(np — 1)

V2([@A _ BC’kP)-

smaller than V2(34|kp). Note also that ﬁ can be either larger or smaller than

For instance, when né =3, nEA = np = 2, the former is smaller than the latter.

In terms of my notation, Imbens & Rubin| (2015, 222, 227) formalize the bias of VP (7) as
4 2
—_— i) — T 159
g ) 1) (159)

where

()= 3 05 - 4)

= Z{(MZ; + 8L+ wh) — (u§ + 85 +wS)} (. Lemmald] (1)) (160)

2(T + 5.:5 - ﬁ(j) (".- Lemmas 4| (2) and [5| (1), Equation
+ 5% — B9
Equation leads to

1_1) Z(i’ +p5 =85 —7)? (. Equation [T60)

n(n

1> k‘F (8L = /J’C)
= .- Equation (12

= ﬁE{(IBT — B2 |kr} (. Lemmall2 (2)) (161)
- ﬁE[{'BT -8 - E(/BT - :60|kF)}2‘kF] (".- Lemma |5 (2), Equation

_ 1 V(ﬂT . BC‘kF) (. EquatiOIl

n—
= E{pr( r)} — V(7)) (. Propositions [5] and [] (1), Equation

In terms of my notation, Imai (2008, 4862, Proposition 1) formalizes the bias of Vpair(f'p) as

Loy (e - =0y (162)

(n—1)n - n
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Equation leads to

1 _ >, T+ 8L~ B \2
o 2 (T - - =)

J

(. Equation [I60)

= (n—ll)n Z(f + ,35 - ﬁ_? —7)* (. Lemmalf (2))

= E{VP"(7;)} — V2(7r) (.- Equation [T61)

Note that efficiency analysis by Imai (2008, 4863-4866) compares Vpair(f'p) in pairwise ran-
domized experiments and YNeyman (7r) in completely randomized experiments. Thus, his interest
lies in comparison between the two randomization experiment designs. By contrast, I compare
pair (7)) = YAdiNeyman 2y anq YNeyman(2.) “poth in pairwise randomized experiments. That
is, I focus on comparison between the two variance estimators in pairwise randomized experi-
ments.

Imai (2008, p. 4866) warns that “the variance estimator used when breaking the matches
[i.e., YNeyman (23] will be biased,” though neither [Imai| (2008) nor Imbens & Rubin| (2015) nor
Snedecor & Cochran| (1980, pp. 99-102) derives the bias as Proposition (3| I ) does. Note that
yAdi-Neyman (2. s also biased (Proposltlonl

3. SUPER-POPULATION

3.1. Setting

3.1.1. Definition

I introduce super-population from which the above n pairs are drawn. I define super-population
variables and operators in the same way as, and denote them by adding superscript * to, the
corresponding variables and operators for the above n pairs of finite sample. All lemmas and
equations in Section[2]hold in the super-population by adding superscript * to the corresponding
variables and operators unless they are not concerned with both §* and E*(-), which I define
shortly. Accordingly, there are n*(> n) pairs in the super-population, and unit ¢* € {1,2} in
pair j* € {1,2,...,n*} is denoted by unit i*;j*. Define

® 5. the sampling indicator of unit 7*j*

gt 1 if pair 5* is sampled.
"7 71 0 otherwise.

Thus,
* Q¥ — Qx
Slj* — 82]* = Sj*
* J—
j*
When unit *j* is sampled (S} = 1), the unit is denoted by ij in the sampled n pairs, where

= 157187 = ¢
>)</ 1

For i € {1,2} and j € {1,...,n}, define
I*(ij|S*) = I 1(i|8*) =i
J*(518%) = TH(j18Y).
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Below, for ease of presentation, I simply notate I(i*j*), J(5*), I*(ij), and J*(j) without clari-
fying that they are conditioned on S*. The generic super-population vector is denoted by

Q" ={Q;; 1V
Denote the generic sampled vector by
Q™ (%) = {Q7- iy~ () i1 = Q)11 = Q (163)
It follows

rA = pAt) (8%
X = XM (8%
o K(*)(S*) (164)
G G
kG = kg (87)
q=q"(5")
When Z* # 0*, the super-population weighted mean operator is defined as
et D e L1 e Qe
ENQZ7) = ]Zj* S éflj* L, (165)
where Z;; >0, .. = 27:1 and 3. = 3.2_, and, by abusing notation,
E*(Q*|0*) =0. (166)

Denote
EM(Q"|Z") = {E*(Q"|Z")}i1-
In particular, the super-population estimand, the super-population average treatment effect,

is defined as
TF = E*(T7(17). (167)

LEMMA 19 (SAMPLE AND SUPER-POPULATION). (1)
2208 =330 8-Qls
i RS
(2) When 3=, QW = Q~,
ZQ(h)(*)(S*) = QM (8%
h

(3) When ], Q" = Q*,
H QMM (8% = QW (8%
h

4
Y E{Q"™(8")|2M(8")} = E*(Q"|5*Z")
(5)
uA = 4 B (87| SY)
B4 = AN (§%) — EX(34%|8*)
wh = WA (5%
7 =7+ B (8T — gC*|SY)
(6)

S Ie s =3 s5 1o
i J* i



Proor. (1)

j*

(4) Let Q¥ =

ZZ;S;&]-*

J
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Qe =D 85> Qrye
j* ‘*

> 1ZQM+ Z OZQ”

“Sr.=1 i* =0

> Z Q?l{f(i*j*)J(j*)}J*l{J(j*)}

TGS ey =1 1G757)

= Z Z Q?*(ij)J*(j) (". substituting J(5*) with j and I(i"j

changing the index from j* and i* to J(j*) and I(:*

= Z Z Qi () (S*) (. Equation [163])

ZQ(h)( )

IIe

(h)+ R ;
= { Z QI*(ij)J*(j)}H (. Equation [I63))
{QI (E5)J* (4 Z Q
=QW(8*) (- Equatlon [163))

2n*
(M) (§%) = { H th);)] } (. Equation [I63))
={Q% i) HQ e — Q)
- Q(*)(S*) (- Equatlon

Z*Q*. When S*Z* # 0%, it follows

ENQ|S7Z") =

22]221 Zi ;‘k"ﬂ'* (- Equation [T65)
_ szf: in : Q" =2'Q)
_ ZEZ;Z: (ngiw*) (- LemmalL9] (3))
i

= E{Q™(8")|2™)(8*)} (.- Equation [)

j*), respectively)

") with 7)
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When S*Z* = 0%,

i*

ZZZ(* (S™) ZZSZ o (" Lemma (1))
i j*
0
0
0

0 (57 =0
L ZU(S) =0 (25 >0)
S E{QM(8%)ZzM (s =0 (- Equatlon'
EY(Q*|S*Z") = E*(Q*[0") (. 8"Z" =0")

=0 (.- Equation [160))
E*(Q*|8*Z%) = E{Q™(8")|Zz™)(Ss*)}
(5) It holds
wi(8") = w5y (. Equation [I63)
Ax 1 . _
= Y1 (i5)J-(j) — 9 Z yﬁﬂ(ij)]*(j) ( Equation @D
' 168
_A_ L A (- BEquati (168)
=Yij — 52%3 (.- Equation [T64))

= w;? (. Equation [19)

Note
E*(w|S%) = B* (w?*§*1%)
= E{w"™(8")[1™)(8*)} (. Lemmall9| (4)) (169)
— E(w?1) (. Equations and
=0 (. Lemmall2)(1))
It follows

MA = E(’yA\l) (" Equation [I7))
= BE{y*™(8)1(8*)} (.- Equation [[64)
= E*(yA*!S*l*) (.- Lemma [19] (4)) (170)
= E*(u™ + Y + w™|S*) (. Lemmafd (1))
= u™ + E*(B*|S*) (- Lemmalf3 (1) and (2), Equation [169)
It also holds

1 .
=3 Z y{? — (. Equation [I8)
ny* ()0 () pA (".- Equation [164])

(waﬁ o i) — e+ B(BYIS)} (- Lemmall (1), Equation [[70)

= /3ff‘,>‘:(j) — E*(B*|S*) (- Lemmalf] (1))
= 5?(*)(5*) — E*(B**|S*) (. Equation [T63)
(171)
It follows
7=p" —p® (- Lemmald](2))
— {,UT* —i—E*(,@T*’S*)} _ {MO* —I—E*(,BC*|S*)} (','Equation@[)
=7+ E* (BT - BY*|S*) (.- Lemmal3| (1) and [ (2))
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>S5 1@
= > e+ > offer;
* 7

j*:Sf‘j*zl '*:s,*j*:o 7

= > I Q- imogrrrwoon

JG)STn ey =L 57)

(".- changing the index from j* and i* to J(j*) and I(i*j*), respectively)
= Z H Q7-(ij)s-(; (. substituting J(;°) and I(i"j*) with j and 4, respectively)
i

- Z H QE;)(S*) (.- Equation [163)
joo

O
LEMMA 20 (ESTIMATION ERROR: SP). For any K, € U*, when N4 > 1,
7A_G . 7—_* — E*(,@T* + wT*|S*KZvXT*) . E*(IBC* + (AJC*|S*KE~XC*)
PROOF. Let
04 =B+ w?
514* = ,BA* o E*(,BA*|S*) + wA*
) ) (172)
ZA = Ko X
ZY = KL XA
It follows

84 (8%) = A (8%) — EW(B4*8*)(8*) + w™)(8*) (. Equation[I72} Lemmal[I9] (2))
= {84 + EW(BY|8")} — EM(84*|S*) + w? (- Lemma[19] (5), Equation
— B 4 W
=64 (" Equation [[72)
(173)

It also holds

ZAM(8%) = Kg)(S*)XA(*)(S*) (.- Equation Lemma [19] (3))
= KcX* (. Equation [T64) (174)
= 7Z* (. Equation [T72)
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Therefore,
to— 7
=({e—7)— (7" =7)
={E(B" +w'|KeX") - BE(B° + w | KaX )} + E*(BT — B7|SY)
(" N4 > 1, Equation Lemma (19| (5))
= E(67|Z") - B(8%|2°) + E*(B™* — B*|S*) (. Equation [[72)
= B{67)(87)| 27 (8%)} — E{67)(87)| 20 (S)} + E*(B"" - B7*|SY)
(. Equations and
= E*(67%8*Z2™*) — E*(69%18*Z29*) + B*(BT* — BY*|S*) (" Lemmall9] (4))
— B (BT — B*(B7*|8") + w*|S* KX T} — E*{BC* — E*(87%|S") + wCF|S* K5 X CH)
+ E*(BT* — BY*|S*) (. Equation [I72)
= E* (BT + wT|S*KEXTY) — B* (B + wT*|S*KEX YY) (. Lemma[3)

O
3.2. Bias
Sampling. Denote the maximum sampling space by
Spax = {s* st e U, sy = ng*,Zs_*j* = n}
j*
Let
{0} ={y™ y“ 7T ey y T e Vi r T e UTY
We assume random sampling, that is,
e Ignorability of sampling: for any ©* € {@*},s* € S¥ ..,
Pr(S* =s*|S* €S} .,,0") =Pr(S* =s"|S* €S}, ..)- (175)
e Isoprobability of sampling: for any s(V*, s(2* ¢ S5 axcs
Pr(S* = sW*|8* e S* . ) =Pr(8* = s?*|8* e S ). (176)

Unlike X7 s, S,*j’s are not independent of each other. Instead, Equationleads to conditional
independence (Equation [336]). Note that, since n* > n, it follows that [S,.| > n+1 > 2 (see
Equations [192] and [194]).

Note that, for any s* € S* _and the generic sampling space, S* C S* __, when s* € S* # 0,

max max?

Pr(S* = 5%|S* € §*) = iig - g;'g: - Szag (177)
and, when s* ¢ S*,
Pr(S* =s*|S* e€S*) =0.
By abusing notation, when S* = (), I define
Pr(S* =s*|S* € S*) =0. (178)

Assumption of Potential Outcome and Response. For K¢, € U*, like Condition [1, we define the
following condition:
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CONDITION 1* (MATCHED ATTRITION: SP).
Ax Ax
kG = kG,*i’

Under Condition [T¥], for any s* € S¥ .., Condition [1] holds.

While the above assumptions of random sampling are mandatory, the following five assump-
tions of potential response (and outcome) are optional; we may invoke one or more of them in
some lemmas and propositions below.

When K¢ = K7, Condition [1*| always holds and S} ((7¢) = Smax (Which we will explain
shortly) is equivalent to

ASsuMPTION 1* (NO ATTRITION: SP).

,rT* — ,),,C* — 1*'

When K}, = K{;, Condition [T¥is equivalent to
ASSUMPTION 2* (UNITWISE MATCHED ATTRITION: SP).
Tx __ ’I“T*

r - =

O =0,

When K}, = K}, Condition [T¥is equivalent to
ASSUMPTION 3* (PAIRWISE MATCHED ATTRITION: SP).

T*,’,ka — ’I“T*’I’C*.

r —1 —1
Like Condition [2| we define the following condition as well:

CONDITION 2* (IGNORABLE ATTRITION: SP). For any y* € Y*,
P(kg" = 1y™ =y*) = P(k&" =1).

Unlike Condition under Condition it is not necessarily true that, for any s* € S} .,
Condition 2 holds.

When K}, = K5, Condition 2% always holds.

When K}, = K{;, Condition 2% is equivalent to

ASSUMPTION 4* (UNITWISE IGNORABLE ATTRITION: SP). For any y™* € YT™* and y©* €
YC*,

P*(’I'T* — HyT* — T*) P*(T‘T* —
P*(T‘C* — HyC* — C*) — P*(T‘C*

1)
1)

When K¢, = K}, Condition [27is equivalent to

ASSUMPTION 5* (PAIRWISE IGNORABLE ATTRITION: SP). For any y™* € Y'™* and y©* €
YC*

P*(TT*T‘g;-k — HyT* _ yT*) _ P*(’I‘T*’I“E? _ 1)

_ P*(’T’T:’PC* — HyC* — yC*) — P*(T‘T:’I’C* _ 1)

On the one hand, under Assumption[T¥] 2] and 3% for any sample s* € S}, Assumption [I]

and [3] hold, respectively. On the other hand, under Assumptions[@¥or[57 it is not guaranteed

that, for any sample s* € S¥ .., Assumption |4 and/or [5| hold. In addition, when the outcome is

a continuous variable, it will be less likely that the ignorable attrition assumptions hold. Recall

that the response is a binary variable. In these senses, one may say that the ignorable attrition
assumptions are stronger than the matched attrition assumptions.
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Number of Pairs. For a while, we suppose that K¢, € U* satisfies Condition Like Equation

we can define
nid* = Z k& (179)

For g € {0,1}, define

ki ifg=1
k:A* = G
&' (9) {1—k:g* it g =0,

denote the set of pairs where ké* j*(g) =1 by

&' (9) = {5* kG- (9) = 1},

the number of super-population pairs in JA4*(g) (namely, [J&*(g)|) by

= k0

» " ) (180)

€] 9= . :
. Equation [T79)

{n é* 9= 0. (".- Equation

and the number of finite-sample pairs from Jé* (g9) by
al9) =) S5-k&-(9)
j*
= Z kéy,j(g) (. Lemma(19 (1))
J

a if g=1
— {nG_ A ?f g B (. Condition [1] holds, Equation [31])
n—ng ifg=0,
which is equal to the number of finite-sample pairs in .JTA( ) (namely, [JA(g)|).
Similarly, for (g7, ¢%) € {0,1}? = {(0,0), (0,1),(1,0), (1,1)}, define
ko, 99 =]] ké*(g*‘),
A

denote the set of pairs where k3* j*(gT, g°) =1 by

Talg" 9) = {5" kG5 (" 99) = 1},

the number of super-population pairs in Ji (g7, ¢%) (namely, [J& (g7, g%)|) by
= ko979, (181)
j*
and the number of finite-sample pairs from JZ(QT, g°) by
= Z S?* k*G,j* (gTa gc)
= Z kG j 7g

(182)

I also denote
kit (gt 07 = kG (gMka™ (974
= k(9" 9°),
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and Jé*(gA, g, né*(gA, g~4), and né(gA, g~4) accordingly. Specifically, for instance,
A Tx C
nG*(l, 1) = Z ijj*kG:kj*
j*
= nLE* (. Equation [T09)
Ax Ax —Ax
ng (1,0) = Z kGl (1 —kg'o)
j*
Ax Ax —Ax
= (kG — Ky kGl
j*
Ax T C
=D K&y = D kG KG
j* j*

= nd* —nZC* (. Equations and [179))
na*(0,1) = ng™*(1,0)

_ o —Ax TCx*

i (0,0) = (1 - K (1~ KG:)
j*
=D 1= kG = Y kG D kGG
i i i i

=n* —n&" —n&* +nl

(183)

For any g € {0, 1}, thanks to ké,.j(g) € {0,1} and Equation it follows that 0 < ni(g) <

n. For any (g7, g%) € {0,1}2, thanks to kg (g7, g%) € {0,1} and Equation it follows that
0 < ng(g’,g%) < n. Therefore,

max(0, ng — n,n& — n,ng +né —n) < nE < min(n, nk, nS, nk +nS)

s max(nk +n& —n,0) < nL¢ <min(nk,n&).

Accordingly, define the maximum set of the triplet numbers of observed units as

Npax = {(nT,nC,nTc)|nT, n% n’¢ e {0,1,... ,n},max(nT—l—nC—n, 0) < nTC < min(n’, nc)},
(184)
and, for 0 € Ny, where there are bar and no subscript G, and g € {0, 1}, define
A _ n if g =
(g)_{n—nA itg=0

' if (97, ¢%) = (1,1) (185)

T_L(gT gC) — ﬁT - ﬁTc if (gTng) = (17 O)

A e if (97, ¢%) = (0,1)

n—nl —a®+aT¢ if (g7, ¢9%) = (0,0)

I summarize difference among these notations of the number of pairs:

) ﬁA(
X.

g) and 7(gT, g%) are functions of i € Ny, and constant irrespective of K¢, §*, and

. né* and ng (g7, g©) are functions of K, and constant irrespective of §* and X.

e n4 and n(g7, g¢) are functions of K}, and S* and constant irrespective of X = X *)(s*)
given §* = s*.
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For (¢7¢, g7 7%) € {0,1}2, define

kG if (97,977 = (1,1)

kG (90T = Q1-KEST i (97 97T = (0,1) (186)
0 if (97, 977%) = (1,0) or (9", ¢7"%) = (0,0)

and define nZ* (7%, g=7¢) and nTC(g ¢ g7 T accordingly. Specifically, for instance,

ngC* <gTC'7g—TC') _ Z HTC* —TC)

néc* if (97¢, 97T = (1,1) (187)
=< n*— ngC* if (QTC,Q_TC) = (0,

0 if (97, g7"%) = (1,0) or (g7, 477°) = (0,0)

Denote the triplet numbers of finite-sample pairs as

ng = n(‘KE') = (ngvng7 gc)

Specifically, according to Lemma [I3] and Equation [164]

nr =n(Kr) = (n,n,n), (188)
under Assumption
np =n(Kp) = (np,np,np), (189)
and, under Assumption
ny = n(KU) (ng,ng,np) (190)

For S* C S¢ .., let S*(+) denote the subset of S* conditioned that the argument holds for any

X € Xjax. For instance, for n € Ny,
S*(ng =n) = {s*|s" € S*,ng = n}. (191)

For non-negative integers ¢* and ¢, when ¢* > ¢, denote

*1

q:

c=_1"
T gl (g — q)!

(192)

and, otherwise, by abusing notation, ,Cy; =0 .

LEMMA 21 (ISOPROBABILITY OF SAMPLING). (1) For S* C S ,.,S* # 0,s* € S*,
* * * * 1
Pr(S* =s*|S* €S*) = 2k
(2) For s* € S} x>
I(n* —n)!
Pr(S" = 7]§" € 8 = )

PROOF. (1) Since s* € S*, it follows S* # (). When |S*| = 1 and, thus, S* = {s*}, the
desired result immediately follows. Suppose that |S*| > 2 and sW* s ¢ §* Tt follows

Pr(S* = sW*|8* € S,

max - E : (1)= *

Pr(S* € S'|S* € St._.) (. Equation [I77, s'"* € S* # 0)
Pr(S* = s?*8* € i ) (D g2+

— max .. : * C *

Pr(S* € S*|S* € St (".- Equation @7 s cS S

) max)
max

=Pr(S* = s?*|8* € §*) (.- Equation[I77, s?* € S* £ 0)

PI‘(S* _ s(l)*|S* e S*) _

(193)
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According to the axiom of probability and Equation [193

1= Z Pr(S* = s*|S* € S*) (. the axiom of probability)
s*EeS*
= |S*| x Pr(S* = s*|S* € S*) (for any s* € S*, *.- Equation [193))

- Pr(S* = s*|S* € §*) =

1
ST > 2
g (15122)
(2) Since we sample n pairs from J* = {1,2,...,n"}, whose size is n*, the number of sets of
such n pairs and, thus, the number of values s* € S can take is combination of n sampled
J*’s such that s7. = 1, namely,

max

‘Smax| - n*Cn- (194)
Therefore,
1
Pr(S*=s*S"e€S!..) = S (. Lemma 21 (1))
nl(n* —n)!

