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a REVIEW OF FORCED-CHOICE CONJOINT EXPERIMENTS IN POLITICAL SCIENCE

In this supplemental information, I review papers implementing forced-choice conjoint experi-

ments appearing in major political science journals since the publication of Hainmueller et al.’s

(2014) foundational paper. In particular, I specify for each of them the kind of questions there are

asking—preference-related or selection-process—and the estimation framework they are using.

I carry out a systematic review of all conjoint papers published or forthcoming in the American

Journal of Political Science (AJPS), in theAmerican Political Science Review (APSR), in the Journal

of Politics (JOP), inPolitical Behavior (PB), inPolitical Science Research andMethods (PSRM), and

in the British Journal of Political Science (BJPS), which have published the majority of conjoint

studies in political science and are also themost influential in doing so. I excludemethodological

articles as well as articles which conjoint design does not involve a forced-choice component.

These selection criteria leave me with 61 articles, which I classify along two dimensions. The

first dimension is the type of question that they are asking, based on the typology developed

in this paper. I classify as “selection-process” those papers in which the selection process im-

plemented in the experimental design mirrors the selection process of interest, and in which

the interest in the actual outcome of this process is expressed and supported by a reflection on

compositional effects. I classify as “preference-related” the papers in which the selection process

implemented does not mirror any existing selection process, or in which the selection process it

mirrors is not of interest in the paper. This essentially covers articles that focus on respondents’

preferences studied for themselves. Finally, I construct a “mixed” category for the ambiguous

cases. The second dimension identifies whether each paper is using theAMCE framework explic-

itly or implicitly, that is, whether each one estimates and reports AMCEs or derivatives thereof

(such as marginal means).

The literature review is summarized in Table a1. As it turns out, I was not able to find a sin-

gle paper seeking to answer a purely selection-process question. It is remarkable that the recent

methodological discussion around conjoint experiments mostly focuses on selection-process
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questions (de la Cuesta et al. 2021; Abramson et al. 2019, 2020; Bansak et al. 2020), while most

scholars use conjoint experiments with an interest in respondents’ preferences. Arguably, a sub-

stantial number of articles belong to the “mixed” category; in these papers—all voting conjoint

experiments—the broader research agenda seems indeed to be about explaining patterns of elec-

tion outcomes. However, in all of theses cases, the specific questions asked in the papers are un-

ambiguously preference-related questions, and none of them is concerned with compositional

effects. The beginning of Carnes and Lupu’s (2016) abstract provides a quintessential example.

They write, “In most democracies, lawmakers tend to be vastly better off than the citizens who

elect them. Is that because voters prefer more affluent politicians over leaders from working-

class background?” Although the first sentence suggests a research agenda raising a selection-

process question—explaining the underrepresentation of working-class elected officials in the

United States—the second sentence indicates that the specific mechanism explored in the paper

pertains to people’s preferences, which the authors aim to study independent of other potential

(compositional) mechanisms.

Table a1: Literature Review of Forced-Choice Conjoint Experiment Papers since 2014 in Six
Major Political Science Journals

