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A.1. A Formal Proof of The Predictive Posterior Distribution

Under the assumption of exchangeability and by de Finetti’s theorem (de Finetti 1963), given

some parameters θ and their prior distributions, we can write Pr(Y(0)mis,Y(0)obs,X′), X′ =

(X,U) as i.i.d.:

Pr(X′,Y(0)) =

∫ [∏
it∈S

f(yit(c),X
′
it|θ)

]
π(θ)dθ

=

∫ [∏
it∈S

f(yit(c)|X′it,θy.x′)f(X′it|θx′)

]
π(θ)dθ (A1)

where θ = (θy.x,θx′) and θx′ = (θx,θu), in which θx are the parameters that govern the

data-generating process (DGP) of X, θu are the parameters that govern the DGP of U, and

θy.x′ are the parameters that govern the DGP of Y(0) given X′ = (X,U). We also assume

that π(θ) = π(θy.x′)π(θx′), i.e., the parameters that govern the DGPs of X′ and Y, are a prior

independent. Equation (A1) can be written as follows:∫ ∏
it∈S1

f(yit(c)
mis|X′it,θy.x′)

∏
it∈S0

f(yit(c)
obs|X′it,θy.x′)π(θy.x′)dθy.x′ ×

∫ ∏
it∈S

f(X′it|θx′)π(θx′)dθx′

∝
∫ (∏

it∈S1

f(yit(c)
mis|Xit,θ

′
y.x′)

)
︸ ︷︷ ︸

posterior predictive distribution

×

(∏
it∈S0

f(yit(c)
obs|Xit,θ

′
y.x′)

)
︸ ︷︷ ︸

likelihood

π(θy.x′)dθy.x′

In the last step, we regard the unobserved covariates U as unknown parameters and denote

θ′y.x′ = (θy.x′ ,U). Returning to Equation (??) in the main text, we can write the posterior

predictive distribution as

Pr(Y(0)mis|X′,Y(0)obs,A) ∝
∫

Pr(Y(0)mis|X,θ′y.x′) Pr(θ′y.x′|X,Y(0)obs)π(θy.x′)dθy.x′ ,

where the parameterized posterior predictive distribution of the counterfactual is

Pr(Y(0)mis|X,θ′y.x′) =
∏
it∈S1

f(yit(c)
mis|Xit,θ

′
y.x′), (A2)

and the likelihood function is:

Pr(θ′y.x′ |X,Yobs) =
∏
it∈S0

f(yit(c)
obs|Xit,θ

′
y.x′). (A3)

Recall that our objective is to impute the untreated potential outcomes for treated observa-

tions. Hence, we first estimate parameters based on Equation (A3) and then predict missing

values yit(c)
mis for treated units at ai 6 t 6 T based on Equation (A2). If we can correctly

estimate π(U|X,Y(0)obs) – the posterior distributions of U – using a factor analysis, we can

draw samples of treated counterfactuals yit(c)
mis from its posterior predictive distribution by
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integrating out the parameters, including U = Γ′F:

Pr(Y(0)mis|X,Y(0)obs,A) ∝
∫

Pr(Y(0)mis|X,U,Y(0)obs)π(U|X,Y(0)obs)dU.

Note that, because Y(0)obs implies A, the posterior of U is unconditional on A given Y(0)obs.

In other words, if we can build a flexible model and estimate its parameters using observed

data, we can predict the counterfactuals using the posterior predictive distribution for treated

observations in the post-treatment period (ai 6 t 6 T, ∀i).

A.2. The MCMC Algorithm

Model searching and parameter estimation are based on the reduced form model after re-

parameterization, which can be written as the following:

y(c)it = X′itβ + Z′it(ωα · α̃i) + A′it(ωξ · ξ̃t) + (ωγ · γ̃i)′ft + εit, (A4)

and ξ̃t = Φξξ̃t−1 + ẽt, and α̃i ∼ N (0, Ip2), γ̃i ∼ N (0, Ir), ẽt ∼ N (0, Ip3). We assign Bayesian

Lasso priors to the following parameters:

βk|τ 2
βk
∼ N (0, τ 2

βk
), τ 2

βk
|λβ ∼ Exp(

λ2
β

2
), λ2

β ∼ G(a1, a2), ∀1 ≤ k ≤ p1;

ωαj
|τ 2
αj
∼ N (0, τ 2

αj
), τ 2

αj
|λα ∼ Exp(

λ2
α

2
), λ2

α ∼ G(b1, b2), ∀1 ≤ j ≤ p2;

ωξj |τ 2
ξj
∼ N (0, τ 2

ξj
), τ 2

ξj
|λξ ∼ Exp(

λ2
ξ

2
), λ2

ξ ∼ G(c1, c2), ∀1 ≤ j ≤ p3;

ωγj |τ 2
γj
∼ N (0, ω2

γj
), ω2

γj
|λγ ∼ Exp(

λ2
γ

2
), λ2

γ ∼ G(k1, k2), ∀1 ≤ j ≤ r.