= ———= (. Equations and [194))

n*!

0

LEMMA 22 (CONDITIONAL PROBABILITY OF SAMPLING). Suppose that Kf. € U* satisfies
Condition I*], i e Nmax, and S;‘nax( ng = n) # 0.
(1) Given (g7, ¢%) € {0,1}2, for any j* € J5(g97, %),

Pr{S%. = 1|/S* € Shu(ng = B)} =

2) Given (7™, g€MY) e {0,1}2 for each h € {1,2}, for any j*(h) € J=(gT™M, g¢M) for each
G
h € {1,2}, when j%(1) # j*(2),

Pr{IT}_1 8%y = 1| S" € Spx(n = B}

n(g", g9 {n(g", g% - 1} LoT() O Q) @) T C
. if (97,9 =99 =(9",9
G(g .9 ){nG( ,g%) — 1} ( )= ( )= ( )
Y2 (T Ch)
n g )
H e (T, h))) if ("M, g7W) # ("), g7)
he1 ng(g
PROOF. Suppose ng = n. Since S . (ng = ) # 0, it follows that ng(gT’,gC’) > (g™, g¢")
for any (¢7’,¢%") € {0,1}2. For, otherwise, n*é(gT’,gC’) < (g™, g¢") for some (g7, ¢“") €

{0,1}? and we cannot sample n(g7’, g“’) pairs from J%(g?’, g¢"), which implies S}, (ng
n) = (), a contradiction.

We sample ﬁ(gT’,gC’) pairs from J% (g7, g“"), whose size is n% (g7, g%"). The number of
sets of such 7i(g”’, g) pairs (including § when 7i(g"",g%) = 0) is ,,z (g7 go1)Crgr gery (note

¢-Co = 1). Thus, the number of values s* € S}, (ng = n) can take is

Staxme=0)= [ nsree)Cagrgen (195)
(97",9¢")€{0,1}2

because J* ( T/,gC’/) QJE(QT// C//) 0 when ( ,gC/) % (gT”,gC“).

(1) Smce j € J5(g", 9%), nk (g%, %) > 1. When (g7, g“) < 1, we cannot sample any pair
from ,J]G(g ,g%). Thus, both sides of the equation in Lemma (1) are equal to each other
(zero). Below, we suppose n(g”, g%) > 1.

When S%. = 1, we sample pair j* from J%(g7, g¢) and n(g TTg ) — 1 pairs from J§ (g7, g%) \

{5*}, whose size is n% (g7, g©)—1. The number of sets of such 7(g”, g¢)—1 pairs is (e (g7 ,9) -1} Ca(gT go)—1
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We also sample, for every (¢77,g%") € {0,1}2\ {(¢7, g)}, n(g?’, g%") pairs from J% (g%, g%").

Thus, the number of values s* € Sy, (ng = 0, S. = 1) can take is

IShax (NG = 1, 5% = 1) = 2 (47 g0y 1Crgr g0)-1 H n (67,97 Crgr g (196)
(97",9°)#(97,9°)

Therefore,

Pr{S%. = 1|8* € Siux(ng = 1)} = Pr{S* € St (ng = 0, 5% = 1)[S* € Shyux(ng = 1)}
Pr(S* = s*|S* € St Shax(ne = B, 5%, = 1)

max ) X max

Pr(S* = s*|S* € S} x) X St (ng = D)

max max

(- Spax(ng = 0, 8% = 1) C Sj.x(ng = 01), Equation [I76)
. 1C5 _
— ng(g9”,9%)—1~n(g",g%)—1 ( Equations and ’
ng (97,9%) Cn(g™,9°)
(AT C
_ g9t (.- Equation [T92))

n (g7, g¢)

(2) In the case of (g7 g€M) = (4T@) ¢CR)) = (g7 ¢©):

Since j*(h) € J&(gT,g%) for every h € {1,2} and j*(1) # j*(2), n&(g?,9%) > 2. When
n(g”, g%) < 2, we cannot sample two pairs from J5 (g7, g%). Thus, both sides of the equation
in Lemma [22| (2) are equal to each other (zero). Below, we suppose 7(g”, g%) > 2.

When [];_, Sf‘j*(h) = 1, we sample pairs j*(1) and j*(2) from J% (g7, ¢%) and 7(g7, g%) — 2
pairs from J5 (g7, %) \ {j*(1),5*(2)}, whose size is n (g7, ¢%) — 2 (- j*(1) # j*(2)). The
number of sets of such a(g”, g¢) — 2 pairs is {ns(g7,9¢)—2) Cra(gr go)—2- We also sample, for every
(97", 9%") € {0,132\ {(¢7, ¢°)}, n(g"", g%") pairs from J&(g7", g¢"). Thus, the number of values
s* €S} x(ng =1, Hizl Sheny = 1) can take is

2
Sta(n6 =8 [T 55000 =1)| = wsraer2Cagrger2 [ watomenCatarger:
h=1 (97".9%")#(9",9°)
(197)
Therefore,

by {gs;*(h) ~1]8" € Sl — 1)}

 [Stuax(ng =0, 15, 8%y = 1)l
[Stiax(nG = 1)

max

2
(" Shax (nG =1, H Sheny = 1) € Sy ax(ng = ), Equation [I76)
h=1

* T — C* T —
—_ ng(9”,9%) ZC (9".99)—2 ( Equationsand '

: - Equation
T, ) (T, g0y — 1y L Fanation 199

In the case of (g7, gCM)y £ (gT(2) 4C Q).

Since j*(h) € J& (g7 M, g¢M) for every h € {1,2} and (7 _, T (g7 ", €M) = 0 (- (¢7M, g¢ M) £
(g7 @), gC@)), it follows that ni (g7, g¢) > 1. When a(g" "), g¢")) < 1 for some b’ € {1,2},
we cannot sample any pair from J7, (gT(hl),gC(h/)). Thus, both sides of the equation in Lemma
(2) are equal to each other (zero). Below, we suppose 71(g7 ", g¢")) > 1 for every h € {1,2}.
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When [[7_, S ey = 1, for every h € {1 2} we sample pair j*(h) from J& (g7 "), g©@(*)
and n(g ) g (h)) 1 pairs from J%(g T(h), ) \ {7%(h)}, whose size is nZ(gT(h),gC(h)) —

1 (o oo, Ja(gT M g€y = @), The number of sets of such 7(g7™,g¢M) — 1 pairs is
{ns(g T(h)’gC(h))_l}C{n(gT(h)’gC(h))_]_}. We also sample, for every (gT/,gCI) c {O, 1}2\{( T(h) gC(h))’ h e
{1, 2}} n(g™, g¢") pairs from Jg(gT’,gC’). Thus, the number of values s* € S! . (ng =
i, [[5_ 157y = 1) can take is

N | CRES|

= [H{na(gw,gc<h>>71}0{ﬁ<gm>,gcw)—l}] X [ 11 ni (97,9 Onlgr g |-
h=1 (97,9 #{(g7 (™ ,g°™), he{1,2}}
(198)
Therefore,
2
{H Siey = 1/ 8" € Shua(ng = )}
2 {n& (g7 g )1 }C{n( T(h) gC(h))—1}
= JJ "= g (-.- Equations [T92} [[95] and [T98)
hoi n (gTM), gc(h))c (g7 gOm))
2 a(qTh) oCh)
_ n(g"'\", g™y :
= hl_[l e (T, 6T (" Equation [I76)
O

Expectation. Let

(yT v, 7, C)

=0

For the generic function of the super-population treatment assignment vector and the super-
population sampling indicator vector,

fxs(X*,8%10%) = fx{X¥(57)|6M(5%)},
define the well behaved sampling space as

Saet(fx,5) = {8°[8" € St Xaet[Fx {X 7 (5%)[0%) (") }] = Xinaxc}-
For f% (X", 8%) and S* C S} ;(fX X, g), the super-population expectation operator is defined
B E{fxs(X",8%107)[S"} = E5[Ex{fx,s(X", §7|©7)}S"], (199)
where
Ex{fx(X)} =E{fx(X)}
S Ex{fx.s(X*,5°0%)} = E[fx{X ") (s)|0%) (s)}]

= {X®(s*) =z z|0™ (s*
xe%;mf’ {X(s") = w} fx{x|0"(s")} (200)

= f5(s7©7)
E5{/5(S710M)Is*} = ) Pr(S* = ¢"|S" € §%)fi(s7]0%).

s* S+
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Note

E*{f% (X", 8%10%)|0} =0 (. Equations [I78] 199} and [200)

Suppose that K¢, € U* satisfies Condition [T¥, $* C S},
conditional on the triplet numbers of pairs as

Egn{fs5(8")S" (ng = 0)} = E*{f5(S")[S"(ng = n)}
and expectation over the triplet numbers of pairs as
EN{/n(0e)[S7} = E{fxy(ne)[S7}

LEMMA 23 (ARITHMETIC OF EXPECTATION: SP). (1) When

{def(Zf ) ﬂSdef }

It follows

(2) Suppose that K. € U* satisfies Condition |1¥| and S* C S},

max*

st} =SB (X, 88
h

It follows

Es{fs(8)[8"} = En[Egn{/5(S7)S"(ng)}[S]

= En{/x(ng)[S"}
= Z Pr(ng = n|S* € §¥) fy (),

NENpax

where

S (D)

E*{fs(58%)[S"(ng = n)}.
(8) When S* # (),
E(qlS") = ¢-

PrOOF. (1)

B YA (X787
h

s}

=Y Pr(s* =557 €S) Y Pr{XU(s") = 2| X (s*) € Xunax} D S1 {2 (s
h

s*ES* LEXmax

(".- Equation [200, S* C Siief( Z f)((h);))
h

=0 D P8 =S e8) 30 Pr{X(s") = 2|X (") € K {a(s

h s*eS* TEX max

* * h)*
(-S"C deef f)((?g))

_ZE*{ S X* ,8%)|S*} ('.'Equation@)

(201)

and n € Ny,,x. Denote expectation

(202)

(203)

)}

)
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(2)
Es{fs(S)IS*}
= Z Pr(S* = s%|S* € S*) f5(s*) (. Equation [200)
s €S*
= Z Z Pr{S* = s*,ng = n|S* € S*} f§(s")

NENnax s*€S*(ng=n)

= Y Prng=n|S"€S) Y  Pr{S =s5"S" €5 (ng=n)}fi(s")

riel\]max s*eS* (nG:I_l)
= Z Pr(ng = n|S* € §)Eg y{f5(S7)[S*(ng =n)} (. Equations [200] and [202)
NENpax
= Y Pr(ng =n|S" € ") f(n)
NENmax
= > Y Pr(8"=s"ng =[S €S)fx(n)
AENax 87 E€S*

:Z Z Pr(ng = n|S* € §*, 8" = s¥) Pr(8* = s*|S* € §*) fy(n)

5*€S* NENpax

— Z Z {I(ng =1n)-1-Pr(8* = s*8* € S*) fx(ng)

5*€S* DENyax
+I(ng #0)-0-Pr(S* = s*|S* € §*) fi (7))}
= Z Pr(S* = s*|S* € §*) fy(ng)

s*eS*
=Ey{fN(ng)|S*} (. Equations and
=EN[Eg n{f5(S7)[S"(ng) }[S"]

(3)

E*(q|S*) = Z Pr{S* = s*|S* € S*}¢ (.- Equation [200]

s*eS*
=q Y Pr{S"=s"S" 5"}
s*eS*
=¢q-1 (.-S* # 0, the axiom of the probability)
O
For m € {1,2,...,n}, denote
N™ ={njn € Nmax,nT,nC >m}
) B (204)
N*™ = {n|n € Nyax,n” > m}.
It holds NA™ D N and, when A(1) # A(2), it holds (7_, N4(m — N™.
For fi € N1, define mean of Q* weighted by k:é* and adjusted by n as
A — 7 A)
EN(QT[kg" D) = Z — T E{QkG (1,g )} (205)

—4=0

and when 74 = 0,

Ey(QF|kA*, 1) = 0. (206)



76 Fukumoto

LEMMA 24 (EXPECTATION OF MEAN) Suppose that K}, € U* satisfies Condition B e
B*neNC NmaX,S}‘V = S} (ng =10), Sy 7é 0, and S}, = S;‘nax(ng eN).
(1) For any (gT,g ) € {0, 1}2, when n(g ,99)>1 or nG(g gc) =0,

snIE{BY 1S kG(9", g9V ISK] = B {B*IkG(g", 9}

(2) , ,
Egn{E"(B7|S"kG)ISn} = EN(B7|kG", 0).

(3)
E*{E*(8*|S"kG")ISG} = E{EN (B [k nc)ISG ),

Proor. (1) For any S* C S

max?

*(875.18) = Z Pr(S* = s*[S§" € §")s%. (. Equation [200)
s* ES

—ZPr = 8|8" €8")s

= Pr(S,j* = 1|8* € S*).

(207)

When ng = n,

In addition, when n(g",g%) > 1,

ng (g7, %) > 1(. Equation 208) (200)
k(67 6C) £0° (- Lemmal [ (4))

It follows
SNIEH{BIS k(9" 9)HISK]
g {Zj* S;-**kg,j*(g ,9) 8%
SINU YL 8k 5. (9T, 90)

ZESW (S5 ISN)kG - (97, 99) B

h } (" Equations and [209))

Equaﬁclonm7 Lemmasu, . and (1),ng = ﬁ,ﬁ(gT,gC) > 1)
1 * * * 1k * .
~ a(gT, ¢%) ZPY(S'J‘* = 118" € Sy)ké - (97, 9%)B5 (. Equation 207)
=

1 k * * * *
T elE(9Tg0)

(- when j* ¢ J&(g", 9%), k& (9", 9%) = 0)

T
= % Z ((gjig))k (g%, g )B (" Sy # 0, Lemma[22] (1), Equation [209)

n M .
("9 )J*GJE(QT

ka.ng,gC)ﬁf*-* . \
=3 EI S S (when ¢ T (9T, 09), kG- (97, 6C) = 0)
= 19t g%)

= E*{B*|k5 (g7, 9°)} (. Equations [T65} [I81} and [209)
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When ng (g7, g¢) = 0, it follows that
k5(g,9%) =0* (. Lemmall4] (4))
- BB k5 (9T, %)} =0 (. Equation [T60)
and
E*{ﬁ*‘S*k’Z‘(QTaQC)} =0 (. S*kz}(gT,gc) = 0%, Equation
By [EHBY S k(97 9) SN = 0

For reference, since S, # 0, according to Equation n (g7, g%) = 0 leads to n(g”, g¢) = 0.

(2) Suppose ng = . Thus, it holds that né =n" and S* € S}.
When 72 = 0, it follows that

Ey(B*|k&*, @) =0 (. Equation 206)
and
E*(,B*|S*k:A*) _ (. Lemma (4), S*kzé* — 0%, Equation
BB (8157 ISk }—0
= EN(B°|k&", ).

Below, suppose 4 > 1. It follows

Sn{E (BY|S*RE)ISV)
~ ALy
ESlN[ S GT

g=4=0
where Z(1) = S*kA* £ 0,23 = k:aA*, Lemmas (14| (4) and [19| (1), Equations |§| and |

E*{B"S* kG (1,977)

A } (. Lemma 3] (5),

n A
=S Glg ré ) g5 (1,g74))
—A -0
1

ﬁA(Lg_A) * * —A * =
= 3 Tl R (B8 R (L HSK] (- Lemma[I0] (2), ng = 1)

S*N] (" Lemma [23] (1))

g=4=0
(210)
where

1 —A A —-A
* n g * * * * — * n 179 * * * * —
st 3 "I D pigstag (g7 = s "E ) sk (L)

g—4=0 g ng

- anax(né > 1)

SN € Smax(nG > 1)

When 74(1,g=4) > 1 for any g=4 € {0,1}, Equation is equal to

1
> ME*{ﬂ k&(1,97} (. Lemmd24] (1))

,A -0
= Ey(B*|k&*,a) (. Equation 205)

When 724(1,g74) > 1 and 24(1,1 — g=4) = 0 for either g4 =0o0r g4 =1, Equation is
equal to

Ay o —A
n 1’9 * K| Lk — 0
(ﬁA )E {B*|kE (1,9} + —a 0

= Ex(B*|k§,B).
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It is not possible that 7(1,g~4) = 0 for any g~ € {0, 1}. Suppose otherwise. It would hold

1

= Z (1,97) (.- Equation [I85)

g~*=0
=0,

a contradiction. This completes the proof.
(3)
E{E*(8*|S*k&")[SE} = EN[Eg N {E"(B%|S" kG ISV }HISE] (. Lemma 23] (2))
— BB} (8" k& na)ISE) (- Sk # 0, Lemma 2] (2), Equation [203)
O

Suppose that K7, € U* satisfies Condition For m € {1,2,...,n}, define m-th moment
feasible sampling space as

SEF=S"(Kg) = S; .k (ng € N™)
Sam* = SA™(K}) = Sk (ng € NA™), (211)
Specifically,
S = 97 (K3)
= S}ax(np € N™) (- Lemmall3| (1), Equations and (212)
= S;ax(n >m) (.- Equations and
=Shax (ome{l,2,...,n})
under Assumption
= §™(K})
=S, ax(np € N™) (" Lemma (13| (2), Equations and (213)
=S} ax(np >m) (.- Equations and
and under Assumption
Sp* = S™(KYy)
= Spax(my € N™) (- Lemma (13| (3), Equations and (214)
=Sk (nit >m) (" Equations and
Like Equation [48] define
7= (e k) o)

PROPOSITION 1* (B1as oF ATE ESTIMATORS: SP). (1) Under Assumption[l¥], it holds that
Shef(TF) = Shax and
E*(TF‘Smax) -7 =0.

(2) Under Assumption it holds that Sy (7p) = Sk and, when SL # 0,
E*( |Sl*) P E*(BT* _ BC*‘k*P)
(3) Under Assumption it holds that Sy [(7u) = St and, when SiF # 0,

E*(rulst) - 7 = {E* (7 ‘S e ﬂT*\k*)+E*<w‘S (BTG — k) |

_{ < ’S )E* ﬂc*|kp)+E*(ng nP‘Sl*)E*(I@C*’kC*_kP)}
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(4) Under Assumptions cmd it holds that S}, [(7p) = Sk and, when Sk # 0,
E*(7p|SE) — 7* = 0.
(5) Under Assumptions cmd it holds that S [(7u) = St and, when Sif # 0,
E*(7|S{f) — 7 = 0.
PRrROOF. Suppose that K, € U* satisfies Condition S* C Si¢(7a), and S* # 0. It follows
E*(7¢|S*) — 7*
= E*(7¢|S*) — E*(7*|S*) (."S* # 0, Lemma 23] (3))
=E*(7¢ — 7°[S*) (. Lemma 23| (1))
=E{{Ex(7¢ — 7)|S*} (. Equation [I99)
(+§* C Shul7e), NA > 1, Lemma 20
= E5{E*(BT*|S* kL") — E*(B°*|S*kEY)|S*} (.- Lemmas 8 and [2)
= E*{E*(BT*|S* kL") — E*(B9*|S*kS)|S*Y (. Equation [T99)

(216)

When, for N C N, §* = §% = S} . (ng € N) (note that S§, C S ¢(7¢)), Equation [216| leads
to

E*{Ex(B"*|k&  ne) — Ex(BY k& ng)|SE} (. Lemmas 23] (1) and 24 (3)

ngc Tx1.TC "G - ngc T, T TC
c TC

& G
{IE*( nTC )E* (ﬁc*’ch*) LR (nG ;C”G

G G
- - Lemma [23| (1) and, thanks to S € S&, it follows n& > m > 1 and Equation [205
G

(217)

S5 ) B* (87 |kG" — K5}

In particular, when kT* = kc* = k(,, Equation leads to
E* * E* T k* _ k*
&G st ) (87 — k) |
* * ( 2C'* * NG | g *ACx % 1% ..
- {E (n &) BN (B IkE) + E (7% B (87 |k — k&) | (- Lemma [ (3))
= E* (BT - ,BC*]kG) (" S =S* # 0, Lemmas [3] (1) and [23] (3)

&) B (BT k) + B (R

(218)

(1) Under Assumption [I¥] it holds that S (7r) = Sk, (.- Assumption [I). When K¢ =
K; € U and N=N" (note that N" = {(n,n,n)} C N! and, obviously, S}, # 0), it follows

that K = Kp (. Equation , §* =S¢, = SE = Skax (. Equations 211] and ,

rax) — T = FE* (,BT* — ,80|k}) (" Lemma 13| (1), Equations through [218))
=0 (.- Lemmas|3| (1) and 5| (2), Equation

(2) Under Assumption it holds that S} ((7p) = SE¥ (.- Lemma |§| (1), Np = np > 1,
Equations lm and lﬁ When K}, = Kj € U*, N = N!| and Sl* # (0, it follows that
K = Kp (. Equation [164]) and, according to Lemma( ), S* =St =Sk (- Equatlons-
and [2 - and Equations - through 218} E are equivalent to the desu“ed result

(3) Under Assumption it holds that S} (/) = S} (.- Lemma |§| (2), N} = nft > 1,
Equations 204] and R11). When K{ = K;; € U*, N = N!, and S§i # 0, it follows that

E*(7r|S




80 Fukumoto

K = Ky (- Equation [164)) and, according to Lemma (3), S* =S = S (. Equations
and [214) and Equations and are equivalent to the desired result, where S* = Sllj*.