Reference Journal Topic Question Estimation

Franchino and Zucchini (2015) . . PSRM Political candidates Preferences CLogit
Hainmueller and Hopkins (2015) . AJPS Immigration Preferences AMCE
Hansen et al. (2015) . . . . . . . PB Policy evaluation Preferences CLogit
Carnes and Lupu (2016) . . . . . APSR Political candidates Mixed AMCE
Ballard-Rosa et al. (2016) . . . . . JOP Tax policy Preferences AMCE
Mummolo (2016) . . . . . . . . JOP News selection Preferences AMCE
Mummolo and Nall (2017) . . . . JOP Residential mobility Preferences AMCE
Kirkland and Coppock (2018) . . . PB Political candidates Preferences AMCE
Auerbach and Thachil (2018) . . . APSR Clientelism Preferences AMCE
Hankinson (2018) . . . . . . . . APSR Housing policy Preferences AMCE
Teele et al. (2018) . . . . . . . . . APSR Political candidates Mixed AMCE
Eggers et al. (2018) . . . . . . . . JOP Political candidates Preferences AMCE
Peterson and Simonovits (2018) . . JOP Political candidates Preferences AMCE
Ward (2019) . . . . . . . . . . . APSR Immigration Preferences AMCE
Bechtel et al. (2019) . . . . . . . . BJPS Climate policy Preferences AMCE
Campbell et al. (2019) . . . . . . BJPS Political candidates Preferences AMCE
Chauchard et al. (2019) . . . . . . JOP Political candidates Preferences AMCE
Doherty et al. (2019) . . . . . . . JOP Political candidates Mixed AMCE
Blackman and Jackson (2019) . . . PB Political candidates Preferences AMCE
Mummolo et al. (2019) . . . . . . PB Political candidates Preferences AMCE
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Ono and Burden (2019) . . . . . . PB Political candidates Mixed AMCE
Liu (2019) . . . . . . . . . . . . PSRM Political elite Preferences AMCE
Auerbach and Thachil (2020) . . . AJPS Clientelism Preferences AMCE
Hartman and Morse (2020) . . . . BJPS Immigration Preferences AMCE
Rodon and Sanjaume-Calvet (2020) JOP Policy fairness Preferences AMCE
Schneider (2020) . . . . . . . . . JOP Political candidates Preferences AMCE
Atkeson and Hamel (2020) . . . . PB Political candidates Preferences AMCE
Berinsky et al. (2020) . . . . . . . PB Immigration Preferences AMCE
Crowder-Meyer et al. (2020) . . . . PB Political candidate Preferences AMCE
Hobolt et al. (2020) . . . . . . . . PB Brexit negotiations Preferences AMCE
Leeper and Robison (2020) . . . . PB Political candidate Preferences AMCE
Horiuchi et al. (2020) . . . . . . . PSRM Political candidate Preferences AMCE
Mares and Visconti (2020) . . . . PSRM Political candidate Preferences AMCE
Ono and Yamada (2020) . . . . . PSRM Political candidate Mixed AMCE
Costa (2021) . . . . . . . . . . . AJPS Political representation Preferences AMCE
Kertzer et al. (2021) . . . . . . . BJPS International resolvesfran Preferences AMCE
Broockman et al. (2021) . . . . . . BJPS Political candidates Preferences AMCE
Bakker et al. (2021) . . . . . . . . JOP Political candidates Preferences AMCE
Clayton et al. (2021) . . . . . . . PB Immigration Preferences AMCE
Shafranek (2021) . . . . . . . . . PB Affective polarization Preferences AMCE
Barnett et al. (Forthcoming) . . . . AJPS Job candidates Preferences AMCE
Becher and Brouard (Forthcoming) AJPS Executive candidates Preferences AMCE
Poertner (Forthcoming) . . . . . AJPS Political candidates Preferences AMCE
Spater (Forthcoming) . . . . . . . AJPS Spatial proximity Preferences AMCE
Hobolt et al. (Forthcoming) . . . . BJPS Affective polarization Preferences AMCE
Hübscher et al. (Forthcoming) . . . BJPS Political candidates Mixed AMCE
Incerti et al. (Forthcoming) . . . . BJPS International compromise Preferences AMCE
Rogowski and Stone (Forthcoming) BJPS Judicial candidates Preferences AMCE
Magni and Reynolds (Forthcomingb) JOP Political candidates Mixed AMCE
Tellez (Forthcoming) . . . . . . . JOP Peace agreements Preferences AMCE
Weaver (Forthcoming) . . . . . . JOP Political candidates Preferences AMCE
Funck and McCabe (Forthcoming) . PB Political candidates Preferences AMCE
Magni and Reynolds (Forthcominga) PB Political candidates Preferences AMCE
Manento and Testa (Forthcoming) . PB Political candidates Preferences AMCE
Martin and Blinder (Forthcoming) . PB Political candidates Mixed AMCE
Neuner and Wratil (Forthcoming) . PB Political candidates Preferences AMCE
Rehmert (Forthcoming) . . . . . PB Political candidates Mixed AMCE
Saha and Weeks (Forthcoming) . . PB Political candidates Preferences AMCE
Schwarz et al. (Forthcoming) . . . PB Sex crimes Preferences AMCE
Jensen et al. (Forthcoming) . . . . PSRM Political candidates Preferences AMCE
Kaslovsky et al. (Forthcoming) . . . PSRM Judicial candidates Preferences AMCE

In spite of the overwhelming dominance of preference-related studies in the empirical litera-

ture, almost all reviewed papers have adopted the AMCE framework, explicitly or implicitly, and

are thus estimating and reporting selection-process estimands. A couple of papers published at

the very beginning of the reviewperiod use condition logistic regressions—more commonly used
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in the marketing literature—but it makes no doubt that Hainmueller et al.’s (2014) AMCE frame-

work has become the standard framework for analyzing forced-choice conjoint experiments in

political science, regardless of the question asked.