(A5)

Note that the shrinkage on the factor term is imposed on the factor loadings, and the latent

factors are not re-parameterized and the state-space equation remains as ft = Φf ft−1 + νt,

with νt ∼ N (0, Ir). We assume εit ∼ N (0, σ2
ε ) and σ−2

ε ∼ G(e1, e2). Because the number of

factors r is unknown, we presume a reasonably large positive integer for r (the initial number

of factors) and let the algorithm determine its value, based on the posterior distributions of

ωγ.

The MCMC algorithm for the DM-LFM, which simulates parameter posteriors and predicts

Y (0)miss using data D, takes the following recursive steps:

1. Start with the initial values of the parameters θ(0);

2. in the gth iteration, sample from the following conditional distributions based on the

most updated values θ(g−1);
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(a) update β :

β ∼ N (β̄,B1)

B1 =

(
σ−2
ε

∑
wit=0

XitX
′
it +B−1

0

)−1

β̄ = B1

(
σ−2
ε

∑
wit=0

Xituit

)
B−1

0 = Diag(τ−2
β1
, . . . , τ−2

βp1
)

uit = yit(c)
obs − Z′it(ωα · α̃i)−A′it(ωξ · ξ̃t)− (ωγ · γ̃i)′ft;

(b) update (α̃′i, γ̃
′
i)
′ A1 :

Denote Z̃it = (Z ′it · ω′α, ω′γ · f ′t)′

(α̃′i, γ̃
′
i)
′ ∼ N (ᾱ,H1)

H1 =

(
σ−2
ε

∑
i,wit=0

Z̃itZ̃
′
it + I(p2+r)

)−1

ᾱ = H1

(
σ−2
ε

∑
i,wit=0

Z̃ituit

)
uit = yit(c)

obs −X′itβ −A′it(ωξ · ξ̃t);

(c) update (ξ̃′t, f
′
t)
′ A2 :

Denote Ψt = (ξ̃′t, f
′
t)
′, Ãit = (A′it·ω′ξ,ω′γ·γ̃ ′i)′ and Φ = diag(φξ1 , . . . , φξp3 , φf1 , . . . , φfr).

A1When some covariates appear in both Xit and Zit or Ait, an interweave from the non-centered parameter-
ization to the centered parameterization using the algorithm developed by Yu and Meng (2011) can improve
mixing.

A2When the number of units is relatively small, we jointly update Ξ̃ = (ξ̃1, . . . , ξ̃T ) and F = (f1, . . . , fT ) using
the algorithm developed by Carter and Kohn (1994).
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Assume Ψ0 = 0 as initial state.

Ψt ∼ N (Ω−1
t µt,Ω

−1
t )

µt =


ΦΨt−1 + σ−2

ε

∑
t,wit=0

Ãituit + ΦΨt+1, 1 ≤ t ≤ T − 1

ΦΨt−1 + σ−2
ε

∑
t,wit=0

Ãituit, t = T

Ωt =


I(p3+r) + σ−2

ε

∑
t,wit=0

ÃitÃ
′
it + ΦΦ, 1 ≤ t ≤ T − 1

I(p3+r) + σ−2
ε

∑
t,wit=0

ÃitÃ
′
it, t = T

uit = yit(c)
obs −X′itβ − Z′it(ωα · α̃i);

(d) update (ω′α,ω
′
ξ,ω

′
γ)
′ : A3

Denote ω = (ω′α,ω
′
ξ,ω

′
γ)
′ and Z̃it = (Z′it · α̃′i,A′it · ξ̃′t, γ̃ ′i · f ′t)′.

ω ∼ N (ω̄,Ω1)

Ω1 =

(
σ−2
ε

∑
wit=0

Z̃itZ̃
′
it + Ω−1

0

)−1

ω̄ = Ω1

(
σ−2
ε

∑
wit=0

Z̃ituit

)
Ω−1

0 = Diag(τ−2
α1
, . . . , τ−2

αp2
, τ−2
ξ1
, . . . , τ−2

ξp3
, τ−2
f1
, . . . , τ−2

fr
)

uit = yit(c)
obs −X′itβ;

(e) update autoregressive coefficients:

i. φξj in Φξ for j = 1, ..., p3

φξj ∼ N (φ̄,Φ1)

Φ1 =

(
T∑
t=1

ξ̃2
j,t−1 + σ−2

φ

)−1

φ̄ = Φ1

(
T∑
t=1

ξ̃j,tξ̃j,t−1

)
A3When the number of covariates and the pre-specified number of factors are relatively small, we jointly update
β, ωα, ωξ and ωγ to improve mixing.
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ii. φfj in Φf for j = 1, ..., r