(4) Substitute K}, = KJ}. Under Assumption [3*| and it follows that Conditions [1*| and
(by definition) and Proposition [L1*| (2) hold. Thus, according to Equation

E*(8Yk}) = 0. (219)
When Sk # (),

E*(7p|SE) — 7* = E*(B8T* — B°*|k}) (. Proposition [[7] (2))
=0 (. Lemma/3| (1), Equation [219))

(5) Substitute K = K};. Under Assumption [2*| and it follows that Conditions [1*| and
hold (by definition). According to Equation

B (B k) = 0. (220)

Substitute K} = K. Under Assumption 2% and |5} it follows that Assumption [3*| (". Lemma
|§| (5)), Conditions [1¥| and [2*| and, thus, Equation hold.
Note that
kit —kp =k{*(1— kg™) (. Lemma[d](2)) (221)

When ké* — kb # 0, it follows that kﬁ* # 0 (. Lemma [221)) and

E* (B |k{* — kD)
— B {BY|k{*(1 — k;™)} (- Equation 221)
A* _ * 71 3
= (M) ek - DB (e ki) )
nU nU
(. Lemmas [3] (5) and [14] (4), k{* — k}p, ki}* #0,)
A* *

= nflfilin* (0 - :jf; X 0) (" Equations and Lemma 9] (2))
U P U
=0.

(222)

Even when kzé* — k% = 0, thanks to Equation both ends of Equation m are equal to each
other. Therefore, when Sif # 0, by applying Equations [219| and [222| to Proposition [1*] (3) (.
Assumption , the desired result follows.

O

The remarks following Proposition |1| apply to Proposition [1*| with necessary modification,
though E(7¢) and E*(7¢) are different in a few ways. First, even when attrition is ignorable in
the super-population (Assumption |4 or , it is not necessarily true that, in all finite samples
(for all s* € S} ,.), attrition is ignorable (Assumption {4 or |5)) and, accordingly, even under
Assumption [2%] (or ), 7 (or #p) is unbiased for 7.

Second, unlike Proposition (1| (3), the first two terms of the right hand side of Proposition
(3) are not necessarily equal to

* * * ny * * | 1k nT* —ny * * * *
EX(B k") = - EX (B kD) + L EX (B |k — kD) (223)
Ny Ny
because . -
B (Spls) = 2 m (M tlfs) < MR, (224)
ny ny ny ny

In the case of §* € S},,,, the probabilities experimenters sample a pair from J% and Jix \J5

are equal to each other. In the case of S* € Sllj*, however, if they draw no pairs from Ji* \ Jp
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(where J&* = J*(k&*)), they have to draw at least one pair from J% so that n{; > 1. Thus, the
probability that a pair in J} is sampled is not smaller than the probability for a pair in J[T]* \Jp.
Therefore, Equation is derived. The difference between both sides of these inequalities does
not decrease in n*. The case of the last two terms of the right hand side of Proposition [1*] (3)
is similar.

Third, Equation also explains why Assumption [5*]is necessary for unbiasedness of 77 in
Proposition [1*] (5) even though Proposition [1| (5) do not premise Assumption [5| Assumption
and [4*] lead to E*(BT*|kL*) = E*(B°*|kS*) = 0 but not to

E* (8" |kp) = E* (BT |k{* — kp) = EX (B kp) = E* (B |k — kp) = 0, (225)

which would hold if T add Assumption By substituting Equation [225| into Proposition
(3), I obtain Proposition [L*| (5).
For reference, under Assumption it holds that S} (7r) = S%. When N = N” and
S+ #£ 0, it follows that SE # 0 (.- Sk D S%* # 0) and
E*(7r|Sp’) — 7"
=E{E"(B""[S"k}) — E*(B"|S k) ISE)
(. Equation 216 where K¢, = K}, € U*,S* = S} = S} 4(7r) # 0, Lemma [13] (1))
= (B (7]S"kp) - B (BISkP)ISK} (5 € SF)
_ E*(BT* _ BC*|k}k—")
(".- Equations through where K, = Kp € U*,S* = S;; =SB, Lemma [13[ (2))
=E*(7p|SE) — 7 (.- SE # 0, Proposition [T] (2))
Note that
B (pIS}) — 75 = (B (7pIS¥) — 77} — (75 — 7
= B(8"" ~ 9 Ikp) — B*(8" - B%IK}) (- Equation BT
=0.
Closed Form. Before deriving the closed form of Proposition [1*] (3) in limit, we have to prove
some lemmas.
Suppose that K7 € U* satisfies Condition In order to obtain simplified and essential
expression in Lemmas [25] and [26] and Propositions 2% through [£] and, thus, closed forms of

Propositions [1*| (3) through [4*| in limit, I also suppose that for every (g7, ¢%) € {0,1}?, either
limy 00 N (g7, g%) = 00 or limy 00 1 (g7, g¢) < 2, and

* T C
. nG(g Y ): * T C
Jim e = el 97) (226)
exists. Accordingly,
Ax( A
Ax/ A\ _ 1.0 @ (97)
pG (g ) B nlgnoo n*
— lim Z;’A:(]né*(gAhg_A)
1
= > pelgte
g=4=0
also exists. Denote
P& = pér(1). (228)

For g € {TO, lg, since 0 < né*(g) <n*and 0 < ng(gT,gC) < n*, it holds 0 < pé*(g) <1 and
0<pglg,9") <1
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Note that, for i € Nyay, S* C S¥ .., and S* # 0,

Pring =0|S* €)= Y  Pr(§" =s"|S" €5
e (229)
_ [S*(ng = n)|

= (. Lemma 2] (1), [S*] # 0)

LEMMA 25 (PROBABILITY OF NUMBER OF PAIRS). Suppose that K. € U* satisfies Con-
dition [I¥] and i € Nppax.

(1)

1 Ax
A . {r&"(9)}
nhgnooPr(nG—n |S* € Shax) —n!H A

(2)
{p&:(g", g°) "9

(g7, g%)!

. = * o
nhinoo Pr(ng = n|S* € S},,5) = n! H
(97.99)€{0,1}>
Proor. (1) Suppose nd = nA.
When nd*(g) > n(g) for any g € {0,1}, we sample 7(g) pairs from J4*(g), whose size is
nG *(g). Note that ﬂ 0J&*(g) = 0. Thus, the number of values s* € Sf,,, (n& = 7) can take

is
1

’Smax( ﬁA)| = H né*(g)cﬁ“(g)‘ (230)
g=0
It follows
S _ 5A
Pr(né = ﬁA|S* € Shax) = | mang | )l (.- Equation 229 S}, # 0)
1 - (231)
= ( H (g)CnA(g)> + n+Cp, (. Equations and [230))
g=0
and, therefore,
lim Pr(ng = n[S* € S}ux)
i ([ﬁ nd*(g)! } , n*! ) (- nd*(g) > 7(g), Equations [[02)
= lim = n , Equations
e ﬁA(g)!{nA*<g> =gy T l(er =) e =T

g=0

:n@m([n ot H{n +1—h}} {;lhf[l(n*%—l—h)})

_ ﬁ H A*( )+1—h ("Equationiﬁ’q(g):
gy WS = v g ai)y =
A(g)
—n‘H A H PG (. Equation [227)

{pG 9)} n 9)
pu— ! —_—_—mmm
"1:10 A (g)!
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When n&*(g) < n(g) for some g € {0, 1}, we cannot sample n(g) pairs from J4*(g). Thus,

1
A A Q* * .
Pr(”G’ =n ‘S € Smax) = (H ng*(g)cﬁ/“(g)) +nCp
9=0
=0. (. pa-(9)Crarg) = 0 for some g € {0,1}).

For any g~4 € {0,1}, it follows limy- 00 n3* (9, 974) < 2 where g# = g. For, otherwise,

limy 00 ni* (g2, g=4) = 0o for some g4 € {0,1} and

lign n&* (g = ligl Z n&* (g%, 97" (.- Equations [T80] and [I8T)
n*—oo n*—oo
g-4€{0,1}
= > lim onget e
g-*€{0,1}

=oco (. lim n&* (g, 974 = oo, lim n&* (g4, 1—g=) =0 or )
n*—00 n*—0o0

and, thus, n3*(g4) > n > n?(g?), a contradiction. Therefore, p5*(g) = 0 (-.- Equation [227).

It follows

n(g%)
|

1
R RiaU) _o
110 n4(g4)!

Thus, the desired result follows.
(2) When ng(gT,gC) > (g7, g%) for every (g7, g%) € {0,1}2, it follows

_ [Shax(ng = 0)|

Pr(ng =1n|S* €S},,.) = maTS*

(. Bquation B3, £ 0
- < H nz;(gTng)Cﬁ(gT,gC)> +pn-Cp, (. Equations and [195))
(97,99)€{0,1}

(232)

and, therefore,

lim Pr(ng =alS* €Sk,.)
n*—oo
11 . *
= ([T 1T ng(9",9%)! B n’! )
oo ML 22 oz 9T 9OHNG (T, 99) —algT g T nl(nt —n)!
(o n&(g",9%) = n(g", g¢), Equations and Lemma [21] (2))
n(g”.9%)

—um ([T = I nZ(gTagc)“—hH+{1'(ﬁ”*+1_h)}>
T g gd)etony A = b
1
- (gT,gcl)_E[{Oal}"' " g%)!
n(g",9%)

> H lim né(gT7gC> +1-h
i e nt + 1= [h4g™n(0,0) + g“{n(0,0) + n(1,0)} + g"g“{n(0, 1) — n(0,0)}]
11
(.- Equation [I85] Z Z (g7, ¢%) = n)
gT=0g°=0
{p&(g", g3 .
=n! H 7T (".- Equation [226])

(97,99)€{0,1}2
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When ng, (g7, g%) < n(gT, g©) for some (g7, g¢) € {0,1}?, we cannot sample 71(g7, g¢) pairs
from J% (g7, g¢). Thus,

Pr(nG’ - I_].’S* S S;knax) - ( H n*G(gT7gC)Cﬁ(gT7gC)> +n*Cn
(9".99)€{0,1}>
=0. (. nz(gr,go)Cn(gr g0y = 0 for some (97, g% €{0,1}?)

It follows limy,- 00 15 (g7, %) < 2. For, otherwise, limy,« 0 n5 (g7, %) = 00 > n > n(g”, g¢),
a contradiction. Therefore, pf (g7, g%) = 0 (- Equation [226)). Tt follows

I (P (g7, g@)ya"9%)

a = 0.
(g7, go)!

n!
(g7,9¢)€{0,1}2

Thus, the desired result follows.
O

LEMMA 26 (PROBABILITY OF SAMPLING SPACE). Suppose that K} € U* satisfies Condi-
tion S* C S* and N C Ny,

max’

Pr{S* € S*(ng € N)|S* €'} = ¥ Pr(ng = 0|S" € §%).
neN

In particular, when S* = St,,.., N =N, it follows that S*(ng € N) = S& and, in limit,
Tim_Pr(S" € SHIS" € She) = 1= [(L—p)" + (1 ") — {1 = (6" + 96" — )}
PROOF.

Pr{S* € S*(ng € N)|S* €S*} = Y Pr(S* =s",n¢ € N|S* € §%)

s*ES*

=Y Y I(ng=0)Pr(S* =5"|S" €5
neN s*eS*

=Y Pr(ng =0|S" €5%).
neN

In particular, when S* =S¥, N = N! in limit,

lim Pr(S* e S¥|8* € St..)

n*—oo
; T c * *
= > >
nhl}})o Pr(ng > 1Ang > 118" € S} .x)

=1 lim_ Pr(nk =0V ng =0[S* € i)

=1 lim [Pr(n§; = 0|S" € S}yu) + Pr(ng = 018" € §,,) — Pring = (0,0,0)|S" € ..}

n

=1—[{p&"(0)}" + {p&"(0)}" — {p5:(0,0)}"]

(- Lemma [25] where a(1) = 0,21(0) = n or 7 (1,1) = a(1,0) = 0,7(0,0) = n)
=1-[(1=pt)" + (1 —pg")" = {1 — (0& +p&" — &)}

(" Equations [I85] 226 [227] and 228)

0

The closed forms of Proposition [1*| (3) in limit is obtained as follows. Note that, when
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Sir # 0, it follows that Pr(S* € S}|S* € Sf.y) > 0 (which implies pf}* > 0) and

lim Pr(ny = @|S* € Sif) = lim Pr(ny = n|S" € S},,,) + hm Pr(S* € S{f|S* € S;

n*—oo n*—oo max)

= [n! 11 {py (9", g )}”<g 9° ]

— o
(gT,9¢)€{0,1}2 n(g", go)!

< (1=l =pF)"+ (1 - 0*)” - e )

(.- Lemmas [25] (2) and 26, p¢* = pb)

(233)
Thus, under Assumption
lim E*{ /% (ny)IS/
n*—oo
- nllinoo _ %: Pr(ny = n|S* € Sf)f&(d) (.- Lemma [23] (2), Equation 203)
neNyax
n n min(n? 7<)
= Z Z Z lim Pr(ny =n|S* € SH) fr ()
nT=1n¢=1nT°¢=max(n”+n°—n,0) e
(- §* € S{f,ny € N}, Equations and [204)) (234)

=l (1= [0 =)+ (=B = {1 = G + 95" = p)}"))

min(n7,n%)

n n « (T _C\\7(gT,g%)
DD D I L

nT=1n°=1aT¢=max(n”+n°—-n,0) (¢97,9¢)€{0,1}2 (g 9 )

(. Equation [233)

Specifically,

lim E*(7y|S{) — 7*

n*—oo

= lim E{E§ (87K, ny) — B (B |kG" nu)ISY} (.- Proposition [T (3))
n*—oo

- n!(l — (1= pI)" + (1= p5)™ — {1 — (pi + P —p*p)}”]>_l

n n N =(aT aC

{pj (9", g%)}""9)

8 Z Z ) — [ 11 (g”, g%)! ]
aT=1n°=17T¢=max(nT+n—-n,0) (97,9¢)€{0,1}2
1 1

[ 30 I gt g0,y - 30 T e g g1,
g g
gC/_O gT/:0

(.- Equations [205] and [234))

Conditional Sampling Probability. Make Assumption When S* € Sk 5 € J5(97, 99),

and S*. = 1, we sample pair j* from J§; (g7, g¢) and n — 1 pairs from J* \ {j*}, whose size is
n* — 1, where J* = {1,2,...,n*}. The number of sets of such n — 1 pairs is ,,»—1Cp—1. Thus,

the number of values s* € S;"naX(S_*j* = 1) can take is

|Smax( 1)| = n*flcnfl- (235)
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Therefore,

Pr(S*, =1|S*eS*_ )= [Sthax (55 = 1)
r(S% = 1|8" € Shax) = |Smax|
_ Lgnfl (. Equations [T95] and [235)) 259

= 7:;, (. Equation [I92))

which is constant for any (g7, g%) € {0,1}2. Note that J5 = Ji;(1,1) and Ji* \ J% = Ji*(1,0).
Thus, in the case of §* € S:‘nax, the probabilities we sample a pair from Jp and J‘é* \ Jp are
equal to each other.

When S* € Si7 # 0, j* € Jj(1,1), and S*%. =1, we sample pair j* from Jf;(1,1), which
guarantees ny € N', and n — 1 pairs from J* \ {j*}. Thus,

Pr(5%. = 1,8" € SIf|S* € Shay)
Pr(S* € S}f|S* € St

max )

Pr(S%. =1|S* e Sff) =

|Smax(5’*' = 1,1’1[] € Nl)|
|Smax(nU € N1)| (237)
’Smax< - 1)‘
’Smax(nU S Nl)’
n* —1Cn—1 .
’Smax(nU e ND)| (.- Equation [235))

Consider the case where j* € J‘g*(l, 0), S%.=1, and St # 0. Suppose n* — n[}A* >n for a

moment. When S* ¢ S}, we sample pair j* from J{}*(1,0), and n — 1 pairs from J5;**(0)\ {5},

—Ax

whose size is n* —n;;”" — 1. The number of sets of such n — 1 pairs is . _ l—]Ax_ICn_l. Thus,

n
the number of values s* € S, (5%. = 1,ny ¢ N!) can take is

’Smax( =1l,ny ¢ Nl)‘ 7n5A*710n—1' (238)
Therefore
|Smax( =1l,ny e Nl)’ |Smax( )‘ |Smax(8-*j* =1l,ny ¢ Nl)‘
= n*,lCn,l — n*_naA*_lCn,l (".- Equations and 238)  (239)
Thus,

S%. =1,ny € NY)|
IS% (€ N1)|
n*—lCn 17 p= —-ng A*,lcn—l

= *." Equation [239
St _(ny € N (. Equation 239)

* * 1% ‘S;’lax(

max (

(240)

max (
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Accordingly,

Pr{S%. = 118* € Si, j* € J§*(1,0)}
Pr{S%. = 1|8 € Sif,j* € Jj*(1,1)}

n-1Cn-1 = eyt 1Ot n—1C0n—1 . .
- Shhax(nu € N1)| N IS% . (ny € N1)| (.- Equations [237] and [240)
e 1Cn1 = a1 Cn
= e
(n* — naA* —1)! ) (n* — 1)! (241)

(n=DH(n* —ng™ = 1) = (n =1}~ (n=DH(n* = 1) = (n = }!
(".- Equation [192])

_ ﬁn*—nUA*—h
N n* —h
h=1
—Ax
*— —h
<1l. (“SF#£0n*>0n —ny*>n>n-10< o nTU—h <1)
In limit,
* * IE Ax n—1 * — Ax
lim Prisy. = 18" €Sy,5” € J'(1,0)} =1- H lim wonyT —h (".- Equation [241))
WS Pr(Sh. = 1S €810 € I (LD} | Adwe wr—h
n—1 —Ax
*—h
= —H(l—lim *—hmn* )
he1 n*—=oco N n*—oo n

where equality hold if and only if paA* =1.

When n* — n[}A* < n, it follows that n*_naA*_lCn,l = 0 and, thus, Equations and
hold and

PI‘{S.*J»* = 1‘5* € Sl*yj* S Jg*(lvo)} . n*—1Cn-1 — n*—naA*—ICn*1

Pr{S%. = 1|S* € Siy,j* € Jj*(1,1)} n—1Cn-1
1001 (242)
n*—lCn—l

=1.

Unlike Equation according to Equations and in the case of S* € S%]*, the probability
that a pair in J; = Jj;(1,1) is sampled is not smaller than the probability for a pair in Jﬁ* \J% =
J&#(1,0).

Equation is derived as follows. Let @i € Nyax, 7~ = 0, Sk, (it = 7) # 0 (that is,
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ni*(g) > n(g) for all g € {0,1}). Denote

Pyt =Pringt > 18" €S, ( 4 —pt)n
—A

=1 Prlag* = nff =17 < 018" € Gpnlnf = )
4 Pr(nft = nA,nUA =nl¢ =n"4=0/S* € Si)
Pr(nft = n4|S* € Sty

(.- Equation [T77) St (nit = 7t) # 0)

1
=1- {( H ”3*(9“"9"‘)0“(9“79*“)) - "*C"} - {(H "3*(9)CﬁA(g)) - ”*C”}

(9%.9=*)e{0,1}2 9=0

(. Equations 23] and [232))
1 1
:1_(1_[ 491,00 ) (gn‘é(g A(g)

g4=0 g=0

(-t (gh, 1) = 0,n%(g%,0) = 2t (g™))
<1.
(243)

Case 1: When n{}*(g,0) > n(g*) for all g# € {0,1}, Equations and lead to

pAl =1 H (g™, 0)}! N {nir(g™)}!
, int(g? }'{nA*( 4,0) = A (g} T {nA(g)Hni(g4) — A (gM) ) (244)
<1 ('-' n (94,0 Caa(g1) > 0)
Case 1.1: When 7(g?) # 0 for all g4 € {0, 1}, Equation leads to

L ) e S
_ n ,0)—h
w=1- ] I M (97,0 —h (245)

gA=0  h=0 ngy*(g4) —h

Case 1.1.1: When ni*(g) — ni+*(g4,0) = ni** (g4, 1) = 0 for all g# € {0,1} (that is, n(_]A* =0,
namely, rUA* = 0%), it follows

nA* A _
L =1 Coni ") = ot (o 0)

- py* =0. (. Equation [245)
Case 1.1.2: When n{}*(gA) (g ,0) = "U “(g4,1) > 0 for some g € {0, 1}, it follows
”é*(QAﬁ) >0 (gA) (. Case 1)
>nt(gh) -1

A*( A 0) —h
g, Ax/ A A A
0< L Z =2 (on(gh,0) > 7 (gh) - 1)
nir(gh) —h v
<1 (ong*(e™) > ng(9,0)
0 < py* (. Equation 245)

<1

Case 1.2: When 74(g?) = n,24(1 — g*) = 0 for some g4 € {0, 1}, Equation leads to

p—Al -1_ Tﬁ A*(gAaO) —h
o i ng(gh) — h
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Case 1.2.1: When nii*(g?) — ni¥*(g#,0) = nf}* (¢, 1) = 0, it follows

p]f‘1 0.

