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A Deriving the Common Factor Restrictions

The equivalence between a static process with residual autocorrelation and an ADL(1,1) process
is well known (Sargan, 1964), for completeness we re-derive that here where L is the familiar
back-shift operator (i.e., Ly; = y;_1):

Yr = o4 + ug, where uy = pu,_y + e (1a)
Yo = 18+ (1 — pL)e; (1b)
(1—pL)y; = (1 — pL)xf + e (1c)
Yt = pYi—1 + T — pri1fB + € (1d)
Y = Y1 + 11 + Pazi1 + e (le)

That is, an ADL(1,1) process is equivalent to a static process with residual autocorrelation if the
reduced-form parameters in (le) satisfy Sy + a/3; = 0, often called a common factor restriction.
To see this, simply re-express the reduced-form parameters in (1e) as the structural parameters in
(1d):

a=p (2a)
Br=0 (2b)
Ba = —pf (2¢)

Given (2a) and (2b) we can re-write (2c) entirely as a function of the reduced-form parameters,
P2 = —af, thereby permitting a non-linear Wald test — wherein the null hypothesis is that the
process is a static model with autocorrelated residuals.



Extending this to the case considered by Wilkins (2018), we re-rexpress a PA(1) process with
autocorrelated residuals as an ADL(2,1) process:

Yi = ayi—1 + 18 + ug, where uy = pug_y + ¢ (3a)
Y =y + 28+ (1 — pL) ey (3b)
(1 =pL)y: = (1 — pL)ay,1 + (1 — pL)z:f + e (3¢)
Yo = (p+ Q)yi—1 — pays—o + 18 — pri1f + e (3d)
Y = le—1 + QY2+ 281 + 14182 + €4 (3e)

Here a similar, if more complicated, common factor restriction of the model equivalence can also
be obtained. As before, re-expressing the reduced-form parameters in (3e) as the structural param-
eters in (3d) gives:

B =0 (4a)
Pa=—pP (4b)
ar=p+a (4c)
g = —pQ (4d)
where using the right-hand side of (4a) and re-arranging terms in (4b) we can solve for p = —%.

Given p we can now solve (4¢) and re-arrange to give o = oy + ’g—j Finally, we can re-express (4d)
entirely as a function of reduced-form parameters as 33 + 31521 — 37 = 0, permitting a Wald
test of the model equivalence. As standard for non-linear Wald tests, the variance is calculated via
the delta method and the test statistic is distributed 2.



As noted in footnote 4 in the main text, the use of the back-shift operator L is not strictly necessary
to demonstrate the equivalence between these models. Here we reproduce Equations 1 and 2 of
the main text without it. First, as in Equation 1, we can re-express a static process with residual
autocorrelation as an ADL(1,1) process:

Y = a3 + w,, where uy = puyi_1 + ey, (5a)
Yi = o + pus_y + ey, where uy_y =y, — w13 (5b)
Yo = 2B+ p(ye—1 — 2e-18) + & (5¢)
Yo = pYi-1 + 2 — pri1 B+ e (5d)
Y = a1 + 381 + 11 P2 + €. (5e)

Second, as in Equation 2, we can re-express a PA(1) process with residual autocorrelation as an
ADL(2,1) process:

Yr = a1 + x5 + up, Where uy = pupq + ¢ (62)
Ye = ays1 + 20 + pus_1 + e, where up_y =y 1 — aypo — 141 (6b)
Yo = i1 + T+ p(Y1 — ayr2 — 118) + e (6¢)
Yo = (p+ Q)ys—1 — pay;2 + 1 — pr 1S+ e (6d)
Ye = Q1¥e—1 + QYo + 201 + 1102 + € (6e)



B Simulation Results

Figures 1 and 2 of the manuscript show the LRM bias when the autoregressive parameter in the
residual process p is set to 0.4. Figures 1 and 2 in the Appendix, below, shows the corresponding
LRM bias when p = 0.0 and Figures 3 and 4 shows the bias when p = 0.2.

Figure 1: LRM Bias over values of ag, p = 0.0
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Note: Median bias is computed based on the difference between the true LRM and the LRM restric-
tions proposed by Wilkins (2018). Results are shown for 7' = 50, a; = .4, and p = 0.

Figure 2: LRM Bias over values of 32, p = 0.0
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Note: Median bias is computed based on the difference between the true LRM and the LRM restric-
tions proposed by Wilkins (2018). Results are shown for 7' = 50, a; = .4, and p = 0.



Figure 3: LRM Bias over values of ai, p = 0.2
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Note: Median bias is computed based on the difference between the true LRM and the LRM restric-
tions proposed by Wilkins (2018). Results are shown for 7' = 50, a; = .4, and p = 0.2.

Figure 4: LRM Bias over values of 82, p = 0.2
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Note: Median bias is computed based on the difference between the true LRM and the LRM restric-

tions proposed by Wilkins (2018). Results are shown for 7' = 50, ai; = .4, and p = 0.2.



In Table 1 in the main text, we present the power of our Wald test under a variety of parameter
combinations for vy, ap, and (5. Here we report the true population parameter 32 + (31 Boci; — i 53
for each combination of these experimental conditions. Our results in the main paper demonstrate
how often our test rejects the null hypothesis using samples generated from these conditions.