To be sure, this review is not exhaustive of all conjoint studies published or forthcoming in

political science, and onemayfind counterexamples—conjoint experiments used to answer a gen-

uinely selection-process question, or preference-related studies analyzed with preference-related

estimands. However, the journals considered in this review and the overwhelming pattern suf-

fice to make the point that the use of the AMCE framework in preference-related studies is a

widespread reality in political science.

b COMPARING PREFERENCE DISCRIMINATORY POWER ACROSS ATTRIBUTES

Scholars who rely on forced-choice experiments are usually primarily interested in exploring

patterns of preferences within attributes, between the modalities of each attribute. However, we

may also want to ask questions about the relative importance of attributes, that is, to compare

the discriminatory power of preferences across attributes. What is the strongest determinant

of preferences? Is gender more important than education in the determination of favorability

towards immigrants? Although we could get a sense of the relative importance of attributes by

visually inspecting patterns of ACPs (or AMCEs) and their absolute values, the methodological

literature on conjoint experiments has yet to propose formalized quantity specifically designed

to answer these questions. In this appendix, I propose two such estimands and calculate them

on the immigrant experiment data.

The most straightforward indicator of an attribute’s discriminatory power is the range of the

distribution of the measures of preferences for that attribute. The range of ACPs for attribute ℓ is

simply

ιℓ ≡ max
tℓ

πℓ(tℓ;wtℓ)− min
tℓ

πℓ(tℓ;wtℓ) (B1)

which measures the largest variation in preferences that we can find for attribute ℓ. Provided
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that measures of preferences are fully comparable (within and across attributes, that is), the com-

parison of the coefficients of (ιℓ)ℓ∈{1,...,L} allows us to rank and compare the relative importance

of attributes. The range, however, does not exploit all the information available; in particular,

it exploits information from the most and least preferred levels but omits the remaining levels.

Therefore, it is not clear if the attribute importance measured by the range is due to a limited

number of levels, or to the high dispersion of all levels.

An alternative—in fact complementary, as I will show—measure is thus the average absolute

deviation from the situation of indifference (where all ACPs are zero), that is, the average absolute

ACP:

σℓ ≡
2
|Tℓ|

∑
tℓ∈Tℓ

|πℓ(tℓ;wtℓ)| (B2)

which is a dispersion measure because the ACPs for a given attribute are centered in 0. I actually

define σℓ as twice the average of absolute ACPs so that ιℓ = σℓ when all the absolute ACPs

for ℓ are equal. In other words, the difference between ιℓ and σℓ reflects information on the

ACP distribution: the closer (farther) both measures, the more polarized (more spread out) the

distribution. Arguably, this information can be obtained by directly looking at the distribution

of ACPs, but my goal is here to propose standalone measures that summarize information on

the dispersion of ACPs. Finally, both of these measures can be straightforwardly generalized to

conditional ACPs.

Figure b1’s first panel reports ιℓ (range) and σℓ (variability) for all attributes of the immigrant

experiments. For conditionally independently randomized attributes, I took the ACPs condi-

tional on unrestricted levels. In this figure, I estimated confidence intervals by simulation, using

the ACP variance-covariance matrix. Regardless of the measure of attribute importance, job

plans appears as the most determinant attribute for preferences, and gender as the least determi-

nant. The remaining attributes are relatively close; if anything, the reason for application and job

experience tend to be slightly less important that language skills and education; and occupation

has an ambiguous position that depends on the indicator considered. In sum, this graph provides
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Job Experience

Gender

Job

Language Skills

Job Plans
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Prior Trips to the U.S.
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Range Variability

Figure b1: Within-attribute range and variability of ACPs associated with immigrants’ charac-
teristics. Conditional ACPs are calculated conditional on the the unrestricted levels of the con-
dition attribute. Bars represent 95% confidence intervals with clustering at the respondent level,
obtained from 1,000 simulations.

an efficient summary of the relative importance of the attributes included in the experiment.