Case 1.2.2: When nii*(g?) — ni¥*(g#,0) = n{}* (¢, 1) > 0, it follows
0<pyt <l

Case 1.3: 24(1) = 74(0) = 0. This is impossible because n(1) + n4(0) = n.
Case 2: When nii*(g#,0) < nt(g?) for some g# € {0, 1}, it follows that ni*(g4,0)Cragay =0
and Equation [243]leads to

It is easier to understand p]_VA1 in limit. When pé* > 0,

y _, limy,- 00 Pr(nf} = n#t n&A =nl¢ =0|S* € Sty
im =1-
n* —>oop im0 PY(TLU = TLA‘S* S S;’lax)

(" Equation [243] Lemma.p > 0,74 > 1)

n4 1 Ax(  A\174(g4)
_1_”'H{p g 0}' T”!H{pU(i )i _

('-'Lemmalﬂn (9, 1) = 0,2 (g",0) =2 (¢™))

When 0 < p{}* < 1, it follows that

1 % (A Algh

pyg”,0) " (9™

lim py Al =1 { }
nr—oot NV H ¥ (gA)
g4=0
<1
where equahty holds if and only if pU *(1,0) = 0 or p§*(0, 0) =0,724(0) > 0.
When pfi* = 1, it follows that n(1) = n,ﬁA(O) = 0,p{*(1,0) = _A*(O),pé*(O,O) =0, and

lim py*t =1 {p;**(0)}"

n*—oo

<1,

where equality holds if and only if p‘é*(l,O) = 0 (when p[_]A*(O) = Z;AZO p’é* (g*,0) = 0 and,
thus, pUA* =1).
Let i1 € Ny (274 is not necessarily equal to zero). Suppose that, for some g € {O 1}, it
holds nfy(9*) = a1 (9"), ngi (9%, 1) = a(g”, 1), ni" (1 — g%) = (1 —g%), and ng* (g%, g7 ) >
(g4, g4 for every g=4 € {0,1}. We sample 74 (g% g A) palrs from JA*( , g~ for
every g4 € {0,1} and a4(1 — ¢g4) pairs from J&*(1 — ¢g*). Thus, the number of values
10 = 14 (g4), n (g7, 1) = 2 (g4, 1)} can take is

s*e S
St () = 2 (g, nir (g, 1) = 2 (g™, DY

1
4= (1-g") Cra—ga H i+ (g4,g-4)Cra(ga,g-4)-
—A=0

(246)

This equation holds even if n{*(1 — g) < ﬁA(l — g or n¥* (g4, g7 < nl(g*, 97

both sides of the equation are equal to zero.

, when
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It follows

Prngi(g?,1) = n(g",1)|S* € Shadnii(9™) = 2 (g)}]
_ Pr{ngi(g?) = at(g"), n (g™, 1) = 0 (g*,1)]5” € Siax)
Pri{n{}(g4) = n4(94)|S* € Stax}
_ Shaxdnii(g?) = 2 (g™h), n (97, 1) = 2t (9", D)}
|Stax{ni} (g A) = n(g")}]
1

= (n “(1-g)Cra(1-g4) H (g4,9-1)Cna (g4 ng)) LT e o2 Casen)

—A =0 gA/:O

(. Equations [230] and [246])
1 1
- ( H NS*(Q“‘,g*A)CﬁA(g“yg—A)> - H nt*(94)Cnag)-

(- Shax{nii(9%) = 2 (g™)} # 0)

g=4=0 g4=0
(247)
Suppose Sy, Al*( n#t = n4) # 0 (namely, py Al > 0, that is, for some g € {0,1}, it holds
Ax(g4,0) < nA(gA) < ’é*(gA) or n¥*(g4) > n(g*) > 0,n#*(¢g4,1) > 0). For integer

Tc > 1, it follows that

Pr{np =n'%S* € S;** (nf} = )}
P —_ pA _ =TC S* S*
_ Pr(ng = n',np = aT|S" € §j0) (-.- Equation [T77, 204] and P11}

Pr(nit = n4 A > 1|8* € S;

max)
S{,Al*(n{} =n ) St (i = nUA >1) #0, nU >np=n"">1)

_ Pr(n#t = at,np =nT¢|S* € S} Pr(nft = n4, nUA> 1|8* € S},

max ) . max )

Pr{Su(nfl = n1)[8* € St Pr{Shax(nit = 24)|S* € St}
(. Stuax(ngy = 1) 2 S5 (ny = 2) # 0)
= Pr{np = A7C|S* € Sty (nfh = 1)} + Pr{ng? > 1|S* € Sh(nft = 7)) (- Equation [[77)
=Pr{np =a'%|8* € Si,, (nit = ﬁA)} = pyt (. Equation 243)
(248)
Note that, since S[}Al*( 4 =nA) £ 0, it follows pN I'>o.
For positive integers ¢* and ¢, when ¢* > g, it follows
q*! : .
Uy = ———— (." Equation ¢ >q>1>0
q q q!(q* - Q)' ( @7 )
q*(¢ —1)!
249
- D@ D -~ D} 219

= q*q*—lcq_y (. Equation@q* —1>¢—-1>0)
q

Equation holds even when ¢* < g because +Cy = 0,0 < ¢* —1<qg—1,45-1C4—1 = 0.
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Suppose 7 > 1. When np > 1,

Egn {nplShax (ny = 1)}
’FLA

= 37 Prinp = "C|S" € S (nfh = 2*)}a"C

ATC =0
a4 1

= > {( 11 né*(l,g—ﬂcﬁf*(l,gﬂ))+n3*CﬁA}ﬁTc (. Equation 27 S}, (g = ) # 0)
nTC=1 g—4=0
nt A* Ax

= Z Hng*(m)c (10)[]((1111))% “(1,1)-1CRa(1,1)— 1} nfé nae—1C0Ra— 1} n(1,1)
nTC=1

(Equamon@n (1,1) =nb > 1,7%(1,1) = 279 > 1,8% . (nit = @) # 0, nf* > 7t > 1)

? Y max
7A/

HA np Z ( H g1 Caan(1, g,A)) + e Crar

nU ATCI=0 g—A=0

7 A

nh
=p’ - Pr{np =a'%|8" € S¥  (nit = @)} (. Equation P47} S, (nit = a'V) # 0)
nl] pTC =0
_A n}‘: . . s
=a A (" the axiom of the probability)
(250)
where, in the last three lines, we suppose an alternatlve setup where n{}*’ (1,1) = ni(1,1)

a4 (1,1) = a(1,1) =1 > 0 and n{}*’(l 0) = ni*(1,0) > a?(1,0) = n(1,
ni*—1>nY =nt—1> 0,8, (nt = n?) # 0). Note that, since S*

max max

it follows n‘i‘,* > n — A > 1.
When n}p =0,

np:()

By {nplSha(ni = 21} = 0.

Thus, both ends of Equation are equal to each other (zero).

Therefore,

= Y Pr{np=0"%8" e Sy (nj} =2")}n" (. Equation Lemma [23] (2))
ATC=0
n

1
= 3 5 Pr{np =078 € Si (nft =)}’ 10

RTC = 1pN (251)
(.- Equation 248, S (nft = a?) # 0,77 > 1)
7 A
1 n
= —a Z Pr{np = n"C|S* € S}, (niy = 23"
PN mre=g
1 A n*P
= —pgn" —- (. Equation [250)
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It follows

* Np|c—Alx — 1 * —Alx — —
ES‘N{n—A‘SUAl (nit = nA)} = ﬁ—AEsw{np\SUAl (ng =a™)} (. Lemmal[l0] (2),a" > 1)
U

1 *
e p (".- Equation [25T))

PN
_ np
p;\/Al Ax
(252)
When S} # 0,
B (1[st) = Bx (B { J7[so ") } st (. Lemma B3 (2), 854 (nfh < 817)
U U
_E*<Lﬁ Sl*) (E ti - d.S_Al*;éQ) 7&0
= —T Ax |[PU .- Equations an Py )
Py (253)
> E* < ni S”) (. Equation [243)

ny

= %, (.- Sg # 0, Lemma 23] (3))
U
where equality holds if and only if, for all §* € Sl* (i.e., for all values nﬁ can take), it holds
p_A1 = 1, that is, for some g* € {O 1}, it holds n#}*(g4 0) < ni(g?) (Case 2 above) Since it
holds mm{nU( )} max{1, n—ni} ( )}, min{n}(0 )} —max{O n—1-ni*(1 )} and ni¥*(g4,0) >
0, the condition is equivalent to n/¥*(1,0) = 0 or nii*(1,0) < n — né*(()) or nf* (0, 0) <n-—1-
A*( ), where the last two conditions are summarized as

ng* (g4, 0) + ng* (1 — g*) = ni* (g%, 0) + n{f* (¢, 1) + nf* (1 — g*) — ni* (9, 1)
=n* —ni* (g4, 1)
<n—(1-g%).

In limit, when p’g* >0,

n*—oo

lim E*(%’Sﬁ) :E*< lim —qu lim —S > (. Equation [253))
U N

n*—00 nU

> lim nj’* (.- Equations 243} Sj* # 0, Lemma [23] (3))
n

U
* Ax
n n
= lim -£ lim Y >0
n*—oo n* n*—oo n* ( by )
_ Dp
=
pU*

Where equality holds if and only if, for all §* € SIIJ*, it holds hmn * 00 p_A1 1, that is,
A% (1, O) 0 (. pi* > 0,Pr(nt = n]Sl*) > 0 and, when pi¥* < 1,n#} = n, it does not sufﬁce
that pi*(0,0) = 0) in which case it holds

Jim B (T sl) = 78
U by

=1.

Equation is the first inequality in Equation where A = T. By subtracting 1 from
both sides and multiplying them by —1, we obtain the second inequality.
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3.3. Variance
Suppose that K¢, € U* satisfies Condition Define expectation of variance between between
QW* and Q@* weighted by k3* and adjusted by @i € Nypay as, when 2 > 1,

TL

1
EVR5- (@M kg, n) = Y va Wk (1,974)} (254)

7A:0

and, when 7 = 0,
EVii- QM |k, n) = 0.

I also define, in the case of n7¢ > 1,

BV {Q" kG, n}

I sTC -TC
n (159 ) * * * —
= > ﬁT—CV2:1{Q(h) k& (1,977}
g-To=0
= o Vit { QM Ik (1, 0+ B0y Qi ites1,0))
7TC
= nTCV LQM* L) + ﬁTCVhQ:l(Q(h) |0*) (- Equations [186] and [187))
= thl( *|k£c*) (".- Equation
and, in the case of nT¢ < 1,
Nh H{QM|kEC ) = 0.
Define, for non-negative integers ¢* and g,
—1
) 1 it g* > 2
d(g*,q) = 7 —1 (256)
0 if ¢ <2

and degree-of-freedom adjusted covariance as

VEALQMW kG (1,97 4), 0} = [1 — d{ng*(1,g7"), 2 (1, g~ IV QW |k (1,97}
VQ* {Q h)*|kTC*(1 ngC) ﬁ} = [1 - d{ngcw(l?ngC)’ﬁTC’(LngC)}]thil{Q(h)*|k£C*(17ngC)}
(257)
Define degree-of-freedom adjusted expectation of variance as, in the case of 74 > 1,
1 77L A
BV, (QU ki m) = Z P Va1 k(L g ). ), (258)
—A=0
in the case of 1 < 1,
EV]\%Th:l( kg, ) =0,
in the case of nT¢ > 1,
EVZ,_{QM|kEC* a)
L =TC -TC
_ n (179 )/\: h)x|1,TCx —TC\ =
= > va?ﬂ{ﬁ?( " kEC*(1,9779), 2} (250)

g-TC=0

= W(Q(h)*ﬂcTc* n) (. Equations and
= (L A ANV (B REC) (- Bauations 155, (57, and 257




94 Fukumoto
and, in the case of n7¢ < 1,
ET/E{ZI{QW*\%C*, n} =0.
Therefore,
BV QU IRES B} = TV (@ k)

)

Note that V%’;l{f)((h?()\S*} can be defined only when S* C (7_, S:‘ief(f)(g);). Note

1{fxs()|@} E*[H]D)(h{ h)* |®}’Q)} (.- Equation [93)

h=1
{ ﬁ )(()g ‘ } . Equations [92] and [201))

=0 ( Equatlonm_ﬂ'[)
Define

IR

j h=1
nkc when A(1) # A(2)
n4 when A(1) =

Accordingly, define

nT¢ when A(1) # A(2)
nA when A(1) =

Denote

AE(Q'kg") = EY{Q"|kG (1, 1)} — E{Q"|kG (1,00}

(260)

(261)

(262)

(263)

LEMMA 27 (SP COVARIANCE OF FS MEAN) Let A(h) € {T,C} for h € {1,2}. Suppose
that K¢, € U* satisfies Conditz'on N C M7_, NAWL St = Stax(ng € N), B0 € B*, and

max

wM* e W* for h € {1,2}.
(1)

VI (BB 5 kS S

pp0AC

=B Ve (8
h=1"¢g

2
H ké(h)*, nG)

2 ”gc
} + Vh=1< AR
ng

V3 {E(wW kS x AN 58 )

nAMAR) 2 Ah)
= [2- I{A(1) = A(2)} - 1]E*{2Gi() VNh 1< ()= H kc JnG>
h=1"q h=1

PrROOF. Given ¢g=4(" € {0,1} for all h € {1,2}, denote

0 = 35 (1, 74")

2
*) H AE*(B(h)*|ké(h)*)
h=1

(264)

Note J* = J@* if and only if A(1) = A(2) or g~4(M) = g4 = 1 because, in the case of

A(l) = ( ) = A, obviously,

A (1,7400) = KO (1,5742) = k(1,47
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in the case of g=41) = =42 =1,
A(1)* — A(2)* _ * * _
ko (1,g740) = kP71, g7AP) = k5(1,1) = kA (L g7,

and, otherwise,

2
[T ke™ (1 g~ A®) = kZ* (1, 6O)kE (1, 97) (- A1) # A(2))
h=1

= (k& (RET) (1 — kG 9 MR (KT (1 — kG 79"}
_ k:T*( kT* 1—g kC*<1 kg*)l—gc ( ké*(ké*)g“‘ _ ké*)
=0 (g'=00rg®=0)

(s -s

When JW* = J@* for h € {1,2}, we define

ng (1,9~ =ngV"(1,g740) = ng®7(1,74@)
A0 (1, g~A) = 4G (1, g~AD).

2 2
E*(}HSE* w|S") = ) Pr(S" =" € S*);_[ s (. Equation 200)
- eyt -
1 1
= > > PuShy =5, 8p =575 €8 Hs(h (265)
s(W=0s(2=0 h=1
2
= Pr ( H S-*j*(h) — 1‘5* c S*)
h=1

Given 0 € N, denote S} = S}, (ng = ). We define

nt(1,974)
- B9 ) g g = g@ % £ 0,051, g7A) > 1
S2pg = né*(l,g_A) i )

0 otherwise

(1, )t (Lg ) -1} e (1) 2) A _A

* if 10 = 1@, 85, 0,0 (1,974) > 2

g (1, —A>{né <1,g—A>—1} M

?DF = ﬁ n (h)(l,g*A(h)) o (1) (2)* q* A(h)x —A(h)
. if JW* £ J* SN £ 0,ng " (1, g )>1
Pt nG( ) (1’ng(h))
L0 otherwise
(266)

When j*(h) € J™* for h € {1,2}, according to Equations and and Lemma [22] it holds

ES‘N{ HS*

sy [Fro W =70)
i - {S2DF (1) # 5°(2). 0
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Note that, when 74" (1, g=4") > 1 for any h € {1,2},

2
Eg | [T 740 (1, g~ 40) B 808"k (1, g7 4®)} s |
h=1
2 * A(h)x —A(h)y g(h)*
- {H g0y 2800 S Ky (L9 T)B e )
SINT 1 nAMR) (1, g—AR) N

(.- Lemma (12| (2), Equation ng =)
* A(h —A(h)y p(h)*
- ES\N{ Z Z H Sk, 5-m(1: 9 ( ))'B-j*(h)

g*(1) §*(2) h=1

=E§\N{Z > oy oy 2. 2.

gA)I=0 g— A1)/ =0 gA®2)=0 g—A(2)/=0 '*(1)6]]2(1)*(gA(l)’,g_A(l)’) j*(2)6J2(2)*(gA(z)’,g_A(Q)’)

HS* ke (L~ M)8SY I8k |

:EE\N{ Z Z HS* Koy (g~ 5G|

1)eJM= j*(2)eJ@)* h=1

S}K;} (" Lemma [16] (1)

o

A s *
HkGUJ‘ Py (Log~ ™) = 0 for j*(h) ¢ I

2
=3 = Alhyx,y  — h)«
={%eo - pr} >, ]I kGS.jZ (Lg A(h))ﬁ.(j*)

j*eﬂi=1 Jh= h=1

S2pp H Z kév(.};)*?h)(l,g_A(h))B.(j}i)&) (. Lemma [16| (2), Equation

h=1 j*(h)eJ(r=*
Wasl a0 A(h)* — (h)x* h)x
= {S2EQ - SQDF} z H k‘ng?« (17 A(h) + S2DF H Z kG ]) (h (h))ﬁ(]*)(h)
Jj* h=1 h=1 j*(

(kg (1,97A®) = 0 for () ¢ 10°)
(268)

where, in applying Lemma we substitute

h) ={1,2,...,n*} or J™
(h) _ A(h)* -A (h)*
l =k ] (Lg (R ))Bj*(h)
f{X;(L)} S n

E() = E§n (ISk)

f EQ = SQEQ

f2pr = S2pF

Xaet{ fx(Q)} = Saet{ fXx 5(Q)}
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and Equation holds because, for any j*(h) € J)*,

Sdef( Z Z H S* é(};w(h)( g_A(h))B(;i)/?h)>

] ’( J(l) ] J(2>*h 1
h * — h)x*
= Sdef( H S] (h ) (179 A(h))ﬁ(j*)(h)>
h=1
= Sinax
O Sy-

Note that both ends of Equation [268|are equal to each other (zero) even when A (1, g=AM) <
1 for some h € {1,2} because S?gg = S?pr = 0.