φfj ∼ N (φ̄,Φ1)

Φ1 =

(
T∑
t=1

f 2
j,t−1 + σ−2

φ

)−1

φ̄ = Φ1

(
T∑
t=1

fj,tfj,t−1

)
;

(f) update τ 2
βj

: A4

τ−2
βj
∼ IG(

√
λ2
β

β2
j

, λ2
β), ∀1 ≤ j ≤ p1;

(g) update τ 2
αj

:

τ−2
αj
∼ IG(

√
λ2
α

ω2
αj

, λ2
α), ∀1 ≤ j ≤ p2;

(h) update τ 2
ξj

:

τ−2
ξj
∼ IG(

√
λ2
ξ

ω2
ξj

, λ2
ξ), ∀1 ≤ j ≤ p3;

(i) update τ 2
γj

:

τ−2
γj
∼ IG(

√
λ2
γ

ω2
γj

, λ2
γ), ∀1 ≤ j ≤ r;

(j) update λ2
β:

λ2
β ∼ G(p1 + a1,

1

2

p1∑
j=1

τ 2
βj

+ a2);

(k) update λ2
α:

λ2
α ∼ G(p2 + b1,

1

2

p2∑
j=1

τ 2
αj

+ b2);

(l) update λ2
ξ :

λ2
ξ ∼ G(p3 + c1,

1

2

p3∑
j=1

τ 2
ξj

+ c2);

A4Here IG stands for inverse-Gaussian distribution with parameters a and b, and its probability density function

is f(x) =
√

b
2πx
−3/2 exp

(
−b(x−a)2

2a2x

)
for x > 0. Park and Casella (2008) state that conditioning on σε can

form an efficient Gibbs sampler for updating parameters. When heteroskedasticity exits, it’s impossible to
condition on σε. Here we don’t condition on σε following Belmonte et al. (2014).
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(m) update λ2
γ:

λ2
γ ∼ G(r + k1,

1

2

r∑
j=1

τ 2
γj

+ k2);

(n) update σ2
ε :

σ−2
ε ∼ G(Nobs + e1,

1

2

∑
Dit=0

(yit − uit)2 + e2)

Nobs = N × T −Ntr × (T − T0)

uit = yit(c)
obs −X′itβ − Z′it(ωα · α̃i)−A′it(ωξ · ξ̃t)− (ωγ · γ̃i)′ft;

(o) update predicted yit(c)
mis for observations under treatment:A5

yit(c)
mis ∼ N (µit, σ

2
ε ), for it ∈ S1

µit = X′itβ + Z′it(ωα · α̃i) + A′it(ωξ · ξ̃t) + (ωγ · γ̃i)′ft;

(p) obtain an estimate for δit: δit = yit − yit(c)mis, for it ∈ S1.

3. Repeat (a)-(p) until convergence, and obtain G draws for each parameter, counterfactual

(yit(c)
mis, it ∈ S1), and the individual causal effect (δit, for it ∈ S1).

A5The draws of yit(c)
mis are not used to update the parameters.
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A.3. Additional Information on the Empirical Examples

A.3.1. ADH (2015): German Reunification

Figure A1 shows the outcome trajectories in ADH (2015)’s data, in which West Germany is

shown in blue. Figure A2 shows the traceplot corresponding to the Markov Chain of the ATT

(averaged over time).

Figure A1. Raw Data: Outcome

0

10000

20000

30000

40000

1960 1970 1980 1990 2000
Time

O
ut

co
m

e

Other Countries West Germany (Pre) West Germany (Post)

Note: The above figure shows the outcome trajectories in ADH (2015)’s data.

Figure A2. The Traceplot of the ATT Markov Chain
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Note: The above figure shows the traceplot corresponding to the Markov Chain of the estimated treatment
effect of German reunification on West Germany’s economy. The first 5,000 draws (the burn-in period) are
dropped.
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Figure A3 shows the posterior means and 95% credible intervals of the time-varying compo-

nent of covariate coefficients ξt. Figure A4 shows ωγ for the 10 factors included in the model,

which captures the relative importance of the factors in explaining the outcome. Figure A5

shows the influence of the first latent factor on each country, i.e., γ ′i1f1t.

Figure A3. Time-varying Coefficients ξt
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Note: The above figures show the posterior mean and 95% credibility intervals of ξt.
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Figure A4. ωγ for Factor Selection
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Note: The above figures show the posterior distribution of ωγ for each of the 10 factors. Each ωγ (a scaling
parameter) captures the importance of the corresponding factor.