One concern is that ACPs and, a fortiori, functions of ACPs, are not directly comparable

across attributes when attributes are not completely independently randomized. For example,

in Figure b1, the range and variability for occupation are conditional on profiles who have a

college degree, while the range and variability for job plans are unconditional. Figure b2 reports

range and variability measures all conditional on the unrestricted levels of all non-completely

independently randomized attributes, successively. For example, in the first panel, all range and

variability measures are conditional on profiles with a college degree.

This panel is useful to compare the range and variability of ACPs for job to the range and

variability for other attributes. Here, in particular, I just want to make sure that the relative

dominance of job plans and the low importance of gender with respect to job are not driven

by low-educated profiles. In this case, the hierarchy holds when one considers ranges, but the

variability for occupation is indistinguishable from the variability for gender (probably because

gendermattersmore in preferences for high-educated profiles than for low-educated ones). Simi-

lar checks can be performed for each non-completely independently randomized attribute, using
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Figure b2: Within-attribute range and variability of ACPs associated with immigrants’ charac-
teristics, for different conditions. Conditional ACPs are calculated conditional on the the unre-
stricted levels of the condition attribute. Bars represent 95% confidence intervals with clustering
at the respondent level, obtained from 1,000 simulations.



the subsequent panels. They confirm the overall pattern obtained in Figure b1.

c PROOFS

c.1 Bounds of the AMCE

By virtue of independent randomization (or conditionally independent randomization), theAMCE

canbe estimated ondata fromconjoint experiments, and expressedwith observed outcomes (Hain-

mueller et al. 2014). As a result, Equation 2 can be rewritten as:1

τ̂ℓ(tℓ1, tℓ0) =
∑
tℓ∈Tℓ

P
(
Ti[−j]ℓ = tℓ|tℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
×

{
E
[
Yij

∣∣Tijℓ = tℓ1,Ti[−j]ℓ = tℓ, (Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, {tℓ}))2
]

− E
[
Yij

∣∣Tijℓ = tℓ0,Ti[−j]ℓ = tℓ, (Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, {tℓ}))2
] }

(C1)

by linearity of the expectation.

When Ti[−j]ℓ = tℓ1, the first expectation in the curve brackets is equal to .5; when Ti[−j]ℓ = tℓ0,

the second expectation in the curve brackets is equal to .5. We can distinctly write the terms that

depends on the data, and those that do not, and aggregate the former following the law of total
1I establish the proof with the expression of the AMCE that uses observed outcome, not potential outcomes, to

overcome the fact that the potential outcome Yij(tℓ, tℓ,Tij[−ℓ],Ti[−j][−ℓ]) is not defined.
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expectation:

τ̂ℓ(tℓ1, tℓ0) = P
(
Ti[−j]ℓ ̸= tℓ1|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
× E

[
Yij

∣∣Tijℓ = tℓ1,Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ),

(Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, Tℓ))
2]

− P
(
Ti[−j]ℓ ̸= tℓ0|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
− E

[
Yij

∣∣Tijℓ = tℓ0,Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ),

(Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, Tℓ))
2]

+ .5 ∗ P
(
Ti[−j]ℓ = tℓ1|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
− .5 ∗ P

(
Ti[−j]ℓ = tℓ0|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)

(C2)

In particular, the last two lines are equal to:

.5 ∗
(
1 − P

(
Ti[−j]ℓ ̸= tℓ1|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

) )
− .5 ∗

(
1 − P

(
Ti[−j]ℓ ̸= tℓ0|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)) (C3)

Developing this expression, the terms in .5 ∗ 1 cancel out, and the remainder can be reintegrated

in the first part of the expression of the AMCE by factorization, so that

τ̂ℓ(tℓ1, tℓ0) = P
(
Ti[−j]ℓ ̸= tℓ1|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
×

{
E
[
Yij

∣∣Tijℓ = tℓ1,Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ) \ {tℓ1},

(Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, Tℓ))
2]− .5

}
− P

(
Ti[−j]ℓ ̸= tℓ0|Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ)

)
×

{
E
[
Yij

∣∣Tijℓ = tℓ0,Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ) \ {tℓ0},

(Tij[−ℓ],Ti[−j][−ℓ]) ∈ (T[−ℓ] ∩ Tℓ({tℓ1, tℓ0}, Tℓ))
2]− .5

}

(C4)