A(h

For a moment, we suppose S} # ). When JO=* £ 72) (1,g=AM) > 1 for h € {1,2},

Equation [268] is equal to

S?pr H Z kG ’;)?h h)* H kG G- (g g~y =0)

h=1 j*(
Q) A
(h)* * r a(h)* A(h —A(h)

(- Equatlons - [165] and [266] -

2
=[] #*®™ (1, g~ 2™ E*{B"* kM (1, g=4M)}
h=1

Note that both ends of the equation are equal to each other (zero) even when né(h)*(l, g Ay <
1 for some h € {1,2} because

2 =0 (. Equation [266)

koM (1,g7AM) = 0* (- Lemma [[4] (4))
E*{ﬁ(h)*|ké(h)*(1, g A"} =0 (.- Equation [I66)
ﬁA(h)(l7 giA(h)) =0 (. Equation [208)

(270)
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When JV* = J2)* Equation is equal to

(S2pg — S2pr) Z kéij*(lag H /8( +S%pr H Z k h) (Lg A)ﬁ(j}?(a;z)
j)«

h=1 j*(

(" Lemma [14] (3))
(S EQ — SQDF)nG 1,9~ {Hﬁ

sk

DFHnG (1, g HE{BM* |k (1,97")} (. Lemma[12] (2), Equation [I81)

) (271)
= (%5q — SZpr)nd (1,0~ [V 8™ k& (1, g~} + [T B{8™" k" (1,97}
h=1
+S2pr{ng (1,974 HE*{ﬂ(h k&' (1,9~} (. Lemma [I5] (7))
- né*<1,g-A>(<s o~ T o A L)
2
+ %8 + SZor{ng (1,9 - ] E*{ﬁ(h)*lké*(l,fﬁ‘)}>
When né*(l,g‘A) > 2, Equation is equal to
~A —A —A —Ay —A —A
Asx —A n (179 ) _n (179 ) n (179 ) -1 2% (h)*| 1. A% —A
ﬁA(lagiA) ﬁA(LgiA) ﬁA(lagiA) — Ax —A
R EIMT T vE A ]
2
X H E*{,B(h)*\ké*(l,g_A)}> (" Equation [266) (272)
h=1
= 1AL, g~V (8O kA }+Hn (Lg~HE{BM |k (1,97}

(" Equation [257))

When n*(1,g~4) = 1, it follows that a*(1,g=4) € {0,1}. (- Sk # 0, Equation [208]) There is
only one such pair j*°"®) that ké*(l,g‘A),j*@nc) = 1. That is, for j* # j*(ne), k‘é*(l,g‘A).j* =
0. It follows

EQWH kA (1,7} = QJ Jney (.7 Equation [I65))

e QU = QUL . 273
Vi?:l{Q(h) k& (19"} = —2 1 ! (. Equation [89) (273)

=0
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Therefore, Equation [271]is equal to

At (1, g VE{BM k& (1,97} + 2t H E* (B k& (1,97}
h=1
(.- Equation [266]) (274)
= a1, g V2 B kG (Lg )} + H at(1, g~ E{BM* k& (1,974)}
(. Equation 257, n&*(1,474) = 1,4 <1,g ) e {0,1}, {a (1,2 = (1,974))
When né*(l, g~%) =0, thanks to Equation Equation is equal to
AA (L, gV {BM* kA (1, g~ )} + H (L, g BB k& (1, M} =0. (275)

For reference, note also that

?EQ =0 (. Equation [266]
VZ{BM kA (1,974} =0 (.- Equations [89] and [T60) (276)
V}?il{,@(h)ﬂké*(l, Q_A), n} =0 (. Equation

According to Equations 268] 269] 271 272] 274 and 275 it follows that, when S%, # 0,

2
By | T a4 (1, 740 B {805k (1,g~40) 55
h=1
2 —A(h —A(h h A(h)* —A(h (277)
= [1 7™, g2 E{BM* k™" (1,9}
h=1
+ 1M = 1921, gV (B kg (1,974, B
Denote
D% {f5(S™)ISk} = fs(S™) — Efn{fs(S*)ISk}
(278)

Viwa {15878k} = ESW[HDSW{fs“ (5")Isv})]-
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When 24" (1, g=4M) > 1 for all h € {1,2}, it follows that

2
— * * x7.A * — *
{H L~ Ve (BB S kA (1,670 ) 5]

2
= Ejy [ H ﬁA(h)(Lg—A(h))E*{B(h)*|S*ké(h)*(17 g~ Ay
h=1

2
~ LA, g ®)ES (B {B®* |5 k4™ (1, ®)}i] (- Lemma I5 (7))

2
_ . (279)
=[] 7™ (1, g~ 2™ E* {7 k" (1, g=4M)}
h=1
+I<J“ = JOMRAQ, g MV {BW kA (1, g7 4), 1)
- L0, A0 B (B A 1,570
(. Equation 277, Lemma 24] (1), S}, # 0,7 (1, g=AM)) > 1)
= 1" = JO) AR, g~V (B kA (1,974, B).
and
* * * * A * *
Dy (B (8" |5 k5" Sk}
:E*(B(h)*ys*kzé(h)*) ESN{E*(ﬁ(h 1S k2MISy} (- Bquation B78)
= E* (85 k") — B (87 k5™ B) (- LemmaPd (2),Sk # 0)
L SAM) (] oA
n »d * *Jo A(h)* _ * (h)= _
=y P T o a5 kA (1, A} — B (O A (1, A0
g—AM =0

(. Lemma (5), where ZW = grpAN* 7(2) = =AM and Equation N C NA(h)l)

L SAMR) (] Al
n 7g * * >k Ah *
= > ;A(m Dy (280 |8 R AR (1, g A)) s3]
g*A(h):()

(. Lemma (1), a4 (1, g=AM) > 1, Equation 278)
(280)

Even when n4(" (1, g=4AM) < 1 for some h € {1,2}, both ends of Equation m (or [280) are
equal to each other (zero).
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When A(1) # A(2),

V2 v LB (B S kM) S}

SK ] (".- Equation [93))

fA(h))

* * * * xqp A * — * *
m(I] Y O g [ (818 k™ (1,4~} 355,
h=1g-A(m =0
(" Equation [280))
g—A®)
=By ( > oy - oy [ (8718 KA (1,674 8|53

T T2 SAGR sh=
[[—y 2 h=1

g—AM=0g—A@ =0 h=1
(- A(1) # A(2), Lemma(l), where (1) = g~A" L(h) = {0,1}

A (1, g=AM) . AR B .
Quny = SA() )DS\N[E (805" ’”( 400)1 s3]

H_ Z Z {HnA(h 1gAh))}

g—AMW =0 g-A@) =0 -

* * * * x 7, A(h)* — *
ESW{ HDS\N[E {8® |8 kA" (1,674} s5)

i Y e

g*A(l) ngA(Z) =0 h=1

S”]‘V} (" Lemmas [10] (2) and [23[ (1))

VS|Nh 1[E*{,3(h)*15*k14(h)*(1 g AMSY |(-.- Equation [93))

AR Z Z Bt (1, g~ Vi (B kg (1,977), B}
g-AM = og—A(z> —0
(.- Equations and [2
RAMAQ)
th*l{ﬁ |k, (1,1),8)
Hh 1
(- JW* = J(z)* only when g~4M) = =4 = 1-- A(1) £ A(2),74(1,1) = aA(DAR))
RAMAQR)

2
EVE, _, (ﬁ(h)* H ké(h)*, ﬁ) (. A(1) # A(2), Lemma [14] (2), Equation [260)

(281)
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Similarly, when A(1) = A(2) = A, it follows that J(M* = J)* and

= G > A1V N (BB S RE (1,97 ISk
g=4=0
1 -4 —A
1 n 179 /\_*/ * * — =
= SA Z (7_114)‘/;12_1{5(@ k& (1,97), 0} (282)
g=4=0
1 gy

- AEVJ%*hzl(ﬁ(h)*’ké*7 n) (. Equation [258))

2
IT %", ﬁ)

h=1

A(1)A(2) ——
=1 N

where the last line follows because

When S%, = 0, according to Equation it follows

* * * * A(h)* *
V2 (EH (B8 kA" Sk} = 0. (283)
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Let S% = S*(ng = ). Note that, in general,

2 {88787
= E*< H[féh)(S*) - E*{féh)(S*)]S*}] S*) (" Equations [92] and
h=1

2
=B { T (118" (5") — B {757 (S)ISR Y] + B (757 (57185} - E{£87 ()15 })

h=1
2
= B { T] (D 5957185} + D B (787 ()81 |5°)

h=1
(. Equatlonsand. Lemma 23] (2))
2
(HD NP SIS S) + B (T D B (787 (578718
+2E*<DS‘N{fS (") ISHID* gy {£$7 (S%)ISH S

h=1
SQ@)

s*}

5)

*) (" Lemma 23 (1))

b+ VL By (787 (SISK S
+ 2B 5 { By (D 757 (SIS D (B v L8 (87 IS 1S 18T ) |57
(. Lemma [23] (2), Equations m 92 and 03 .

= E*[V3y ey {F57 (8M)ISHHS™] + VR (B (£ (S%)ISH S
+2E*(E*S|Nmzw{fs (5%)ISk }|S'*]D*[E§|N{fs (57)[SR}IS"]
(- Equations [0 and [203] Lemma [I0] (2))

= E* V3 e l{f;”(s*ﬂ RIS + VR B h (£S5 (87185187
(- By D LS80 (SIS SR = B {787 (S7)ISk ) — B {787 (S7)ISk} = 0)

2
— Ex{Egy ([T D3n (787 (5185
h=1

5)

(284)

Note

A
ng

S*}—]D)*{l—né(l’l) S*}) (- Equati d[182)
= na .- Equations an
N (285)

= —[D)*{nG(l’ D S*} (. Lemma [15 (4))

A
ng
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When §* C (2_, Sa™,
* h * *
VI BN QM kg™ ng)|s7}
2 1 A(h)(l —A(h)
_ . g ) AR AR
G

h=1 g*A(’W:O

l

5)
2
(-S*C ﬂ Sé(h)l* Equations [93] and [205))

17 —A(h)
_w ([ Y et
h=1g-A(M=0 e

(- Lemma (5) Equation
( H D* { ”G 1)
(. Equatlon @
- H (24 ) [T AF @™
(. Equatlon u Lemma h(zzl))

* nTC * = * * 1. A(h)* .
:V%d(% S ) [T AE*(@"*k2"") (- Equation [3)
ng h=1

5]

5" FEQM k" (1,974

(286)
st HEQM k™ (1, 1)) = EHQM* k™ (1,0)}[s*)

To conclude,

* * * h*
V3 {E (B8 kL S5

= E*[Viynt{E"(B h)*|5*kc; )|S HSE] + VL By (B (878" kG Sy HsE]
(.- Equation [284] where S* = S§, S SG(ng—n) S¥)

AMDAQR)

2
_mf * h)* A(h)* * * h x| 1, A(R)*
—E {H:lé(}L)EV&h:l(ﬂ( ) h[_[lk:G n) |86} +Vis, ( )1:[ ()| A
2
(.- Equations [281} 282] [283] and [286] where S* = S}, C ﬂs‘”* : ﬂ ALy,
Lemma [24] (2))

(2) Note that

Vh2:1< ‘ H kA(h ) = ( ﬁ w(h)’ ﬁ k‘é(h)) (. Lemma [17) (1))

h=1 h=1
2 2
= E( H wM)(8%) H sz( X )(S*)) (.- Lemma [19 (5), Equation [164)
h=1 h=1
2 2
=FE" ( H wh*| g* H k‘é(h)*> (.- Lemma 19 (4))
h=1 h=1

(287)

Given n € N, let S = S

max (

= 1i). Suppose that S5, # . When A(1) = A(2) = A, it
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follows

*S|N{Vi12:1< ‘ H ko)
= ES|N{E*< H w(h)*
2

k&, ﬁ) (- Sy #0, Lemma (2), where we substitute H w* e B with 8*)

S}

Si } (" Equation Lemma [14] (3))

S kA*>

h=1 h=1
: ﬁA - A —A Al
= Z {H k& ( )} (. Equation 205, fi € N C N41))
g*A:O h=1
1 -4 —A
= >, — V™G (g™} (2 Lemmal[[7 (1))
g=4=0

_EVNh 1(w (h)*|ké*,ﬁ) (. Equation [254)

= EVi— 1( (R

2
H ké(h)*, ﬁ) (" Lemma [14] (3))
- (288)

When A(1) # A(2), due to Lemma( ), it follows Hh 1 k:A(h) = kL = k% (1,1) and

s Vit (| ﬁ ko™)|sx )
= Ej |2 {Hw k5(1.1)}

{ H w (1,1 } (- Sy #0, Lemma (1),where we substitute H wM* e B with 3*)
h=1
= thL{w "lk;(1,1)} (. Lemmal[I7) (1))

_EVNh 1( *

2
S*N} (. Equation [287] H AR _ g (1,1))

A(h)*,ﬁ) (" Equation 255 H kA(h = kLO* = k5 (1,1))

(289)



106 Fukumoto
Thus,

* A(h *
Vi { B ™ kg™ X AM)sg}
2
—E ( [E(w(h)|k:G( ) XA _ B {B(w® |kAM x AR )]SG}}
h=1

) (" Equation

&} (o LemmalT (1))

2
A
IE{ H E(w(h)’kG(h)XA(h))

h=1

- g { [T B x40))

SE} (" Equation [I99))

AADAR)
=E*s{[2~f{A(1>=A<2>}—1]rM (o ]Hk ") |se

h=1"q
(. Lemma (2), ng € N C NAM1L)
A(1)A(2)

= 2+ [{AQ1) = A@2)} - 1]}y [SG s { Vi (w®| H k)]s
(".- Lemmas [10] (2) and [23[ (2))
AADAR)
= 2 I{A(1) = A(2)} — E} [M{MS?V # 0BV (w0

i

d

+I(Sy :@)-o}

¢ } (.- Equations [201] 288, and [289)

Lo pAma
=[2-1{A1) = A2} -1 > Pr(ng=n|S" ¢ Sg)in2 — I(Sk #0)
NENax h=1

2
H k:é(h)*, ﬁ) (" Lemma [23] (2))
h=1

X EVNh 1( (h)

2. I{A(1) = A(2)} — 1 Pr( 50 e sp) A1)
= . — — =1 *E A
[ } }ﬁezN;ax ring =n G Hi:1 AR

X EVNh 1( (h)=

2
H ké(h)*, ﬁ) (.- when Sy = 0, it follows Pr(ng = n|S* € S§;) = 0)

RAMAR) 2 i
= 2 T{AQ1) = A@2)} — B == VRS (0| [T k6™ n ) |55}
Hh 1 h=1

(". Lemma [23] (2))
O

PROPOSITION 2* (VARIANCE OF ATE ESTIMATORS: SP). (1) Under Assumption[L¥] it holds
that Sy, (Tr) = Shax and

* 1 * * * * * * * *
Hm V2 (7p|Shay) = E{VQ (BT — B |k}) + V(W™ + w k).

n*—oo

(2) Under Assumptz'on it holds that Sy, [(7p) = Sk and, when SL # 0,

n*—oo

. X[ A * * 1 * * * x| 1,% * * * *
lim V2 (7p[SK) = E (E\S}D)M (BT — B k) + V(W™ + wC|kp))
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nder Assumption it holds that TUy) = and, when s
3) Under A 2* holds th S’:ief 7 Sb* d, wh S%]* #0

: k(A * * nP * * * * * * *
lim V(G l817) = B { 5 |8 12 (87 k) + V2 @7 i)
U

n*—oo

+E*{TL£—TLP Sl*}{Vz*(,BT*]kT* — k* ) + VQ*(wT*\k:T* B )}
( T)2 U U P U P
n

ny
* I 1% 2% [ C* | 1.% 2% Cx|1.%
+ B { e[St V2 (8% k) + V@ k)
* nC—np * * * * * * * * *
B[S0 HV2 (B kG — k) + V(@ Ik — k)
(ng)

=2 {8 V(87 i) — V@ k)

+V2< ‘SI*){AE*(BT*U{:T*)}Q + v ( g\S%j‘){AE*(ﬂC*\kz?*)}Q

T

U

* n * * * * * * *
_ov (’T; g)sl )AE (BT |kT*) AE* (B [KEY).

In fact, I do not have to condition Propositions 2*| (2) and (3) on Sk # 0 and S}; # 0,
respectively. Similar notes apply to Propositions [3*] and [ as well.

In Proposition [2¥ (3), the first five lines of the right hand side correspond to expectation of
conditional variance of 7y (E*{V?*(7y|S{/, ny)|Si7}), while the last two lines represent variance
of conditional expectation of 7y (V*{E*(7y|S{},ny)|S{;}), where both conditions depend on
ny = (ng, ng, np). The first and second lines refer to expectation of the conditional variance
of the average outcome for the treated group (E*[V**{E(Y |KyX)|S{/,ny}[S{7]), which is re-
duced to a weighted average of the variances of the treated potential outcomes for the pairs in
J5 (V2 (yT*|k%), the first line) and in J?* \ J% (VZ(yT*|kl* — k}), the second line) divided
by nl;, where weights are np/ni, and (nf; — np)/ni;, respectively. The third and fourth lines
indicate the equivalent for the control group (E*(V*[E{Y|Ky(1 — X)}|S{}.ny]|S}})). The
fifth line deals with the covariance between both groups (—2E*(V*[E(Y |KyX), E{Y|Ky(1 —
X)}S{ nulISE)). The first and second terms in the sixth line express variances of the condi-
tional expectation of the average outcome for the treated group (V*[E*{E(Y | Ky X)|S{f, nu }HSH])
and for the control group (V2*(E*[E{Y |Ky(1 — X)}|S{}, nu]|S}7)), respectively. The seventh
line stands for the covariance between both groups (—2V*(E*{E(Y | Ky X)|S{f, ny }E*[E{Y | Ky (1—

X))}y nollSy))-

The closed forms are obtained by using Lemmas [23] m . m 26| and |28] (I will show Lemmad
8| after the proof of this proposition) and Equations - and - If we do not take the limit,
Equations and show variance of the general case, V(7¢|Sf;).

Under Assumption and it follows that Proposition [2*| (3) holds and

= E*(BY|kb) — E*(BY ki — kb) (. Equation Assumption 2% Lemma [9] (2))

=0—-0 (. Assumption and Equations and
= 0.

(290)
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Applying Equation to Proposition 2| (3), we obtain

lim V(uS17) = B { o 81 V> (87 k) + V(T ki)
U

n*

* nT_n * * * * * * * * *
+ B { R St V2 (BT R — k) + V(@ R~ kp))
(nU)

* n * * * * * * *
+ B S Y (87 ) + V(@ k)

(ng)?

* nC—TLP * * * * * * * * *
B { SV (B KG — kp) + V(@ Ik — k)
U

* np
_9E {nTnC
v

FHY (8™ B k) — V(@™ w0 k).

PROOF. Suppose that K¢, € U* satisfies Condition N C N S =S;«(ng €N),

AG = B! kL XT) - E(wCkEXC)
=D {EWTkEXT)|SL} — D{E(wCkEXY) S5} (. Equation [92] Lemma [12] (1))
=D {EWTkEXT) — E(wCkEXC) S5} (. Lemmal [15] (5))

(291)
and
AB = [E*(BT|S* k) — EN{EX(B""[S"kE)ISE)]
— [B*(B|SKEY) — EH{E*(B7"|S*kG")ISE)]
* s T gxg.,T* * * *( aC*| @x1,C* * . (292)
— DB (B7|S kL) [S5) — DB (BC1S KG)ISE} (- Equatuion B2
=D{E*(B7*|S"kE) — EX(B|S7kGY)ISE). (- Lemmal[TF] (5))
It follows

E*{(A®)?IS¢}
=V E(wl kL XT) - B kEXC)SEY (. Equations 93] and
=) VH{EkEXISE) - 2VH{E(W! kEXT), B kGX)[SE} (- LemmalLF (6))

Sg}

) TC o -
G V*(wT*,w *’kg *)

1
=E* — EVZ& (0w |k&* ng) +
{g G aha

(. Lemmas [23] m and [27 . ,NC N}
(293)
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and

E*{(AB)*|SE}
= V*{E* (87|18 kL) — E*(B9%|S*kE)|SEY (. Equations 03] and
= VH{EN (B8 kE)ISG ) — 2VH{E (BT S KE"), B (BY*|S kSIS (- LemmalT (6))
A

_ EA: [IE { EVQ*(BA*|kG ng)|s: } +V2*< nTG ){AE*(ﬁA*’kA*)} }
—Q{E*{ ngTC8 Vz*(IBT* BC*\kTC* ne) }+V*<né§’7;é: )HAE* IBA*‘k;A*)}

(. Lemma (1), NC NY
* * * 2nTC /% * * *
=E{} anEVﬁ*wA k' nG) = 7S VA (BT, B KE o)

‘)

2 G G"a
2 Ax| A n&© ngo Ax| A
+ZV*< [st A (B kY - 2v (25 )HAE* B kA
na ng ' ng
(" Lemma.( ), Equation [260)
(294)
and
E*(AwABIS) = ES{Ex (AwAB)|SE} (.- Equation [T99)
=E{{Ex(Aw)AB|SE} (.- Lemmas[10] (2)) (205)
=E5(0-ABIS;) (.- Lemmall2] (1))
=0.
Note that, for any 3 € B,
E(Bk{) = E{B™(S*) — E®)(8*|8")|kA™ (5%)} ('.'Lemma(5) Equation (206)

= E*(/@*]S*k:é*) — E*(B*|S*) (. Lemmas[3| (1) and (3) and [19} .
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Suppose that S§, C S} ¢(7¢). It follows

V2 (71S%)

= E*[{7c — E"(76/85)}?IS5) (- Equation )

=& (fo - [ + BB (8718 KEISE) — B (B (515" KGNS ) [t
(. Bquation B8, %, C Si(7c)

—E{ (%0 - {7 + B(BTIKE) - B(B°IKG))
— [+ BN B (BTSTRE)ISE} — BB (8|S RGNS}
— {7+ B(B"IKE) — BB k) [t}
(.- adding and subtracting 7 + (8T |kL) — E(8°|kS))

=B { [{BW” + BTREXT) - EwC + BKGX )} — {E(BTIKE) - E(BCIKG))
— (7 + BB (BTIS REISG) — BB (8|S RGNS}
— {7+ B8 - 87|57}
(BB |SREY) - BY (878"} — (B (8|S KG") — (8|5}
(. Equations [24] and Lemma [19] (5))

= E{[{BWKEXT) - B kGX )} + ([B*(87|S kE") — E{E"(B™(S"kE")S5}]
(8O |SKET) — BB (0|5 kG I8) | [8t ) (- Lemma[1Z (2)

= E*{(Aw + AB)SE} (. Equations 291] and 292)

— E'{(A®)*[SE} + E{(AB)ISG) + 2E" (A - ABISE) (. Lemmas 23] (1))

* ]‘ * * * *
=E [Z —{EW (@ kA" ng) + EVE (B4 k& ng))

A G
2”20 * T* C’* TCx 7« (AT 2Cx* 1. TCx *
+ C{V( KEC) = VA(8T", 8" KE™", na)} |85
”G G
+ZV2 ( o HAB BV kEH)? - 2v* (26, 2 s )HAE (B|kE)
ng ”G

(. Equatlons 93] 294] and [295])

(297)

Before we take the limit, we need some preparation. For non-negative integer n, when
limp,« 00 né*(l,g_A) = 00,

n—1

lim d{nd*(1,g~4),n} = lim (" Equation [256)
n*—oo n*—o00 n (Lg*A) —1 (298)

=0 (. lim né*(l,gi = 00)
n*—o0o

and, when limg,« s ”G (1, g_A) < 2,

lim d{ni*(1,g~4),a} =0 (.- Equation 2506) (299)

n*—oo
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Accordingly, for n € N,
Jim VZ QM |kA*(1,67), 1}
= [ lim_d{nd (1,9~ (1L, g HVE QU kA" (1,g™)) (- Equation 257) (300)
= Vi {QM*kg*(1,974)} (- Equations 298 and 299)
and, thus,
lim_ BV, QM |k m)

L -A —A
1 —_~—
= > TS  VE(QU KA (L), 8) (. Eauation BN € N)

Py (301)

= (17914) 2 (h)* |7, A* A . .