Figure A5. Influence of Factor 1
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Note: The above figure shows the influence of the first latent factor on each country γ′i1f1t.
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A.3.2. Xu (2017): EDR on Voter Turnout

Figures A6 and A7 show the treatment status and outcome trajectories in Xu (2017)’s data.

Figure A6. Treatment Status
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Figure A8 is a traceplot corresponding to the Markov Chain of the ATT (averaged over

time and treated units).

Figure A9 shows ωγ for the 10 factors included in the model, which capture the relative

importance of the factors in explaining the outcome.

Figure A8. The Traceplot of the ATT Markov Chain
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Note: The above figure shows the traceplot corresponding to the Markov Chain of the estimated ATT of
EDR on voter turnout. The first 5,000 draws (the burn-in period) are dropped.

Figure A9. EDR on Voter Turnout: ωγ for Factor Selection

−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

Factor 1

N = 20000   Bandwidth = 1.723

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

Factor 2

N = 20000   Bandwidth = 0.2869

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Factor 3

N = 20000   Bandwidth = 0.1587

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Factor 4

N = 20000   Bandwidth = 0.2503

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
10

0.
20

0.
30

Factor 5

N = 20000   Bandwidth = 0.1548

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Factor 6

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

Factor 7

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Factor 8

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Factor 9

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

Factor 10

D
en

si
ty

Note: The above figures show the posterior distribution of ωγ for each of the 10 factors. Each ωγ (a scaling
parameter) captures the influence of the corresponding factor. These figures suggest that at least 4 factors
can explain significant proportions of the variation in the non-treatment outcome.
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Figure A10 displays the influence of the first latent factor on each state, i.e., γ ′i1f1t.

Figure A10. Influence of Factor 1
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Note: The above figure shows the influence of the first latent factor on each state γ′i1f1t. [Please check the
PDF version if the gray lines do not show up in a printed-out copy.]

Figure A11 (next page) shows the estimated individual treatment effects of EDR on turnout

using both Gsynth (left) and DM-LFM (right). It demonstrates that DM-LFM produces better

model fit and narrower uncertainty estimates.

A-13



Figure A11. Estimated Individual Treatment Effects of EDR on Turnout
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(a) Gsynth (b) DM-LFM

Note: The above figures show the estimated treatment effect (with corresponding 95% confidence intervals
or 95% credibility intervals) of EDR on voter turnout in 6 treated states using Gsynth (a) and DM-LFM (b),
respectively.
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A.4. Monte Carlo Evidence

We present Monte Carlo evidence in this section. First, we illustrate a basic data generating

process (DGP) using a simulated example (A.4.1). Based on this DGP (and its close variants),

we conduct additional Monte Carlo exercises, which aim at

1. evaluating the importance of the key components in DM-LFMs and studying their finite

sample properties (Table A1 in A.4.2);

2. testing the model’s robustness to non-normal error terms (Table A2 in A.4.2);

3. testing the model’s robustness to non-AR1 factors (Table A3 in A.4.2);

4. showing the model’s performance when T0 or Nco is small (Table A4 in A.4.2);

5. comparing DM-LFMs with the synthetic control method and the generalized synthetic

control method in cases with only one treated unit (A.4.3).

Overall, we find that the point and uncertainty estimates produced by DM-LFMs have desir-

able finite sample properties (from a frequentist perspective).
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A.4.1. A Simulated Example

As stated in the main text, the simulated example is produced by the following DGP:

yit = δitwit + X′it(β +αi + ξt) + γ ′ift + εit (A6)

with N = 50 and T = 30. The treatment assignment follows a DiD setup: a unit is assigned

either to the treatment group and receives the treatment in Period 21 (T0 = 20), or to the

control group and never receives the treatment. The treatment assignment is determined by

a latent variable tr∗i = 0.7γi1 + 0.3γi2 + πi, in which πi
i.i.d.∼ N(0, 0.25). When tr∗i is bigger

than the 90 percentile of the population distribution of tr∗i , unit i belongs to the treatment

group; otherwise, it belongs to the control group—as a result, the number of treated units

may slightly vary from sample to sample. This means that units with bigger values of γi1

and γi2 are more likely to be assigned to the treatment group. The selection on the factor

loadings will lead to biases in the causal estimates if these factors are not accounted for in

the estimation. The heterogeneous treatment effects are governed by δit,t>20 = t− 20 + τit, in

which τit
i.i.d.∼ N(0, 0.25).

Xit is a vector of control variables, including an intercept and nine pretreatment covariates,

each of which is i.i.d. N(0, 1). β = (3 6 4 2 0 0 0 0 0) is the invariant part of the covariate

coefficients. For the intercept and the first three covariates, their corresponding ξjt each

follows an AR(1) process: ξjt = 0.6ξj,t−1 + ejt in which ejt
i.i.d.∼ N(0, 1), j = 0, 1, 2, 3; their

corresponding αi each follows a normal distribution: αij
i.i.d.∼ N(0, 0.25β2

j ), j = 0, 1, 2, 3.