In the AMCE expression, the expectations are positive, hence the AMCE reaches its max-
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imum when the first expectation is equal 1 (tℓ1 is systematically chosen when compared to a

different level) and the second expectation is equal to 0 (tℓ0 is never chosen when compared to a

different level). In this case, the first term in curve brackets is .5 and the second term is−.5, and

the expression can be rearranged to obtain

1 − 1/2 ∗
(
P(Tijℓ = Ti[−j]ℓ = tℓ1) + P(Tijℓ = Ti[−j]ℓ = tℓ0)

)
(C5)

where I implicitly condition on Ti[−j]ℓ ∈ Tℓ ∩ Tℓ({tℓ1, tℓ0}, Tℓ). This is the upper bound of inter-

val 3; the lower bound is obtained similarly, by setting the first expectation to 0, and the second

expectation to 1.

Under uniform randomization,

P(Tijℓ = Ti[−j]ℓ = tℓ1) + P(Tijℓ = Ti[−j]ℓ = tℓ0) =
1
|Tℓ|

(C6)

and the bounds simplify to ±[1 − 1/|Tℓ|].

c.2 AMCE under uniform randomization

In Equation C4, both probabilities are equal to 1 − 1
|Tℓ|

, and the conditions on Ti[−j]ℓ and on

(Tij[−ℓ],Ti[−j][−ℓ]) can be omitted by independence, so that

τ̂ℓ(tℓ1, tℓ0)
U
=

(
1 − 1

|Tℓ|

){
E
[
Yij

∣∣Tijℓ = tℓ1,Ti[−j]ℓ ∈ Tℓ \ {tℓ1}
]
− .5

}
−

(
1 − 1

|Tℓ|

){
E
[
Yij

∣∣Tijℓ = tℓ0,Ti[−j]ℓ ∈ Tℓ \ {tℓ0}
]
− .5

} (C7)

which simplifies into

τ̂ℓ(tℓ1, tℓ0)
U
=

(
1 − 1

|Tℓ|

){
E
[
Yij|Tijℓ = tℓ1,Ti[−j]ℓ ∈ Tℓ \ {tℓ1}

]
− E

[
Yij|Tijℓ = tℓ0,Ti[−j]ℓ ∈ Tℓ \ {tℓ0}

]}
.

(C8)
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c.3 Consistency of the ACP and CACP estimators

Developing the definition of δ̂tℓt′ℓ (consistently estimated by OLS) gives

δ̂tℓt′ℓ =
∑

i∈{1,...,n}

[Zi1{Ti1ℓ = tℓ,Ti2ℓ = t′ℓ}+ (1 − Zi)1{Ti1ℓ = t′ℓ,Ti2ℓ = tℓ}]− .5

=
∑

i∈{1,...,n}

[Yi11{Ti1ℓ = tℓ,Ti2ℓ = t′ℓ}+ Yi21{Ti1ℓ = t′ℓ,Ti2ℓ = tℓ}]− .5

=
∑

i∈{1,...,n}
j∈{−1,1}

Yij1{Tijℓ = tℓ,Ti[−j]ℓ = t′ℓ} − .5

= Ê
[
Yij|Tijℓ = tℓ,Ti[−j]ℓ = t′ℓ

]
− .5

where Ê[·] refers to the sample analogue of the expectation. Plugging the final expression of δ̂tℓt′ℓ
in Equation ?? gives the sample analogue of π̂ℓ(tℓ;wtℓ) (Equation ??), which is itself equal to the

ACP under independent attribute randomization. The consistency of the CACP estimator can

be obtained in the exact same way.

d MONTE-CARLO SIMULATIONS

In this section, I report evidence from Monte-Carlo simulations that ACPs correctly identify

preferences, and that inference obtained from the proposed estimation method is correct. I also

useMonte-Carlo simulation to illustrate how the ACP allows to recover the vector of preferences

P, and to check that the estimators are correctly implemented in the R function I make available

online.