= V2 QW kA (1,674)} (- Equation B00)
e

= BV, (QM*kd",7) (- Equation 254)

When S* C Sél*,
S*}

ViZ{Q k& (1,97}

E*{f(nG>Eth (@ |k n)

1 —A
) S*} (- S* C SAY Equation 254)

S P2 QU kE (1,67} (- Lemmas I (2) and 23] (1))
(302)

1 nA —A
= 3 B {ime e

To sum,

. 2k [ ~ *
im Vv (7alS¢)

* 1 * *
= E*[ Y BV (k" ng) + BV (B k¢ ne)}
A G
2nTC
G {V*( T*’wC*|k£C’*)_V*(IBT*,IBC*“CEC*)} *]
”G”G
+ZV2 ( ){AE (B [kA))2 — 2V (n% n(; )HAE (B4 kA

(. Equatlonslﬂl_OL and [301))
- ng(Lg~?) 24§ 3 A% gA 2 p Ax|pAr(q —A
=30 3w {RE S Bk (g 4 VA R (g
A g

-A—Q

* ngC * T* Cx11.TCx* * T* Cx11.TCx*
— 2B { S [85 HV (87 B RES) — V(@ W KE))
GG
2 Ax |, A ng” ngc Ax |, A
+ZV ( >{AE (B |kE)) _W(ng . )HAE (BYkE)

Lemmas 1 and ), Equation [302, where S* = S Sz A sé) (- N C N
G’ G =
(303)
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In particular, when kT* = kc* = k¢, it follows that, according to Lemma [14{ (3),

(304)

and, thus,

nA
EVNh QM kg ng) = thZ:I(Q(h) k&%) + n—AVhQﬂ(Q(h) |0*) (. Equation [254)
na €]
e (QU k)
—_ — AN

EV]\%fh:l(Q( s ’kG ,ng) = ngv}?il(Q(h) |”~'A ,ng) + %szl(Q(h) |0*,ng) (.- Equation [258))

= {1 d(nfs ) V2 (@M |Kg) (- Equation
AE*(Q*|kE) = E*(Q*|k&Y) — E*(Q*|0%) (. Equation [263)
= E*(Q*|k{*) (. Equation [T66)

(305)
and, therefore,
2*(%\5*0)
= E*< e V2 (k) + {1 — dngyna) )V (8% k)]
A
2 * * * * * * * * * *
V(W W) — {1~ d(ngne) V(87 B k)55
2*77/7@* *( QA*| 1% *nGnG *A**
+ZV (e SG){E (B |kg)y* —2v° (12,8 )HE (8™ k) (306)
(. Equatlonu-, Lemma [14] (3))
= B (|85 V(@ + W k) + B[ (1~ dngna)) S|V (87— B7IKE)
2% « (NG nG 2% *
(. Lemmas [10] (2) and [15] (6),V ( ) A% (nG e Se ) V=(1|Sg) = 0)
In limit,
lim d(ng,ng) = lim d{n&*(1,1),ng} (.. Equation [304)
n*—oo G n*—o0 G (307)

=0 (. Equations and where g4 =1,n = ng)
and, thus,

1
*G>V2*(UJT*+UJC*’kg)+E*{ (1_0)
(" Equations and [307))

* 1 * * * * * * * * *
=E (* ){V2 (BT — B9 kL) + V(W™ + W kg
ng

(1) Under Assumption [1*] it holds that S} (7r) = S}, (. Assumption [I). When K¢ =
K73 € U* and N = N", it follows that Kg = K ("." Equation [164)) and, according to Lemma

& v (BT — 8O Ikg)

n*—oo

1
2% *
lim V*(7¢|S¢) = E <—nG

(308)
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(1), S = S = S},a¢ (" Equations and , and Equation is equivalent to the desired
result, where

s6) =B (--8t) (- Lemma I3 (1))
. nr (309)
= —. (- Equation [35))
ng

(2) Under Assumption it holds that S} ¢(7p) = SE (. Lemma |§| (1), Np = np > 1,

Equations and 211). When K}, = K} € U* and N = N, it follows that K¢ = Kp (-
Equation [164) and, according to Lemma (2), S = Sk (.- Equations and [213)) and

Equation is equivalent to the desired result.

(3) Under Assumption it holds that S} ¢(7v) = S{f (.- Lemma |§| (2), Nt = nft > 1,
Equations and [211). When K}, = K}, € U* and N = N, it follows that Kg = Ky (-

Equation 164 and, according to Lemma (3), S = Sif (.- Equations and [214)) and
Equation [303] is equivalent to the desired result.

O

Under Assumption and the sixth and seventh lines in Proposition [2*] (3) are equal
to zero because Equation leads to

AE* (B |k{*) = AE*(BY*|ki*) = 0, (310)

or because the conditional expectation of 7 is constant (E*(7/|S{f, ny) = 7*) and thus its vari-
ance is zero. Note that, under Assumption the conditional expectation of 7p is also constant
(E*(7p|S{f,np) = 75), while np = n is always constant. This is a reason why Propositions
(1) and (2) are simpler than (3). In addition, Propositions [2*| (1) and (2) hold whether or not
Assumption [4*| and /or [5*| hold.

For an analogous reason in the case of Propositions |2 V#*(7p|SL) can be smaller than
V#*(7u[SF) (or V2*(7y|SE), where SE C S}7).

Alternative proof of Proposition [2*] (3) is as follows. According to Equations m
V(70 IStt) = EX{V* (7u|StF, nu)ISg} + V*{E* (7u St nu) S -
It follows
E{V*(fy|St, no) ISy
=E* V*{E(Y|KyXT) - E(Y|Ky X9)[Si,np}SH] (.- Equations [I0] and

= B [V{E(Y|Ky X")IS", nu}Sy] + B [VZ{E(Y | Ku X)|S, nur} S]
—E* [VH{E(Y|KyXT), E(Y|KyX©)|St, ny}St] (.- Lemmas [15] (6) and 23] (1))
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Let ny € NLS%, = S; .« (np). Note that S* € S, ny if and only if S* € S}, and

Viil{E(YlKUXA(h))lgl*vnU}

= V3 {BEy* Wk XAM) Sy} (- Bquation 23)

= V3 {B(p h>+ﬂA + wA® "M X A®) — AWISLY (- Lemmas [ (1) and [[5] (4))
— VI { BB WM X AR 4 B(wAP) k"M xAM) S5} (- Lemmas [§ (1) and (3))
= Vi {B(pA" W‘“’ IS} + V3L {B(wA® kW X AN S5}

2
+ Z VH{E(BA D kM) AP AN X ACP)IS1 ) (- Lemmas [[2] (2) and [[5] (6))

(I)A( )

1_";U V2>k (,BA(h)* H k )
h=1T

nU“>A(> sl 2 oAt
+[2-I{A(1):A(2)}—1]WEV ( EkU ,nU)

(".- Lemma u ) and [2 . ), Equation [282)
(311)

where the last line follows because

VBB Pk ™), B P kTN XA sy}
—E' ([E(BA(h)IkA(h)) ~ BB k") sy}

x [B(w P i X ACR) — BB (w0 T XA h))IS* HiS

> (. Equation [93))
= E5{Ex (BB M k") — BB Dk ") S5 B kg X A) ) sy}
(.- Equation Lemmal[12] (1))
= E5 ([B(8* k™) — E{ BB k™) S3 HEx { B g~ XA
(. Lemmas 0] (2))

* A(h * A(h * *
= E5[E(8A W k") — EX(E(BA D k") ISk} - 0Sy] (- Lemmal[2] (1))
=0.

Note that, when A(1) = A(2) = A and A(1) # A(2), it follows Hh Lk (h)* = k{* = k4" and
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Hizl ké(h)* =k} = k:é*, respectively. Therefore,

lim E*[V3e, {E(Y Ky X" ®)[s}, ny}Isy]

n*—oo
né(l)A@) 2 [ aAh 2 A(h)x
= |y { Jm BV (84| T k" ne)
[The1 2y h=1

+[2- {A(1) = A@2)} — 1] lim EVZ (wA(h)*

2
H k{}(h)*’ nU) } ‘S%]*} (.- Equation [311])
h=1
nA(l)A(Q) , A B ) " ) 1
h=1"y
(.- Equation [307))
AMAR) 1 4y A
* n n l,g ) " « " _
e M S D (g o))
[Th=1my g-4=0 ny

2 1{A(1) = A@)} = IV {w ™k (1L,g~ )} ) [slF} - (- Equation B51)
1 pAMAR) A —A
_ Z E*( 2U A U(i;j} )’Sg>[v2*{ﬁA*‘ké*(17gA)}
g=4=0 h=1"U U
+[2- I{AQ1) = A2)} = IV {w™[kg (1,9~} (. Lemmas [I0] (2) and 23] (1))

Specifically, when A(1) = A(2) = T, the first and second lines of the right hand side of Propo-
sition 2] (3) is equal to

lim E*[V*{E(Y|KyX")|S", nu}ISt]
% np 1% 2% T'x | 1,% 2% Tx|1.%
=B { 8t 2 (BT k) + V2 @ k)

nT -n * *
+ Bl [t HV (87 kG — k) + V(T RE — k),
(ngr)?

when A(1) = A(2) = C, the third and fourth lines correspond to

lim E*[V*{E(Y|Ky X[} ng}[s}]

{80 (07 ki) + V(W k)

(n

* nC—TLP * * * * * * * * *
FE PP ISl LV (8 KG* — k) + VP (WO RET — k),
(nU)

and, when A(1) # A(2), the fifth line deals with

lim E[V{E(Y|KyX"), E(Y |KyX)[St, nu}IST]
* n * * * * | 1% * * *17 %
=E { TPc‘Sllf}{V (BT, B |kp) — V*(wl™, w* k)
nyng
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Finally, the sixth and seventh lines represent

VA{E 7y Sy, no) ISy
= V*E{E(Y|KyXT) - E(Y|Ky XS, ny}SH] (.- Equations [I0] and
= V*EHE(W" + 8" + T k(X)) — E(u” + B + wC (ki X)[SY ny} — 7ISY]
(.- Equation [23] Lemmas [4] (1), [8] and [15] (4))
:V2*[E*{E*(BT*|S*kT*) E*(BC*|S*I€C*)|SI*,nU}|S%]*]
(. Lemmas 3] (1) and (3), [10] (2 , and [19] (4))
= V2*{E7V(,8T*]k:T*,nU) — EN(ﬁC*|k:C*, nU)]S '} (. Lemmas[23] (1) and [24] (2

=Y VHENBYIkG ny)ISyY — 2VH{EN (B k(" nw), EN (B kG an)’SU
A

(. Lemma [15] (6))
2% ”gc 1% * (A A*x |1, A%\ 2 * ngc 1x *( aAx| 1, Ax .
-y v (—A‘SU){AE (84 |kA*)) —2V( T C’SU)HAE (84 |kA*) (- Equation 250)
A na (Lrelle A

LEMMA 28 (DECOMPOSITION OF EXPECTATION). Suppose that K} € U* satisfies Condi-
tion |1 l S* C Sy (fxs), and, for any fsuch that S*(ng = 0i) # 0,

By Ex{fxs(X* 89S e = 1)) = Y ¢® 1 ()
h

and
Qcﬂgﬁ
It follows
%[ ok * Q% * * h *
E*{ i s(X*, 898"} =Y d™E{f{’ (ne)[s*}.
h
PROOF.

E*{fx s(X", 8)[S*}
= E5[Ex{fx s(X",8)[S"}] (. Equation [199)
= B} (B Ex {s(X SHS (0)][57) (- Lomma B3 (2)

=B { Y a1 (ne)|s7}
h

= Z q(h)E*{f](\?)(ng)\S*} (. Lemmas [10] (2) and [23] (1), Equation [203))
h

3.4. Variance Estimator
Suppose that K¢, € U* satisfies Condition For BW* ¢ B*, h ¢ {1,2}, define variance of
expectation between B8* and B@)* weighted by ké* and adjusted by i € N4! as

1 2
VEX -1 (8" |k, a) = Z n HE*{,@ (1,7} — EF(B" k4" a)).
—A—( h=1

(312)
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This quantity can be represented by two other ways:

VER -1 (8" k&, ')

~ Ly ") ~ g
— Z THE*{IB(M*W@*(LQ*A)}_’_ Z H A* —)
97A=0 h=1 ng 0 h=1
2 1 A
TL ’ * * — * —h)* * — .
-3 S T etk (1,9~ B (B A R) (- Equation BT
h=1¢g-4=0
1 _A _A 2 2
_ n (179 ) * h)* |1, A% —A * (h)*| . Ax =
—g;onAhr_[lE {B" kg (1.9 >}+hlle B kg 1)

2

-2 H Ey(BW* k4% @) (. Equation 208)
Z n HE*{/@ kA* } H E* h)*|kA* —)
(313)

and

VENh (B kG, B)

1 -4 —A
n 179 11— g * * * — * * * -
_ > RO L) g e, g — B (B 1L g )
g—4=0 h=1
CA( —AY A 1 A
(. Equations [I85 and B12] 1 — n (1_’;? ) =0 (1’1—A g ))
n n
L -A —A 1 -A —An 2
n 179 n 171_9 * * * * * *
-{ 11 (ﬁA)} S L T (80 k(1. 1)) - BB I (1.0))
g=4=0 g*A’—O h=1
1
{1l " }HAE* *|k&*) (- Equation 263)
g=4=0
(314)
Define
NTC™ = [n|n € Npax, 21 > m}. (315)
For i € NT€1 T define
VENh 1(ﬁ(h)*’ch* i)
—Z H [E {8 kG (1, 9)} — EX (B |KET, 1))
h=1 (316)

= n;ll) H[E*{B *|kEC*(1,1)} — EX(B™W*|kE*)] (. Equations and

h=1

=0 (. Equations and [I87))

LEMMA 29 (SP MEAN OF FS COVARIANCE). Suppose that K € U* satisfies Condition
1% N C Nuax, fn(@d) is a function of i € N, gW* ¢ B*, w®* ¢ W* for h € {1,2},
St = Shax(ng € N) C S5, {fn(ne)}. It follows
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(1) When N C N4,
E*{fn () Vi (B |S k&™) ISE)

= E* | fy(ne){ BVt (B k" ne) — — EVES_, (B k" ne)
G

+ VENh (B k" ng) HS*G}
(2) When N C NTCL
E*{ fn(ne) Vit (8" S*kE) (S5}
* 1 *
= E* (fyn) [1 = e {1 = dnf n§)) |

&) Vit (B0 KEC)
G

(3)
E*{ fx(ne) Vit (08" kE)ISE} = B fn(n6) EV)—y (0" [kE, 16) ST}

(4)
E*{fn(n6)ViZ (0[S RET)ISG} = E{fn(ne)ISEIVE, (0 [RET)

PROOF. For i € N, let S}, = S} . (ng = 01). Suppose S§ # 0.
(1) Note

s Viz (8BS kG ISk}

2 2
S|N{ (1:[ B S*ké*) _ HE*(ﬁ(h)*|S*ké*) S}‘v} (- Lemma {5 (7))
2 2
-1 -1

2
(- Lemma (1) and (2), where we substitute H BM* € B with 8*, Sk # 0)
h=1

1 -A —A 2

n 17g * * — * * * * *

= > A TT A0k (g | = [V (78018701830
h=1

2
+ H ES‘N{E*(,B(}‘ |S* k&) |Sh }] (. Equation [205, Lemma [15] (7),N C NAL)
h=
1 _A —A 2
n lag * * * — * * * —
= > L e a0 i (1,g7)) + [ BB (g~
h=1

2
1 om * - * * * =
— BV (B kG ) - [ Ex (8" |k D)
h=1
(" Lemmas [14] (3), [15] (7) and 24] (2), Equation [282)
= EVE1 (B KA ) — =g BV (B ") + VER o (81 )
(.- Equations and [B13] E

Note also that S’ {fn(ng) V>, (BW*|S*kA*)} = Si {fnv(ng)} 2 SE. Therefore, by apply-
ing Lemma [23| (2) and substituting n = ng, the desired result follows.
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(2) We can substitute A = T'C' in the proof of Lemma [29| (1) to obtain

E*{fn(ne)ViZt, (B™*S*kE)(SE )
=B | (6){ BV (B IR 06) = - BV (B IKES” m)

G

* 1 *
=" (fw(n0) [1 = e {1 - dmg n5))
(N € N9 Equations [186} [I87 255} 259} and 316, Lemma [10] (2))

(3) When 7 > 1,
Vi (™IS kG ISK )

2 2
=1 =1

i

+ VB (8K ) |

S*)V2* (B(h |kTC*)

S}*\,} (. Lemmal[T5] (7))

k& _) (".- Equations and [147] Lemmas [12] (1), 23] (1), and 24] (2 ),

é*(l,g‘A)} (.- Equation 205, N C N41)

g—4=0 h=1
L -A —A
n (179 ) * * * —
= > V™ (g} (- Lemma [T (2)
g=4=0

= BV, (wM*|kg*, ) (. Equation 254)

Even when 7 < 1, both ends of the above equation are equal to each other (zero). Note that

St/ () V22 (@M*|S7KA)} = Sl f(ne)} 2 St Therefore, by applying Lemma 23 (2)
and substituting n = ng, the desired result follows.
(4) We can substitute A = T'C' in the proof of Lemma [29] (3) to obtain

E*{fn(ng) Vit (w™*|S*kET) (8%}
= E*{ fv (na) BV (0" [KE™, ng) 8% |
= E*{fn(ng) S} VZ, (0P |kE*) (.- Equation Lemma [10] (2))

0

PROPOSITION 3* (B1As OF THE NEYMAN VARIANCE ESTIMATORS: SP). (1) Under Assump-
tion |1, it holds that S} f{VNeym“"(TF)} Sax and

lim [E* {VNeyman( ) ‘S

n*—oo

* 2 * * * * * * * *
}— V(75 (Shax)] = E{VQ (8™, B k}) — V> (w!™, w |k} ).

max

2) Under Assumption (3%, it holds that S¥,_{VNevman(zp)} = S2¥ and, when SE £ 0,
def P

lim [E*{VNeyman( )|S2*} VQ*( |S2*)]

n*—oo

* 1 * * * * * * * * | 1.%
= 9F (E\S%a){w (87, B k) — V> (w"™, w* |kp) .
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(8) Under Assumption it holds that S {VNeym‘m( v)} =S and, when S} # 0,

lim [E*{VYmen(7y)|SE ) — V(70 |SE)]

= 2B (2 |83 ) (v (877, 8" k) — V" (@™, w " )}

+[E{W’ e Vz*(5‘Sz*ﬂ{AE*(ﬂT*‘kT*)}
N {E*{(ZL%(—% o ‘SQ*} V2*<g‘S?j‘ﬂ{AE*(ﬂC"‘lkg*)}Q
+2V*(7”LP nP‘SQ*>AE*(BT*|kT*)AE*(IBC*’kC*)

The closed forms are obtalned by using Lemmasm l 25|, and [28} E and Equatlonn If we do

not take the limit, Equations and - show bias of the general case, E*{VNeyman (7 c)|SE} —
VQ*(TG|SG)
and |5} ., it follows that Proposition [3*] (3) and Equation - hold

Under Assumptlon .
Applying Equation 290 to Proposmon 3 (3), we obtaion

hl)n [E*{VNeyman( )|S2*} VZ*( |S2*)]

_QE*< np ‘SQ*){V*(,BT* ﬁC*“{:*) V*(wT*,wC*|kp)}
U U

PROOF. Suppose that K}, € U* satisfies Condition [I*] N C N%, and S}, = S}, . (ng € N)

Szef{vNeyma“(%G)}. It follows that

E* {VNeyman( )|SG}
— E4[Ex {VNYman (7)1 SE] (. Equation [T99)
= B5[Ex{VN™(76) — Vx(76)} + Vx (fa)ISE]

. 1
=E5{ Y V(B Ik) - “IKEC)
A G
+Zivz(wf‘yké) + G}
1 né ngng
@)}, NCN?)