However, ξjt = 0, αij = 0,∀i,∀t for the remaining six covariates.

The factor vector ft = (f1t, f2t) is two-dimensional. Both factors follow an AR(1) process:

f1t = 0.7f1,t−1 + ν1t; f2t = 0.7f2,t−1 + ν2t. The two factor loadings γi1, γi2
i.i.d.∼ N(0, 1). The

error term εit
i.i.d.∼ N(0, 1).

Figure A12 shows the treatment status of the simulated data and Figure A13 shows the

outcome trajectories, among which the treated units are shown in blue.
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Figure A12. Treatment Status
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Note: The above figure shows the treatment status of the simulated data.

Figure A13. Raw Data: Outcome
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Note: The above figure shows the outcome trajectories in the simulated data.
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Figure A14 shows the unit-varying part of the covariate coefficients βit. Figure A15 shows

the traceplots corresponding to the two Markov Chains of the ATT and the individual treat-

ment effect on Unit 1 in Period 25 (i.e., δ̂1,25).

Figure A14. Posteriors of αi
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Note: The above figure shows the estimated posteriors of the unit-varying part of the covariate coefficients.

Figure A15. Traceplots of the Markov Chains of Treatment Effects
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Note: The above figures show the traceplots corresponding to the two Markov Chains of the ATT and
individual treatment effect (for Unit 1 in Period 25) estimates, respectively, using the simulated data. The
first 5,000 draws (the burn-in period) are dropped.
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A.4.2. Varying Model Specifications and Sample Sizes

In this subsection, we study the role of each of the main components of a DM-LFM in estima-

tion and investigate how the sample size affects the model performance. We simulate samples

using the DGP as in Equation (??) while varying the sample size (both the total number of

units n and the number of pretreatment periods T0). We estimate three models all by using

MCMC with the same priors for common parameters:

(a) A model with covariates but without factors: yit = δitwit+X′itβ+εit, which is analogous

to a DiD model including covariates with fixed coefficients. In other words, we shut off

the factor component in the model.

(b) A model without covariates but with 10 latent factors: yit = δitwit + γ ′ift + εit, which is

analogous to Gsynth without time-varying covariates. In other words, we shut off the

covariate component in the model.

(c) A model with both covariates and factors, but the coefficients of the covariates are set

to be fixed: yit = δitwit + X′itβ + γ ′ift + εit.

(d) The full model with both covariates with time- and unit-specific coefficients and factors

(DM-LFM): yit = δitwit + X′itβit + γ ′ift + εit.

For each of the six combinations of N = 40, 80 and T0 = 20, 40, 80, we simulate 500

samples and apply all four models to each dataset. Each estimation is based on 10,000

MCMC iterations with the first 2,000 runs as the burn-in period.

Figure ?? in the main text shows the RMSE for the posterior mean estimates of the ATT

(left panel) and coverage rate of 95% credibility intervals of the ATT estimates (right panel)

of the four models when N = 40.A6 Table A1 shows the full results, including biases and

standard deviation (SD) of the posterior estimates.

Non-normal errors. We re-do the above exercises with Model (d) using an asymmetric

error term: εit ∼ Gamma(2, 2), whose distribution is left skewed but has a fat right tail.

Table A2 shows the results.

A6The coverage rate cannot be interpreted in the conventional way because the Bayesian 95% credibility interval
does not rely on any repeated sampling but is the 0.95 probability that a parameter varies in an interval given
a particular set of data. Nonetheless, we follow the convention in the literature to calculate the coverage rates
to investigate the frequentist property of the Bayesian estimator.
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Normal (non-AR1) factors. We re-do the above exercises with a variant of Model (d)

using normally distributed factors: f1t, f2t ∼ N(0, 1). In the DGP as well as in Model (d), we

assume βit = β to have a fair comparison with Gsynth and the matrix completion methods,

both of which do not allow time- and unit-specific coefficients. Table A3 shows the results.

Key takeaways:

1. Not surprisingly, Model (d) (DM-LFM) outperforms the other three models in terms of

bias, SD, RMSE, and coverage. Each of the key components of the model, including

factors and heterogeneity in the coefficients of covariates over time and across units,

contributes to improving performance in causal effect estimation (Table A1).

2. The DF-LFM approaches the correct coverage rates as the number of pretreatment

periods (T0) grows despite relatively small N . The RMSE decreases as T0 or N increases.