Table 1: Sample Test Statistic for ADL(2,1) against PA(1) with residual autocorrelation
B2 = 000 025 050 0.75 1.00

a1 = 0.0
o =0.0 0.00 006 025 056 1.00
o =0.2 -5.00 -494 -475 -4.44 -4.00
e =0.4 -10.00 994 -9.75 -9.44 -9.00
ap = 0.2
a2 =0.0 0.00 031 075 131 2.00
ag =02 -5.00 -4.69 -425 -3.69 -3.00
as =04 -10.00 -9.69 -9.25 -8.69 -8.00
] = 04
a2 =0.0 0.00 056 125 2.06 3.00
g =0.2 -5.00 -4.44 -375 -294 -2.00
o =04 -10.00 -9.44 -875 -7.94 -7.00
Note: Table elements give that average value of 35 +

G180 — Oégﬁ%. Corresponds to Table 1 in the main text.




Table 1 in the main text shows the rejection rates for the proposed Wald statistic when the autore-
gressive parameter in the residual process p is set to 0.4. Table 2, below, shows the corresponding
rejection rates when p = 0.0 and Table 3 shows the rejection rates when p = 0.2.

Table 2: Wald Test for ADL(2,1) against PA(1) with residual autocorrelation, p = 0.0

Bo = 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T =50 T =100

a1 = 0.0
as=0.0 0.06 0.06 0.07 0.13 0.26 0.05 0.05 0.09 022 048
09 =02 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
o =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
] = 0.2
as =0.0 0.06 0.08 0.17 039 0.68 0.06 0.10 031 0.68 0.95
as =02 1.00 1.00 1.00 0.98 0.91 1.00 1.00 1.00 1.00 1.00
as =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a1 = 0.4
a2 =0.0 0.05 0.12 035 0.71 0.93 0.05 0.21 0.65 095 1.00
o =02 1.00 1.00 0.98 0.90 0.59 1.00 1.00 1.00 1.00 0.90
as =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T =200 T = 1000

] = 0.0
ay=0.0 005 0.05 0.12 036 0.78 0.06 007 037 093 1.00
ay=0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ap =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a1 = 0.2
a2 =0.0 0.05 0.16 055 094 1.00 0.05 0.53 1.00 1.00 1.00
o =02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
as =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
aq = 04

as=0.0 0.05 035 091 1.00 1.00 0.05 093 1.00 1.00 1.00

as =02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

as =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Note: Rejection rates are computed via using 1,000 replications of the ADL(2,1) model
Yy = oo + aay—1 + ay—2 + Pixr + Pexi—1 + up where up = pu_1 + e
and e ~ N(0,1). The parameter or; = {0.00,0.20,0.40}, the parameter g =
{0.00,0.05,0.10,0.15,0.20,0.25,0.30, 0.35, 0.40, 0.45, 0.50}, the parameter 5; = 5, and
the parameter 5 = {0.00,0.25,0.50,0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50}. The pa-
rameter o = 0 in all conditions. The reported rejection rates are the proportion of the 1,000
simulations where 33 + 318201 — aa87 = 0. The Wald tests are x? distributed with ¢ = 1
degrees of freedom.




Table 3: Wald Test for ADL(2,1) against PA(1) with residual autocorrelation, p = 0.2

Bo = 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

T =50 T =100

] = 0.0

a9 =0.0 0.06 0.07 0.08 0.13 0.25 0.05 0.05 0.08 021 0.47
09 =02 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
o =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

= 0.2

e =0.0 0.06 0.08 0.18 0.39 0.68 0.05 0.10 0.31 0.68 0.95
g =0.2 1.00 1.00 1.00 098 0.92 1.00 1.00 1.00 1.00 1.00
e =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ap = 0.4

a2 =0.0 0.06 0.13 036 072 094 0.06 022 0.64 096 1.00
o =0.2 1.00 1.00 0.99 091 0.59 1.00 1.00 1.00 1.00 0.91
o =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T =200 T = 1000

= 0.0

e =0.0 0.06 0.06 0.12 0.34 0.75 0.06 0.06 0.33 091 1.00
e =0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
e =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a1 = 0.2
a2 =0.0 0.06 0.14 054 094 1.00 0.05 049 1.00 1.00 1.00
o =02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
as =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
aq = 04

as =0.0 0.05 034 092 1.00 1.00 0.06 092 1.00 1.00 1.00
09 =02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
o =04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Rejection rates are computed via using 1,000 replications of the ADL(2,1) model
Yy = oo + aqy—1 + ay—2 + Pixe + Pexi—1 + ur where up = pu_1 + e
and e ~ N(0,1). The parameter ; = {0.00,0.20,0.40}, the parameter ag =
{0.00,0.05,0.10,0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, the parameter 3; = 5, and
the parameter 5 = {0.00,0.25,0.50,0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50}. The pa-
rameter = 0.2 in all conditions. The reported rejection rates are the proportion of the
1,000 simulations where 35 + 31 52a1 — a3 = 0. The Wald tests are x? distributed with
q = 1 degrees of freedom.
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