(. Equations § and [154] S C Sies {Neyman 2
v2<ﬁArkG> + V2wt [se] (. Banation [0
e

27’LTC
GC V(w!, w
”G G
T

W k)

9 TC
e V(w®,

= {r
1 ng—1
* 1 * * * *
= (X [ {mvi ek ne) - L1 PV (B o) + VIR (3 ko) }
3), NC N2 C N')

SE) (" Lemmas [23] (1) and 2 . and (

1 *
+ g BV (@™ |k ng)|
G
(317)
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Therefore, the bias of Neyman variance estimator is equal to

E* (VN (76) (S5} — VH(761SE)

:E*<ZA:[1{EVN*(BA*|I€A*7HG) %EV]\%*(,@A*“CA*,DG)—FVE (BA*|kA*anG)}

A
ng
1 Ax *
"‘% V(@ kE", ng) ”SG)
* 1 * * *
~E [ Y BV @k ) + EVE (B k" ng))
A ng
2”50 s Tx Cx* 1, TCx 7w aT* 2C* 1. TCx *
+n C{V ( , W |kG )_V (16 a/ﬁ |kG ,I’IG)} SG
reild

* * Ax |1, A%\ 2 * TC ngc
S¢; |[{AE* (B k5" )} + 2V
G’

B ZV2*(”G ) HAE* (B4 | k&)

(- Equations 297 and 317], S C S {VNy™a (74)} C Sdef(m) )

_ QE*{nngg?jgﬁ(ﬂT*”BC*’kgC*’ nG) S*G} _ 9F* (;%%jg * )V*(wT*,wC*|k£C*)
+E'[ 3 ﬁ{m (B k) + BV BV ng) — EVE (8 k" )} S5
A G
_Zv2*< S*){AE*(ﬁA*|kA*)}2+2V*< C 7’LG >HAE* ﬁA*‘kA*)
ngG  ng
—2E*[ n%};jc{l_ ( gC* 20)} } (IBT* ﬂc*’ch*)—QE*<nn£CC *>V*(wT*,wC*|k£C*)
G''G lellre
* 1 - Tbé(l,g_A) * aAx |1, A%\ 2
+E(¥né_1[{91:[0né}{w (6 K&}
1 A
by e 6? g (1.9~ n(1.a~ V(B (1) [55)
g-A=0
ZV2*<nG ){AE*(,@A*|kA*)}2+2V*< TC ngo >HAE* BA*"CA*)
A ng&  ng

(. Equations [254] [258] 260}, and [314))

ngc TC TC Tx Cx|1.TC ”TC Tx , Cx.TC
ZQE*[ G {1 — d(nEC* nEC) }V*(ﬂ * BO |k *)—21@*( - )v*( * WO K5O
n~n ’I’L
fellle! fellle!
1 A —A
2By TI " se Ham (8" kg
a1 [T i ng

1 nA
+3 ZE*[Md{ "(Lg™),ng(1,97)

A g—A:O (né - 1)

_ ZV2* (nG

S| V2 {84 g (1,7}

TC TC

>{AE*(BA*|kA*)}2 +2V*( ”G )HAE* (B4 kA
ng

(318)



122 Fukumoto

In limit, it follows

im [ET{TN™N(76) (S} -V (761SE)]
TC

«f T * * * * * * n&e * * * * *
= 9E {ngcnga ~0)[s (87, B KE) — 2B (nfg V@™, w0 KES)
1 A —A
+ZE*{nA1_1 11 nG(i’é ) & HAE (8% ki)Y
g=4=0
+Z Z E*{”G 1791) i } thl{BA*“Cé*(l’g—A)}
g-A=0
né ”G

(. Equatlons - 298] and [299))

_ % ngC Tx C* TC’* s/ Tx Cx 1. TC*
2B (s ) V(BT B RE) = V(" w KE))
néng
TLG—’I’LgC) « 2% ngc * x [ QAx|7,Ax\ 2
+Z[ L e 56} - v (o) [ am o wey
TC T
+2v*(nf; nGG )HAE* (B k&) (- Lemmal[0] (2))

When kzg* = kzg* = kg, it follows

V2* (
ng

and Equation leads to

):V*(nG nag
ng nag

) = VH*(1SL) = 0 (320)

B (VI (76) (S5} — VH(761SE)

= 28" | =S {1 — d(nf;, e} |8 | v (87, 87" k) — 2B7 (=4

ngng

1
+2.E (nG_lﬂnGEL’g) EHAE (B k)P
g=0

Py T Ly (1,9).n1,9)

A g=0
_ Z VZ* (nG
(. Equatlons 257 and [305, Lemma [14] (3))

* 1_dn*7nG * * * *| 1% * 1
e (1710 g g ) (L

na
d(nf,ng) "

+E { < }Z " (B k)

(- Equatlons-and-

V* T« C*k*
o Jsa) v eIk

& Vi 1B k(1 9))

){AE*(BA*|I¢*)}2+2V*(”G nG )HAE* (B4 k)
e

* )V*(wT*wa*’kg)

ne — 1

(321)



Supplementary Material 123

In limit, it follows

lim [E* (VN0 (76)|SE} — V2 (76ISE)]

n*—o00
1

* * ( T* Cx|1.%\ _ * * * T* Cx|.%

—2E(n 6 V(BT B k) — 27 ([ )V (@ w kg
26(gA* |k . (322)

+E* <nG )ZV (B k&) (. Equations [307] and [321))
= omr (- S*G){v*wT*,ﬂC*rka) — V(T W k).

ng

(1) Under Assumption [1* it holds that Sj{VNY™an(7p)} =S¥ (.- Equation Ni =
n > 2). When K}, = K}, € U* and N = N", it follows that K¢ = Kp ("." Equation [164]) and,
according to Lemma (1), St = S = S . (- Equations and [212), and Equations [309]
and lead to the desired result

(2) Under Assumption [3*] it holds that S} {VNevman(75)} — §2¢ (- Equation m Lemma
9] (1), Nf = Np = np > 2, Equations 204] and P11). When K}, = K} € U* and N = N2,
it follows that KG = K p (. Equation [164)) and, according to Lemma (2), St =S¥ (-
Equations [211] u and [213]) and Equatlon 1322| is equivalent to the desired result.

(3) Under Assumptlon it holds that Sgef{VNeyman(TU)} =S¥ (- Lemma@ N{ =
nU > 2, Equatlonslmhnd 211). When K, = K;; € U" and N = N2 it follows that KG = KU
(" Equation [164)) and, according to Lemma 13| (3), S§, = SF* (- Equatlons ! and [214) and
Equation [319]is equivalent to the desired result.

0

Here are short notes. First, the bias directions of the Neyman variance estimators for all of
these three ATE estimators are unknown When the pair matching is effective in the sense that
yT* and y©* are sufficiently close to y ¥ and y ¥, respectively, and the treatment effects are not
so heterogeneous across pairs, VNeyman(TF) and YNeyman(2.) are upwardly biased; otherwise,
they are downwardly biased. The bias direction of VNeyman(z.) in these cases is unknown.
Second, under Assumption and the last three lines in Proposition [3% (3) are equal to
zero thanks to Equation Propositions [3*| (1) and (2) hold whether or not Assumption
and/or [5*| hold(s). Third, If only for 7r, even Imai (2008) and Imbens & Rubin| (2015)) do not
derive Proposition [3*] (1).

PROPOSITION 4* (B1AS OF THE ADJUSTED NEYMAN VARIANCE ESTIMATORS: SP). (1) Un-
der Assumption (1*|, it holds that S f{VAdJ Neyman(2;:)} =S¥ . and

max

lim [E*{VAd] Neym(m( )‘Smax} VZ*( F‘Smax ] =0.

n*—oo

(2) Under Assumption it holds that S} {VAdJ Neyman(2p)} = S% and, when S% # 0,

lim [E* {VAd] Neyman( )’S2*} V2*( |S2*)] _

n*—o0
(8) Under Assumptz’on it holds that S7; {VAdJ Neyman (7))} = §% and, when S% # 0,

lim [E* {@Adj—N@yman(,f_U) ’S%Sk} V2*( ’82*)]

n*—oo

_ [E*{(Z%(igl)(:(f)) ‘Sz*} _V2*<Z§‘S%*ﬂ{AE*(BT*’kg*)}Q
C
N [E{ (TTLl%(T—lUl)(:éD))Q ‘SQ*} V2*< 5‘8%)} (AE* (B0 kG )2
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The closed forms are obtained by using Lemmas (2), and [28/and Equationm If we do
not take the limit, Equationsand@ show bias of the general case, E*{Adi-Neyman 7 c)|SE}—

Under Assumption and [5* it follows that Proposition [4*| (3) and Equation hold.
Applying Equation to Proposition [4*| (3), we obtain

lim [E* {VAdJ Neyman( )‘82*} V2*( ‘82*)] 0.

n*—oo

PROOF. Suppose that K}, € U* satisfies Condition [1* l N C NT€2 s = St (ng €
N) C S {VAdiNeyman( 7y} Qince S {VAdNeyman(7)} C s* f{VNeyman(Tg)}, it follows
S¢, C Szef{VNeyman(Tg)}. In addition, since NT¢2 C N2, it follows N C N2. Thus,

E* {VAdJ Neyman( )‘SG}
— B3 [Ex {VAYNmn (36)}8%] (- Equation [[00)
= By [Ex {VASNyman(70) — V(7g)} + V(76)ISE]

« 2/ aA 2 nic T AC|.TC
= E5{ 3 VRS - 7€ V(8" BOIRE)
PR G"a "G
4 Z V2 A’k ) Qngo V(UJT wC‘kTC) * }
G G nGng ) G
(. Equatlons 8 and [[57) Sy C S {VAGNeyman (7)1 N € NTO2 € N?)
* rxrNeyman * 2nG ngC T 2C 1. TC C11.TC (323)
= BNV (7)[85) — B | 7S { b=V (87, BCIES) - V(W W kL) } |8t ]
ngng ‘ng — 1

(" Lemmas [23| (1), Equations and St C i {VNeyman (2.1 )
= B (PN 3)[S5)

ngc ngc 1 TC* TC * * ¢ T* Cx 1. TCx*
— 2E* (nTnC 2IC _ 1 [1 B nTC{l —d(ng ", ng )}] SG)V (BB kg™ ")
G''G "'G G
nLC
+2E*( G *)V*(wT*,wC*|k£C*)

”G”G

(.- Lemmas [10] (2), 23] (1), 9] (2) and (4),N € NT¢2 ¢ NT¢1),
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Therefore, the bias of Adjusted Neyman variance estimator is equal to

E* {VAdJ Neyman (2 a)ISg} — V¥ (7a¢|Sg)

= EX (VN0 (76)[SE } — V2 (76ISE)
TLTC TLTC
_ 9R* G G 1— 1— TC* TC
<n£ngnG —1{ ngc{ dlng™" G )}}

S&) V(87,87 kL)

TC
+2E*<n
”G”G

* ngc TCx , TC Tx 0% 1. TCx % ”gc

= 2B [ S {1 = ()} |SE] v (BT, B KL - 2B (-
ng&ng neng

+ZE*{nA17
it
* A) A
+ZZE[ 3 (g™ (197

)V*( T*,wC*!kEC*) (.- Equation [323)

&)V @ WO R

n&(1,g74)
A

& HAE (B4 ki)

& VB IS (1,7}

A g=4=0
_ZV2*< ){AE*(BA*“CA*)}Q-{—QV*( TC 7:’,?0 )HAE* BA*“CA*)
G
TC TC

n n
—2IE< G G {1—— 1 — d(nEE* nLc }
e[| el A )

SE)V*(,BT*,,BC*“CgC*)
TC
+ 2IE*( e

n&ng

>V*( T W |kLC*) (- Equation BIS)

1
_ * 1 né(lﬂg * 2% ”gc
=D B I s -v (o
A ng — g-4=0 ng ng

TC TC

56 ) [{AE" (87 k)P

Yy E o A)d{ {1, (L, g~
) 7nG’ » g
A g=4=0
nIC nTC
—QE*{ G G d TC* TC
ngngngc 1 (nG )

86| V2 {84 g (1,97}

}V*(,BT* ,@C*’ch*)

(324)
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In limit, it follows

lim [ {VAGNman(76) S} — V* (76/S%)

n*—00
-2 Il "é(igA) *}—V”(’fi o) (A (B kg
A g=4=0
+2V*<ng: 7:1%;: )HAE* ,BA*\k:A*)
A

’I’L —A
D> 5 B {FE ol v (e (1.}

_AO

* nTC nTC * * * * * .
—9E {nang i AL S& - V* (87, B KEY) (- Bquations [[53 298, 209}, and [52])
1 A —A TC
* 1 nG(17g ) * 2x (M * * 0 aAx )1, A%\ 2
=S B T "= se} - v (5o [so) [{aE (8™ ke
1 G 9-A=0 G G
TC . TC
+ QV*(nG nG ) HAE* ,BA*“CA*)
ng ”G

(325)
When k:g* = k:C* = k¢, Equation leads to

E*{VAd-Neyman (7 )1§E L V¥ (74]SE)

_ XA: [E*{ngl [ nG%Gg> 2 _Vz*(% 55)] (5 (84 ki)
+2V*(Zg ne )HE (B4 k)

A

n —A
B B[ olL.g )d{nal,g-A),nG(l,g—A) A Gl )

—1)n
AgAO naG

- [E*{n 1—1ZGn0
A G G NG
+ Z ( |: (ng —1 nGd(nG7nG)
nag Ax
=T &V (8™ k) )
s }V* (BT, 8%%|k%) (.- Equations and [320])

ng ng
{1ty
ngngng — 1 (nG:na)

_ E*{d(n*G’ ne)

¢ }V*(IBT*, BY*|kg) (. Lemmall4] (3), Equation
&} = O[{E* (B k)2 +2- 0 []2 (" k)

} Vi B kg

+E*[

d(nGﬂ nG)

& VBT~ B IkG) (- Lemmal[TF] (6))

-1
{n VQ*(,BT* B kL) if ng; > 2. Equation [250]
= G
0 if ng; < 2. Equation [250]
(326)
In limit, it follows
lim [E*{VAUNYmaN(70)SE} — V¥ (76(SE)] = 0. (327)

n*—oo
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(1) Under Assumption |1*} it holds that S}, [ VAdi-Neyman (791 — §* (- - Equation n and
NE¢ = Np = n > 2). When K}, = K} € U* and N = N (note N™ C NT€2) it follows

that KG = Kr (. Equation ,

St = Spax(ng € N) - (. by definition)

= Shax(mp € NTO%) (- Lemma [13] (1), Equations N = NT¢2)
= Shax(n > 2) (. Equations and [315)
_ S;knax ( n = 2)

and, according to Lemma [13| (1), Equations and lead to the desired result.
(2) Under Assumption it holds that S} {VAdj Neyman(%p)} = S¥% (- Equation Lemma

|§|( ), Nb¢ = Np =np > 2, Equatlonand . When K}, = K% € U* and N = N7¢2,
164),

it follows that Ko = Kp (. Equation |16

S¢: = Spax(ma € N) (. by definition)
=%, (np e NT?) (- Lemma[13 (2), Equations [189 N = NTC2)
=S} .(np >2) (. Equations and [315))

=S% (.. Equation 213)

and according to Lemma ( ), Equation is equivalent to the desired result.
) Under Assumptlon it holds that Séef{VAdJ Neyman( 7u)} = S% (not S§/, - Equation

. Lemma@ NTC Np =np > 2, Equatlo and -D When K¢, = K{; € U* and
164),

= NTC2 it follows that Kc=Ky (- Equation

S¢; = S} ax(ng € N) (. by definition)

=SS!y € NT€2) (- Lemma [13] (3), Equations [T90] N = NT¢2)
= Spax(mp > 2) (. Equations and [315))

=S% (.. Equation 213)

(note that, except for knife-edge situation, S, # S¥), and, according to Lemma (3), Equation
325|is equivalent to the desired result.
|

Proposition [4*] (2) is surprising. Its alternative and more intuitive proof is as follows. Recall
that Propositio (1) has been already established (Imai| 2008, 4862—4863, Equations (10)
and (1 )) Suppose the following alternative setup for every value of n’ € {2,3,...,n}. We
draw n’ = np pairs of finite sample J/ .. = Jp from the super-population J*, . = J P which is
composed of n™* = n? P pairs. We also draw n~ = n —np pairs of finite sample Jmax = Jmax \Jp
from the super—populatlon J g = Jhax \ J% which is composed of n™* = n* — n} pairs, where

max = {1,2,...,n} and J& .. = {1,2,...,n*}. If we combine the two sets of pairs, we obtain
finite sample as we have dealt with it so far (T ax YU T max = Jmax)-

Let j' € J Denote the h-th smallest j by j'(h). Let

max*

Q' ={Q1:1), Q2j:1), Qj (2)> Q2jr(2)s - - - » Qujr(nr)> Qajr(n) }-
Note

ZZKP,UQU: Z Zl'sz'+ Z ZO‘QU—

Jj i JE€ ek j=E€Jmax b

Z Z KFpijQijr.

J €T hax 1

(328)
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Therefore,
Np = z Z Kpiy X[} (. Equations [J and
SN
= Z Z Kpi; X[ (. Equation [323) (329)
D
= Np (.- Equations [9] and
and
2 et 2i Krip Zij
F'(Q|\Kpz') = =2 A (.- Equation [)
d Zj’e.,]l/ Z K}?z] Z/
SNUK 330
_ 2 i KriZi@i (.- Equation 328) (330)
> 2 KpijZi
= E(Q|KpZ) (. Equation[)
and
=FE(Y'K:X") - E(Y'|K:X") (. Equations[I0] and
E(Y|KpXT) - E(Y|KpX®) (. Equation 330)
=7p ("." Equations [I0] and
and

V/(Q(l)/, Q(Q),’K%»Z,)
— El[{Q(l)/ . E/(Q(l)/|K1/mZ/)}{Q(2)/ . E/(Q(2)/’K}7Z/)}‘K}~Z/] ( Equations and
= F{QY - EQW|KpZ)H{Q™ — E(Q®|KpZ)}|KpZ'] (. Equation [330)
=E(Q'|KrZ')
=E(Q|KpZ) (. Equation [330)
=F[{Q" - E(QV|KrZ)}{QY - E(Q®|Kp2Z)}| K} 2]
=vV(QW,QY|KpZ) (. Equations B8 and gJ)

(331)

where @' = {Q — E(QW|KrZ)}{Q®' — E(Q®|KpZ)}, and
vAdj—Neyman/(f_}‘)

2
= Z N’ VQ/ Y |KpXY) - 1VI(Y/,Y,/Z<|K}7XA’) (.- Equation [I35)

Nj —

2
= Z N 1V2<Y‘KPXA) N 1V(Y7 Y i|KpX*) (. Equations and [331)
P P

= YAdiNeyman 2 ) (. - Equation [[35)

(332)
Let j™ € JI* ... Denote the h-th smallest j™* by j*(h). Let
£ * * *
$7 = (55ey Sy Sy )
Sthax = {8 |55 = {01}, Y s =/}
J €D

Let j=* € J..* .. Denote the h-th smallest j=* by j~*(h). Let

—%

S = (83_*(1),33_*(2),...kaj_*(n_*))

Spes = {3_* s5-. ={0,1}, E 8T = n_}.

J™*EImax
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For S* C S% .., let S = S*(np = n’). Define

max’

S = {s"]s" € Spro, ¥ €SN}

ST ={s""|sT" € S 8" €Sy}

max?

For a while, suppose n~ > 0. Note

Sl =18"]- 187" (333)

It follows

Pr(8™ = s"|S" e §™) = Z Pr(S™" =s", 87" =s*S" € S))
s—reS—+
— ||SS;’| (. Lemma [21] (1)) (334)
= |Sl,*‘ (.- Equation [333))

Similarly,
Pr(S* = 5| € §%) = |Sf*|. (335)

It follows

Pr(S* = s*|S* € Sy)
= |S:;V’ (. Lemma [21] (1))

1 1 (336)

= |S/*| : W ( Equation@[)
= Pr(§™ = ™8 c S")Pr(8 * =s*S*cS™*) (. Equations and [335))

Suppose that fg(s™) = f&(s*). It follows that

E*{f3(s")ISV} = Y Pr(S"=s"|S" € S})fi(s")

s*eSy

= > ) Pr(STT=sTFST eS8 Pr(S” = 5|8 € §) 5 ()

s—*€S—* s'*CS'*
(. Equation [336)
_ { Y O P(ST=sTS e S**)}{ Y Pr(S* =S € S’*)fg(s’*)}

sT*ES—* s/*ES/*

=E*{f5(s™)|S*} (. Axiom of probability, Equation [T99)

(337)
and
VE{f5(sM) ISk} = V*{f§'(s™)|S"} (. Equation B37) (338)
Even when n~ = 0, both ends of Equations and are equal to each other, respectively.
When S* = S ..., it follows that
S/* — S/*
max (339)

§* — §=*

max-*
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Accordingly,

B (ATNmn (1) 63} — V2 (7p[F)
— Z Pr(np — n/‘S%D*)[E*{VAdj—Neyman(%P)’82*7nP — n/} o V2*(7A'P|S2*,TZP — n/)]

n’'=2

= 3 Pr(np = n/|SE)[E VAV ()87 (np = 1)} — V2 (7p[Shax(np = 1))]

max max

= Y Pr(np = n/|SE)[EH{VAUNY (R SE L} — VP (7S

max)]

(.- Equations [332] B37], B38] and [339)

Since np > 2, it follows that n}, > np > 2 and, thus, limy«_,oon™ = lim,. oo np = oo.
Therefore,

lim [E* (AdNevman (7,)[ 83} — 2 (p 53]

n*—oo

max max
n*—o0 n’*—o00

= lim Pr(np=n/|SF) lim [E*{VAGNeyman(2) s 3 — V2 (77 [Sh.0)]
n’'=2

n

= lim Pr(np =n'|S¥)-0 (. Proposition [&F] (1))
0 n*—o0

=0.