3. In our simulations, the DF-LFM is not sensitive to non-normal error terms (Table A2).

4. The DF-LFM performs well when the factors are drawn from a normal distribution;

in fact, it works almost as well as Gsynth. Both methods perform better than the

matrix completion method (Table A3). This is likely because the latter mis-specifies the

model—it uses soft-impute instead of best subset to penalize the factors (see Liu et al.

(2020) for a more detailed comparison).

5. However, the DF-LFM does not perform very well in terms of both RMSE and the

coverage rate when the number of pretreatment periods (T0) or the number of control

units (Nco) is small (Table A4). This is likely because in such scenarios, the method

lacks overlapped data to correctly adjust for the influence of factor term.
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Table A2. Robust to Non-Normal Errors: εit ∼ Gamma(2, 2)

DM-LFM (full model)
n T0 Bias SD RMSE Cover
40 20 0.00 0.32 0.31 0.92
40 40 0.00 0.22 0.22 0.94
40 80 0.02 0.18 0.18 0.96

80 20 0.01 0.21 0.21 0.92
80 40 0.02 0.15 0.15 0.92
80 80 0.00 0.13 0.12 0.95

Note: Each set of results (one row) is based on 500 simulated samples. For each sample, we run 10,000 MCMC iterations (among
which 2,000 are burn-in). SD, RMSE, and Cover represent standard deviation, root mean squared error, and coverage rate,
respectively. The coverage rate is based on 95% credibility intervals of the ATT posteriors.

Table A3. Robustness to Non-AR1 Factors
DM-LFM (full model) Gsynth Matrix Completion

n T0 Bias SD RMSE Cover Bias SD RMSE Cover Bias SD RMSE Cover
50 20 0.00 0.22 0.21 0.93 0.00 0.22 0.21 0.93 0.00 0.44 0.44 0.70
50 40 0.01 0.18 0.17 0.95 0.01 0.18 0.17 0.95 0.00 0.34 0.33 0.76
50 80 0.00 0.17 0.16 0.95 0.00 0.17 0.17 0.93 0.00 0.30 0.29 0.76

100 20 0.01 0.14 0.14 0.94 0.01 0.14 0.14 0.95 0.03 0.40 0.40 0.57
100 40 0.00 0.12 0.11 0.96 0.00 0.12 0.12 0.95 0.01 0.27 0.26 0.71
100 80 0.01 0.12 0.11 0.95 0.01 0.12 0.11 0.93 0.00 0.23 0.23 0.72

Note: For the DM-LFM, we assume covariate parameters do not vary by unit or time; 10 factors are included as usual; shrinkage
is imposed on β and γ. For both Gsynth and matrix completion methods, we assume the number of factors/tuning parameters
are unknown and use a cross-validation procedure to choose them. Each set of results (one row) is based on 500 simulated
samples. For each sample, we run 10,000 MCMC iterations (among which 2,000 are burn-in). SD, RMSE, and Cover represent
standard deviation, root mean squared error, and coverage rate, respectively. The coverage rate is based on 95% credibility
intervals of the ATT posteriors.

Table A4. Poor Performance with Small T0 or Small Nco

DM-LFM (full model)
Ntr% T0 Bias SD RMSE Cover
0.20 5 0.10 1.30 1.31 0.67
0.20 10 0.01 0.59 0.58 0.87
0.20 15 0.00 0.38 0.38 0.90
0.20 20 0.00 0.33 0.33 0.90

0.40 5 0.02 1.38 1.38 0.60
0.40 10 0.00 0.62 0.61 0.81
0.40 15 0.02 0.40 0.40 0.89
0.40 20 0.01 0.33 0.33 0.89

0.60 5 0.00 1.59 1.59 0.55
0.60 10 0.05 0.78 0.78 0.77
0.60 15 0.03 0.67 0.67 0.84
0.60 20 0.01 0.48 0.48 0.86

Note: The sample size is fixed at 50. Each set of results (one row) is based on 500 simulated samples. For each sample, we
run 10,000 MCMC iterations (among which 2,000 are burn-in). SD, RMSE, and Cover represent standard deviation, root mean
squared error, and coverage rate, respectively. The coverage rate is based on 95% credibility intervals of the ATT posteriors.
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A.4.3. Comparisons of Methods with a Single Treated Unit

In this section, we compare DM-LFM with two existing methods for comparative case studies:

the synthetic control method (SCM) and the generalized synthetic control method (Gsynth).

We simulate samples based on Equation (A6) with two modifications: (1) we set the in-sample

percentile threshold of being treated to (N − 1)/N such that there is a single treated unit in

each sample;A7 (2) we set unit-specific heterogeneity (αi, including unit fixed effects) to be 0

to reduce the chances that the treated unit trajectory lies outside the convex hull of those of

the control units, which is a required assumption for the SCM.