I simulate data from an imaginary forced-choice conjoint experiment with four attributes:

one continuous attribute (e.g. age, ℓ = ℓ∞), one binary attribute (e.g. gender, ℓ = ℓ2), and

two four-category attributes (e.g. education and occupation, ℓ = ℓ4 and ℓ = ℓ′4). The first two

are completely independently randomized, but the last two are only conditionally independently

randomized. In fact, randomization is set such that the fourth level of the third attribute is never

associated with the third or the fourth levels of the fourth attribute. One can think about it as a
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way to avoid profiles of doctors with no formal education. A pair of profile is assigned to each

“respondent,” who has to make a decision about whom they prefer. The imaginary experiment

is run on two groups of respondents of size 2,000 (e.g. Republicans and Democrats) and each

respondent is presented with only one pair of profiles.

In this section, I start by constructing a vector of preferences, which I then use to simulate

fake data. Specifically, I simulate 5,000 data sets, which correspond to 5,000 samples that would

be observed if a forced-choice conjoint experiment would be conducted on a population whose

preferences could be summarized by P. For each sample, I estimate ACPs and compare their

distributions to their theoretical values. I also show that the proposed estimation method is

able to estimate direct pairwise preferences, and thereby to recover P—the target of most studies

relying on forced-choice conjoint experiments. Given the analytical elements provided earlier,

these results are not surprising, but simulations make them more concrete.

d.1 Data-Generation Process

The first step is to define a vector of preferences P, that is, a series of coefficients ptℓt′ℓ which rep-

resent direct pairwise preferences. The coefficients correspond to the deviation of the selection

probability from the situation of indifference when a tℓ-profile is compared to a t′ℓ-profile. For

the continuous attribute, the coefficient pℓ∞ corresponds to the first derivative (slope) of the se-

lection probability with respect to this attribute. I set P to arbitrary values (under constraint that

selection probabilities, defined in the next paragraph, remain in the [0; 1] interval) and define it

separately for each group of respondents. Both vectors are reported in Table d1, where the rows

of each matrix represent the tℓ and the columns the t′ℓ. P is defined either by the coefficients

above or below the diagonal, which are the same in absolute values but of opposite sign. For the

continuous attribute, one additional unit increases the selection probabilities by .1 percentage

point in both group. In the first categorical variable, the selection probability of level 2 when

compared to level 1 is 55% (.5 + .050) in the first group, but only 45% (.5 − .050) in the second

group.
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Table d1: Preference Parameters for the Monte Carlo Simulation

Binary Categorical 1 Categorical 2

1 2 1 2 3 4 1 2 3 4

Group 1

Continuous: .001
Binary:

Level 1 . . . . .100
Level 2 . . . . −.100

Categorical 1:
Level 1 . . . . −.050 −.120 −.100
Level 2 . . . . .050 −.030 −.100
Level 3 . . . . .120 .030 .010
Level 4 . . . . .100 .100 −.010

Categorical 2:
Level 1 . . . . .100 −.080 −.100
Level 2 . . . . −.100 .000 −.040
Level 3 . . . . .080 .000 −.060
Level 4 . . . . .100 .040 .060

Group 2

Continuous: .001
Binary:

Level 1 . . . . −.100
Level 2 . . . . .100

Categorical 1:
Level 1 . . . . .000 .050 .030
Level 2 . . . . .000 −.030 .100
Level 3 . . . . −.050 .030 .000
Level 4 . . . . −.030 −.100 .000

Categorical 2:
Level 1 . . . . .100 −.080 .020
Level 2 . . . . −.100 −.050 −.100
Level 3 . . . . .080 .080 −.030
Level 4 . . . . −.020 .050 .030

Note.—The parameters are the deviations of the selection probability of a profile defined in rows when compared
to a profile defined in columns.



For each simulation s ∈ {1, . . . , 5000}, I randomly assign to each respondent two indepen-

dent sets of attributes, each made of one continuous variable drawn from a uniform distribution

on [18; 65] (rounded to the closest integer), and three categorical variables. The first categorical

variable has two levels and the last two four levels. These variables are independently drawn, ex-

cept the four-level variables, which I constraint the fourth level of the first one not to be drawn

at the same time as the third and fourth levels of the second one. I then use Table d1 to calculate

the selection probability of each profile:

psi = .5 + pℓ∞(Ti1ℓ∞ − Ti2ℓ∞) + ptℓ2 t′ℓ2Viℓ2tℓ2 t
′
ℓ2
+

∑
ℓ∈{ℓ4,ℓ′4}

∑
(tℓ,t′ℓ)∈T

2
ℓ

ptℓ,t′ℓViℓtℓt′ℓ (D1)