Imai (2008], 4862-4863, Equations (10) and (11)) has already shown (1), but neither (2) nor
(3), of Proposition In terms of my notation, Imai| (2008, 4863, Equation (11)) formalizes

hmn*_mo E* {Vpair(%F) |S:(nax} as
1 2% T Cx|q%*
EV (y - Y- 117).

Note that

y" =y = (W BT 0" = (0 BE 0 (o Lemmall] (1))
= 7" + (BT — B9*) + (W™ + w) (. Equations [6} and
LBy - yS) = B (L) + EY (BT - BYY) + EF (@ + w (1Y) (. Lemmas ] (1))
=7* (. Lemmas 3| (3) and

(340)
Denote §* = (B87* — B*)(w™ 4+ w™). Tt follows that
8 = (B} = B (I} +w5)
_(@T* _ aCx\/_, Tx _ Cx .. 3Ax x  Ax *
= (B B~ (—w W) (0 B € B, wM € W) (341)

— &
s 0 e WH
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Therefore,
1 2% T Cx 4%
HV (y' " —y=i17)

1 * * * * * * * * :
= EE {y™™ — 4y — E*(yT* —9y%F|1%)}%1*] (. Equations [88] [89] and [90)

— %E*[{(BT* _ BC*) + (wT* + wC*)}ZH*] ( Equationl@)

_ %[E*{(IBT* — BO1) 4 B (T + wC)2(1) 4 2B (8717)]
(" Lemma [3] (1) and (2))
_ %(E*[{/BT* 8O — (BT — BO 1) 217 4 V2 (w0 +wc*|1*))
(.- Equation Lemmas [5| and [17] (1))
= an{V2*(,8T* — B9 kL) + V(T + w* k%) (. Equations and
= lim V*(#5|Sk.e) (. Proposition 27 (1))

max
n*—oo

(342)

Thus, we confirm that Proposition 4*| (1):

lim [E* {@Adj—Neyman(%F) |S* } o V2* (7A—F |S* )]

n*—oco max max
1

= V(T —yCH1*) — lim V2*(7p|S%,,) (.[Tmai (2008, 4863, Equation (11)))
n n*—oo

=0 (.- Equation [342)

Here is another look. In fact, (IJZT] estimates not only wiTj but also 5 (Equation (?7?)). V2(7p)

depends on w” but not A7, though VQ*(%p]S%*) takes into account both w” and B”. (The case
for (2;5 is similar.) This difference corresponds to the contrast where YAdi-Neyman 2.y s hiased
for V2(#p) (where the bias size is related to 37, Proposition (2)) but unbiased for V**(7p|S%)
(Proposition 4*[ (2)). The above argument holds for 7 as well.

In Proposition 4*| (3), note that Sgef{VAdj‘Neyman(fU)} is not SF but S%' because neither
n¥; nor n§ but NTU(Ky) = Np = np should be not fewer than two. The bias direction of
VAdj‘Neyman(%U) is unknown. Under Assumption and and S?D* # (), thanks to Equation

it follows that limy,- e [E* {VAd-Neyman 2,y §21 2 (7,(S%)] = 0.

4. APPLICATION

4.1. Setting
In order to give readers the sense of how (well) 7p, 7y, VNevman(z.) and YAdi-Neyman (g )
work, this section reanalyzes the data of Angrist & Lavy| (2009, Table A1, Copyright American
Economic Association; reproduced with permission of the American Economic Review). The
original authors matched n = 20 pairs of Israeli schools based on the percentages of students
who earned the high school matriculation certificate, or “Bagrut,” in 1999 (hereafter, Bagrut
rate). In December of 2000, they randomly assigned treatment of the Achievement Award
program (X)) to one school of every pair. In the program, every student who received a Bagrut
in 2001 was eligible for a payment. Orientation for principals and students took place in January
2001. Tests for Bagrut were taken in June 2001. Student is the unit of analysis in the original
article, but in this manuscript the unit of analysis is school, the original unit of randomization.
Analysts do not have to consider an interference issue among students in the same school which
is always a concern for a cluster randomized design (Imai et al.[2009, pp. 32-34, 40).

Among several outcomes the original authors examine, this manuscript focuses on four annual
Bagrut rates from 1999 to 2002. The outcome of main interest is the Bagrut rate in the
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Table 1. Estimation of the Average Treatment Effects on Bagrut Rate by PDE
(7p) and UDE (7y).

Outcome (Y®)  Year (t) 7p U
Matched-on 1999 TG -0.28  —0.40
{YNeyman (7,)}11/2 (2.33) (227)
{VAdi-Neyman (7)31/2 - [0.17]  [0.17 ]
Pretreatment 2000 Ta —1.58 —2.07
{YNeyman (7)}1/2 (6.37) (6.26)
{VAdi-Neyman(7,)31/2 [6.75] [ 6.63 ]
Posttreatment 2001 Ta 7.78 7.02
{YNeyman (7)11/2 (6.29) (6.17)
{VAdiNeyman (700312 [6.69]  [6.55 ]
Placebo 2002 Ta —5.50 —4.65
{VNeyman (7.)11/2 (6.30) (6.12)
{VAdi-Neyman (7.)31/2 [530]  [5.20 ]
NE (2002 in parenthesis) 20 (20)
Np, N5 (2002 in parenthesis) 19 (18) 19 (18)

posttreatment year, 2001 (Y(2001)), and the original authors theoretically expect that the ATE
is positive; 7(2900) > 0. By design, the Bagrut rates in 1999 (Y (1999)) and 2000 (Y (2999)) should
be pretreatments. Therefore, a priori, scholars should be confident that 7(1999) = #(2000) — g
(sharp null) and, therefore, 7(1999) = 7(2000) — ¢ (null ATE). Angrist & Lavy| (2009) argue that
the Bagrut rate in 2002 (Y (2002)) “can be seen as providing a sort of placebo control” because
“[a]lthough seniors in the 2002 cohort were offered small payment . . . as eleventh graders in 2001,
no further incentives were offered to this cohort since the program was canceled before they
began their senior year” (1395). Thus, the original authors believe 7(2002) — g and 7(2002) — 0,
though, admittedly, it is arguable.

Two schools have missing values. Without loss of generality, for every pair j, I label the
treated unit ¢ = 1 and the controlled unit ¢ = 2. Since the control school in pair 6 had closed
before treatment assignment was announced, the original authors do not report its Bagrut rates

for all four years (Rg% = 0 for t = 1999,...,2002). In addition, the control school in pair

17 has a missing value only in 2002 (R%)?z) = 0). Since the Bagrut rates of this school were

bad in 2000 (1/2(721(;00) = 0.071, the sixth worst of 39 schools, where the average Bagrut rate

was 0.238) and 2001 (}/'2(’21(;01) = 0.000), it is reasonable to infer that Y'Q(igm) would be low if
it were observed. If the control school in pair 6 also closed because of its poor performance,

attrition is likely to be non-ignorable. To sum, for t = 1999, 2000, 2001, Nl(gt) = Ng(t) =19,

while N1(32002) = Ng(ZOOQ) = 18. For all years, Ng(t) = 20. Since the original authors utilize the

treated schools of pairs 6 and 17 (whose controlled schools have missing values) in student-level
analysis, they employ 7y in effect.

4.2. Results

Table (1| displays the results. (The replication materials for this section can be found at
https://doi.org/10.7910/DVN/09WE06.) Four panels correspond to four annual Bagrut rates
(YW) from t = 1999 (top) to t = 2002 (bottom). In every panel, the point estimates of
the ATE (7q, first row) and their standard errors based on VNevman(z.)(second row) and
VAdj‘Noyman(%G)(third row) are presented. At the bottom of the table, I report Np, Ng , and
Ng . The first and second columns indicate 7p and 7y, respectively.

At a first look, it seems that 7p and 7y make little difference; their point estimates and
standard errors are close to each other; and both ATE estimators lead to the same conclusion
that one cannot reject the null hypothesis 7 = 0 from ¢ = 2000 to ¢ = 2002 at the 5%
significance level.


https://doi.org/10.7910/DVN/O9WE06
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There is, however, one important exception for ¢ = 1999. Figure [I] illustrates the point es-

timates of the ATE (7 #0999 indicated by points) and their 95% confidence intervals (indicated

by lines) based on VAdJ Neymaﬂ(f'gggg)) and a t-distribution with 19 degrees of freedom. I also

demonstrate the case of a t-distribution with 20 degrees of freedom (F1gure and the case of
1

999) . 1 %[(11999)

a normal distribution (Figure |3 ' The upper and lower parts respond to 7 ,

respectively. The dotted vertical line indicates the null hypothesis (7 (1999) — = 0). Accordingly,

A(1999) rejects the null hypothesis at the 5% significance level, though TI(J 9) does not. Recall

that since Y(1999) i a pretreatment, scholars should be sure of 71999 = 0. Thus, in this

particular case, inference based on T[(Jlggg) is misleading, while that of %](3 999) 5 plausible. This

might be because VA" Neyman( (1999)) < V¥( ((]1999)), that is, VAdj‘Neyman(%l(Jlggg)) is too opti-
mistic, as Propositions I ) and |47 . ) allow. I do not argue that this finding confirms that
7p always leads to more Vahd Conclusmn than 7¢7; I simply call attention to the fact that both
ATE estimators can make difference.

PDE

UDE

I I I I
-0.8 -0.6 -0.4 -0.2 0.0 0.2

Treatment Effect on Bagrut Rate in 1999 (% Points)

Fig. 1. Inference of the Average Treatment Effect on Bagrut Rate in 1999. Points indicate the point esti-
mates of the ATE (). Lines indicate their 95% confidence intervals based on YAdi-Neyman ((1999)

The upper and lower parts respond to 7 41999) and 7 A(l"gg , respectively. The dotted vertical line indicates
the null hypothesis.

It is also worth mentioning one more important point for ¢ = 1999: VAdj‘Neyman(%gggg))
is much smaller than VNeyman(Agggg)). Since Y (1999) is the matched-on variable to match
pairs, it follows that Y (1999) ~ (1999), which is confirmed by %](31999) ~ 0. Given 7(1999) = 0
(which implies that the treatment effect is perfectly homogeneous), I would infer that yT(1999) —

yC(1999) gT(1999) _ gC(1999) 4 T(1999) o y7(1999) yC1999) ~ y9§1999)’wT(1999) — ,C(1999) ~ 0.

Therefore, my conjecture is that V(7 (199 9)) is negligible (Proposition |2 ' VNeyma“(A(lggg)) is

larger than V(Télggg)) (Proposition [3 , and VAdj‘Neyman(%gggg)) is as small as V(Tél 999)) (Propo-

sition {4
Some minor remarks are in order. First, VAdj‘Neyman(%g )) fAdj-Neyman g )) and YNeyman (7 (t)) >
VNeyman(%((Jt)) for all four years (t). Second, ’7'](3) is closer to 7 = 0 than T( ) for t = 1999 and

2000, though the opposite holds for ¢ = 2002. Note that, however, the case of 7(2002) —
is weaker than those of 711999 = ( or 7(2000) — (. Recall that the original authors expect

7(2001) > (. Third, VAd- Neyman(Tg)) is larger than VNeyman(f'g)) for t = 2000 and 2001, though
the opposite holds for ¢ = 2002. Recall that VAdj‘Neyman(%p) is conservative in the finite sample
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PDE

UDE

I I I I
-0.8 -0.6 -0.4 -0.2 0.0 0.2

Treatment Effect on Bagrut Rate in 1999 (% Points)

Fig. 2. Inference of the Average Treatment Effect on Bagrut Rate in 1999 based on a ¢-distribution with
20 degrees of freedom.

and unbiased in the super-population (Propositions [4] (2) and [4¥| (2)), while the bias direction
of YNeyman(2,) is unknown (Propositions [3[ (2) and (2)). Note that, however, all of these
points are concerned with only this application; I cannot generalize these minor remarks to
other cases.

Finally, I emphasize that I do not aim to challenge any findings of the original analysis by
Angrist & Lavy| (2009) because their unit of observation is a student and mine is a school. I
repeat that the goal of my reanalysis is to demonstrate how the two ATE estimators and the
two variance estimators work in a real application, not to look for new substantive findings
about the effect of the Achievement Award program on the Bagrut rate.

5. COMPARISON WITH IMAI AND JIANG (2018)

Imai & Jiang (2018)) is very relevant to my study. In fact, Imai & Jiang (2018, 2908) cite
an earlier version of my present manuscript, saying “[t|he analytical results and methodology
presented in this paper complement the recent work by Fukumoto who examines the bias due to
missing outcomes under the matched-pairs design” (emphasis added). T completely agree with
them. Below, I compare the main manuscript with Imai & Jiang| (2018).

Both studies share an estimand and an estimator. What I call “a kind of local average
treatment effect (LATE) of ‘always-reporting pairs’ ” (7p, p. 3) corresponds to “the average
treatment effect for always-observed pairs (ATOP),” the key concept of [Imai & Jiang| (2018,
2909). Accordingly, the PDE (7p) is the same as the “naive difference-in-means estimator,
applied to all the pairs without missing outcomes” (7arop) in Imai & Jiang| (2018} 2909).

When Imai & Jiang (2018, 2910-2911) consider no-assumption bounds, they make neither
my Assumption 2 nor my Assumption 3. In their sensitivity analysis, Imai & Jiang (2018] 2911)
introduce their Assumption 2:

P{Ryj(t) =1 | Ri;(t) =1} = P{Ry;(t) = 1| Ro;(t) =71} > v

for r = 0,1 and t = 0,1. When v = 1, this is reduced to my Assumption 2. Thus, their
Assumption 2 is more relaxed than my Assumption 2. All told, Imai & Jiang| (2018) derive the
bounds of the ATOP in their Theorems 1 and 3 under assumptions that are more relaxed than
those of my paper.

On the other hand, if (but not only if) v = 1, the bound is reduced to a point, the ATOP
(= 7p) is identified, and not only my Assumption 2 but also my Assumptions 3 and 3* hold.
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Fig. 3. Inference of the Average Treatment Effect on Bagrut Rate in 1999 based on a normal distribution.

My contribution is to show that under my Assumption 3 or 3*, we can derive the closed form of
the variance of 7p = Tarop (my Proposition 2 (2) or 2* (2)) and the Adjusted Neyman variance
estimator (VAdi-Neyman(y) of 75 — #x0p is only upwardly biased (and thus conservative) in
the finite sample (my Proposition 4 (2)) or unbiased in a super-population (my Proposition 4*
(2)). (In this sense, attention to the difference between a finite sample and a super-population
is essential.) For instance, Table 1 of Imai & Jiang| (2018, 2915) reports not only the “[n]aive
estimates using available units” (which I denote by 7aroy and is equal to the UDE (7y) of my
paper, the top panel) and 7arop (= 7p, the second panel) but also their corresponding confidence
intervals. My paper provides some useful guidance about how to interpret the table. On the one
hand, as long as readers suspect that my Assumption 3 or 3* is not violated, my Propositions
1 (2) and 4 (2) (or my Propositions 1* (2) and 4* (2)) will make them believe that the ATOP
probably falls in the confidence interval of Tatop. On the other hand, even though readers allow
my Assumption 2 or 2%, which is stronger than Assumption 3 or 3*, my Proposition 1 (3) or
1* (3) does not guarantee that Tatoy is unbiased for the average treatment effect for always-
observed units (ATOU, E{Y;;(1) —Y;;(0) | Rij(1) = R;;(0) = 1}), and my Proposition 3 (3) or
3* (3) suggests that the confidence interval of 7atoy can be too narrow. Accordingly, readers
should not be confident that the ATOU belongs to the confidence interval of 7atou.

Furthermore, I argue that we do not have to be as pessimistic as Imai & Jiang| (2018)).
They warn “in practice, the treatment often affects the missingness pattern [R;;(1) # R;;(0)]
and matching is imperfect [Ry;(t) # Ro;(t)]” (p. 2910, emphasis added and square brackets
inserted). Here I hasten to add that this is not always the case. For instance, in the cases of
blind tests, subliminal stimuli, and administrative records, it is likely that R;;(1) = R;;(0) (p. 3);
since unit ¢ of pair j does not recognize treatment status, whether the unit responds or not (R;;)
will not depend on whether treatment is assigned or not. Or, if matched-on variables (e.g., (part
of) DNA) completely explain the missingness pattern (e.g., in the cases of (monozygotic) twins
and littermates of the same sex), Ry;(t) = Rg;(t) should hold (p. 2). I also emphasize that my
Assumption 3 is more relaxed than the conditions under which Imai & Jiang| (2018, 2909-2910)
argue Tatop “is unbiased for ATOP.” Their condition is either “R;;(1) = R;;(0) for all  and j”
or “Ry;(t) = Ryj(t) foreach t =0,1and j =1,2,...,J.” Indeed, my Assumption 3 is, for each
pair j, either R;;(1) = R;;(0) for all ¢ or Ryj(t) = Rg;(t) for each t = 0,1. Note also that even
under my Assumption 3, 7atop (= 7p) is unbiased for ATOP (= 7p) according to Section 2.2.

At least, even if we make my Assumption 3 for mathematical reasons, the closed form of the
variance of 7p and the closed form of the bias of VAdi-Neyman(2.) make it clear what is mainly
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responsible for the inefficiency and the bias. That is, the variance of 7p increases in the variance
of within-pair deviation (w;;(1) + w;;(0)), which represents the quality of pair matching (my
Proposition 2 (2)), while the bias of YAd-Neyman 2.y increases in the variance of between-pair
deviation (8;;(1) — f5;;(0)), which indicates the between-pair heterogeneity of treatment effects
(my Proposition 4 (2)).

To conclude, T emphasize that [Imai & Jiang (2018) and my paper complement each other
on the same topic: non-ignorable attrition in pairwise randomized experiments. Imai & Jiang
(2018)) are interested in bounds and its sensitivity to assumptions, while my main focus is on
comparison between the PDE and UDE.

6. CONCLUDING REMARKS

I emphasize that both the PDE and the adjusted Neyman variance estimator have the favorable
properties outlined above because they take advantage of pairwise randomization’s design. It is
clear that basically, one can translate propositions about the full sample estimator into those of
the PDE by replacing kr, k7. and ng by kp, k}, and np, respectively. This is because, under the
assumption of pairwise matched attrition, the PDE regards the always-reporting pairs as the
full sample. This is the case neither with the UDE nor with the Neyman variance estimator;
they “break the match,” or break the design of pairwise randomization. Furthermore, the
framework of this study can also be extended to observational data where scholars apply a
matching method, one outcome variable (e.g., event occurrence) has no missing values, and
another outcome variable (e.g., time-to-event) has some. In this case, too, scholars should use
the PDE rather than the UDE. The Neyman variance estimator can have either positive or
negative bias for both ATE estimators (Propositions |3 and and thus is not recommended.

Non-ignorable attrition in pairwise randomized experiments has attracted less attention than
it should and requires thorough consideration. This work aims to move towards a solution for
this problem, though many questions remain unanswered. For instance, researchers can consider
a pair as a stratum which is composed of two units, while, in many studies, a stratum is composed
of more than two units (stratified randomized experiments, Imbens & Rubin|[2015| ch. 9). In
this case, inverse probability weighting (e.g. [Little & Rubin 2002} pp. 46-47) is available, where
the weighting class is a stratum and the weight variable (Z;;) is not a dummy but a non-negative
real number which can be larger than one. The question is whether or under what conditions
the PDE is better than inverse probability weighting. Another example is non-compliance; units
sometimes do not comply with treatment assignment even though their outcomes are observed.
A typical solution is instrumental variable estimation (Angrist et al.[|[1996]). This study sketches
unbiasedness of both the PDE and the instrumental variable estimator for compliers’ LATE,
though it remains unclear which estimator is more efficient. Finally, pairwise randomization is
often applied to cluster randomized experiments, and researchers may conduct not only cluster-
level but also individual-level analyses (Donner & Klar2000; [Hayes & Moulton|2009; Imai et al.
2009). My conjecture is that the implication of the propositions of this manuscript still holds
even at the individual level, even though specific equations should differ. Studying these topics
is a future agenda for causal inference research.
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