Setups. We consider the following three setups:

(a) A model with three relatively strong factors but no covariates: yit = δitwit + γ ′ift + εit,

in which γi1, γi2, γi3
i.i.d.∼ N(0, 42). Treatment assignment : tr∗i = 0.1γi1 + 0.1γi2 + πi,

πi
i.i.d.∼ N(0, 1) (selection on the loadings of the first two factors; the unit with the biggest

tr∗i is assigned the treatment).

(b) A model with eight relatively weak factors but no covariates: yit = δitwit + γ ′ift + εit, in

which γi1, γi2, · · · , γi8
i.i.d.∼ N(0, 22). Treatment assignment is the same as above.

(c) A model with three relatively strong factors and four covariates: yit = δitwit + Z′i(β +

ξt)+γ ′ift+εit, in which γi1, γi2, γi3
i.i.d.∼ N(0, 42) and Zi = (Zi1, Zi2, Zi3, Zi4) is a vector of

covariates following N(0, 1); β = (4 3 2 1) and ξt is the same as in the simulated example.

Treatment assignment : tr∗i = 0.1γi1+0.1γi2+0.1Zi1+0.1Zi2+πi, πi
i.i.d.∼ N(0, 1) (selection

on the loadings of the first two factors and the first two covariates; the unit with the

biggest tr∗i is assigned the treatment). Note that here we do not include unit-specific

coefficients αi because they are incompatible with the SCM.

We set the treatment effect δit = 0. Once again, for each setup, we change the sample size by

varying N and T0.

Estimators. With the SCM, we supply the algorithm with all four relevant covariates as

well as two irrelevant ones, Zi5 and Zi6. We also vary the number of pretreatment outcomes

serving as “special predictors.” SCM(1) uses three pretreatment outcomes for matching in

Setups (a) and (c), and eight in Setup (b). The rest of the pretreatment outcomes are taken

as the validation set. SCM(2) uses T0−5 pretreatment outcomes for matching and five periods

for validation.

A7This creates small correlations in treatment status across units, which in theory violates our modeling as-
sumptions.
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With Gsynth, we do not include covariates (Gsynth does not support time-invariant co-

variates). Gsynth(1) assumes the correct number of factors: three in Setup (a), eight in Setup

(b), and seven in Setup (c) (the influence of covariates Z′iβt can be potentially captured by

additional latent factors), while Gsynth(2) employs the cross-validation procedure to select the

number of factors.

With the Bayesian DM-LFM, we include all six covariates, including the irrelevant ones,

and set the maximal number of factors at 10. For each estimation, we run 10,000 MCMC

iterations and discard the first 2,000 runs as the burn-in period.

Results. Tables A5, A6, and A7 present the full results for each of the three setups. Each

table has four panels, showing the biases of the estimates, RMSE, coverage rates, and average

run time using each method. Figure A16 visualizes the results from Setup (3). A few key

takeaways:

1. The fact that Gsynth(1) performs well is not surprising because it assumes the true

model.

2. In both Setups (a) and (b), DM-LFM performs almost as well as Gsynth(1), DM-LFM

often out-performs Gsynth(2); the relative performance of DM-LFM improves when there

are more factors or the factors are weaker.

3. In Setup (c), DM-LFM almost always performs better than Gsynth(2) in terms of RMSE,

and works better than Gsynth(1) when T0 is small.

4. The uncertainty estimates produced by DM-LFM give relatively good coverage rates in

all three setups. When T0 is small, Gsynth slightly over-covers the truth while DM-LFM

slightly under-covers it.

5. Gsynth is computationally the most efficient, while DM-LFM takes the longest time and

its run-time grows rapidly as the sample size grows.
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Table A5. Monte Carlo: Single Treated Unit w/ Three Strong Factors
Bias RMSE

Nco T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 -0.03 -0.05 -0.10 -0.14 -0.02 4.38 4.05 2.39 2.65 2.52
30 40 -0.08 0.11 0.05 0.03 0.08 4.16 3.91 1.83 1.93 1.84
30 60 -0.19 -0.03 -0.03 -0.05 -0.02 3.89 3.57 1.84 1.86 1.87
50 20 -0.19 -0.16 0.03 0.14 0.03 4.18 3.44 2.15 2.43 2.14
50 40 0.24 0.13 0.06 0.10 0.09 4.03 3.63 1.82 1.86 1.85
50 60 0.15 -0.00 0.04 0.03 0.06 4.00 3.38 1.79 1.83 1.84

Coverage Run Time (sec)
N T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 0.93 0.95 0.92 2.31 13.26 0.32 0.33 11.00
30 40 0.96 0.96 0.96 2.34 11.96 0.37 0.42 16.18
30 60 0.94 0.94 0.95 2.31 17.32 0.42 0.49 20.65
50 20 0.96 0.96 0.94 3.56 20.19 0.38 0.39 15.28
50 40 0.93 0.93 0.94 3.43 36.85 0.58 0.62 22.43
50 60 0.94 0.95 0.93 3.36 25.19 0.66 0.73 30.09
Note: The above table compares the performance of the synthetic control method (SCM), the generalized synthetic control
method (Gsynth), and the Bayesian DM-LFM in estimating the treatment effects on a single treated unit using Monte Carlo
exercises. Nco and T0 represent the number of control units and the number of pretreatment periods in each setting. SCM(1)

and SCM(2) stand for the SCM using 5 and (T0-5) pretreatment outcomes for matching, respectively. Gsynth(1) and Gsynth(2)

represent Gsynth using the correct number of factors (r = 3) and Gsynth that cross-validates the number of factors. For Synth,
we obtain the point estimates. Each cell is produced based on results from 500 simulations.

Table A6. Monte Carlo: Single Treated Unit w/ Eight Weak Factors
Bias RMSE

N T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 0.03 0.10 -0.03 0.10 0.07 3.54 3.62 3.45 3.45 3.09
30 40 -0.21 -0.28 -0.02 -0.12 -0.04 3.50 3.72 2.78 2.89 2.80
30 60 -0.01 0.11 -0.05 -0.04 -0.02 3.61 4.01 2.42 2.48 2.53
50 20 -0.02 -0.07 0.10 0.20 0.07 3.74 3.80 3.55 3.73 2.96
50 40 -0.10 -0.26 0.17 0.18 0.09 3.62 3.61 2.51 2.57 2.50
50 60 -0.13 -0.16 -0.08 -0.10 -0.06 3.41 3.53 2.16 2.21 2.17

Coverage Run Time (sec)
N T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 0.97 0.97 0.92 16.96 24.43 0.80 0.81 26.49
30 40 0.95 0.97 0.91 18.06 28.75 1.01 1.12 42.10
30 60 0.91 0.94 0.91 17.47 42.65 1.10 1.28 52.33
50 20 0.97 0.97 0.92 26.11 40.30 1.04 1.03 40.65
50 40 0.96 0.96 0.92 25.03 89.98 1.60 1.70 58.53
50 60 0.96 0.96 0.94 24.37 64.79 1.83 2.03 79.88
Note: The setup is the same as that in Table A5 except that the DGP includes eight relatively weak factors instead of three
relatively strong factors. Different from Table A5, SCM(1) stands for the SCM using eight pretreatment outcomes for matching,
while SCM(2) still uses (T0-5) pretreatment outcomes.
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Table A7. Monte Carlo: Single Treated Unit w/ Three Strong Factors
and Time-Invariant Covariates

Bias RMSE
N T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 0.25 0.55 0.23 0.23 0.34 5.45 6.17 3.71 4.01 3.69
30 40 0.22 0.39 0.01 0.03 0.10 4.85 5.59 2.60 2.63 2.64
30 60 0.74 0.73 0.11 0.14 0.18 5.04 5.84 2.37 2.44 2.45
50 20 -0.18 0.04 -0.30 -0.23 -0.14 5.23 5.74 3.63 3.68 3.30
50 40 0.09 0.19 -0.04 -0.08 0.02 4.92 5.91 2.45 2.48 2.50
50 60 0.73 0.77 0.09 0.08 0.16 4.80 5.73 2.23 2.27 2.30

Coverage Run Time (sec)
N T0 SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM SCM(1) SCM(2) Gsynth(1) Gsynth(2) DM-LFM
30 20 0.96 0.97 0.91 17.81 36.08 0.76 0.79 24.36
30 40 0.96 0.97 0.94 16.73 30.61 0.84 0.94 34.03
30 60 0.95 0.95 0.93 16.25 43.24 0.93 1.08 42.84
50 20 0.97 0.97 0.93 28.67 61.49 1.03 1.06 39.25
50 40 0.97 0.96 0.95 27.80 109.09 1.59 1.70 57.39
50 60 0.97 0.97 0.94 28.07 82.17 1.84 2.04 79.73
Note: The setup is the same as that in Table A5 except that the simulated data now include six time-invariant covariates, four
of which enter the DGP with time-varying coefficients. Because Gsynth cannot accommodate time-invariant covariates with
time-varying coefficients, Gsynth(1) estimates a seven factor model—three account for the unobserved factors and four for the
influence of the covariates. Gsynth(2) uses a cross-validation scheme to set the number of factors.

Figure A16. Single Treated Unit: Comparing Different Methods (Setup 1)
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Note: The left panel shows the RMSE of ATT estimates using SCM(2), Gsynth(2), and DM-LFM. The right
panel shows the coverage rates of 95 confidence/credibility intervals using Gsynth(2) and DM-LFM.
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