As an example, consider a pair of profiles for whom the continuous attribute is (20; 34), the

binary attribute (1, 1), and the two categorical attributes (2, 3) and (4, 1). If this pair is assigned

to a respondent from the first group, the selection probability of the first profile is .556 (.5+(20−

34) ∗ .001+ 0− .030+ .100). Finally, for each respondent, I simulate selection by drawing from

a Bernoulli distribution:

Yi1 ∼ B(psi) (D2)

The selection decision of the second profile is entirely determined by the selection decisionmade

for the first profile:

Yi2 = 1 − Yi1. (D3)

d.2 Results

The results of the Monte-Carlo simulations are reported in Tables d2, d3 and d4 respectively

for ACPs, differences in ACPs, and for the parameters of the vector of preferences defined in

Table d1. For each estimand, I implement the estimation method presented in the paper for

each iteration of the simulation, setting uniform weights for all levels of categorical attributes.

Each table reports the target value analytically calculated from Table d1 as well as the mean and

the standard deviation of the estimator’s distribution, the estimated bias, mean absolute error, the
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average standard error, and the 95% coverage rate. The average and the bias provide information

about the overall accuracy of the estimators; the average is expected to be as close to the target

as possible and the bias to 0. The standard deviation of the distribution of estimates and the

mean absolute error give a sense of the variability of the estimates. The average standard error

indicates the average estimated level of precision of the estimation, and the coverage rate allows to

evaluatewhether this precision is correctly estimated. The target value should fall in the estimate’s

confidence interval 95% of the time, so that the target coverage rate is expected to be .95.

The simulation results indicate that the estimation method proposed in this article performs

very well. For all quantities, the average estimated value matches the target value, or a value that

differs from the target by at most .001, .002 if one considers the preference parameters. This

confirms that the proposed estimator is unbiased. The estimated values are distributed around

the target with relatively small standard deviations—typically less than .03 for ACPs, .045 for

differences in ACPs, and .055 for preference parameters. The precision of the estimations is

similarly correctly estimated; the coverage rate is very close to .95 in all cases, and never out of

the [.942; 954] interval.

In the standard setting described earlier, ACPs estimated conditional on unrestricted levels

and ACPs estimated conditional on comparable pairs are the same (Table d2, panels 3 and 4).

This is the expected result since there is no interactions between the categorical attributes 1 and

2 in terms of preferences. To see what happens when there are such interactions, I ran additional

Monte-Carlo simulations considering that preferences for the second categorical attribute were

conditional on the first attribute. Specifically, I set p1ℓ′4
2ℓ′4

= .1 when (Ti1ℓ4 ,Ti2ℓ4) ∈ {1, 2, 3}2,

p1ℓ′4
2ℓ′4

= −.1 when (Ti1ℓ4 ,Ti2ℓ4) = (4, 4), p1ℓ′4
2ℓ′4

= 0 when (Ti1ℓ4 ,Ti2ℓ4) ∈ {1, 2, 3} × {4},

and p1ℓ′4
2ℓ′4

= −.05 when (Ti1ℓ4 ,Ti2ℓ4) ∈ {4} × {1, 2, 3}. Results are reported in Table d2’s last

panel. ACPs for levels 3 and 4 are unchanged, while ACPs for levels 1 and 2 correctly reflect the

interaction in preferences.

The main conclusion of this simulation exercise is that the estimation method proposed al-

lows to identify respondents’ preferences. In fact, it is able to estimate a precise summary of these
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Table d2: ACPs from the Monte-Carlo Simulation (Group 1; 2,000 observations; 5,000 simula-
tions)

Target Mean SD Bias MAE Avg. Covg.SE

Continuous

Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.001 0.001 0.001 0.000 0.000 0.001 0.948

Binary

Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100 0.100 0.016 0.000 0.012 0.015 0.945
Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.100 −0.100 0.016 0.000 0.012 0.015 0.945

Categorical 1

Level 1 (conditional) . . . . . . . . . . . . . . −0.090 −0.091 0.031 −0.001 0.025 0.032 0.951
(comparable pairs) . . . . . . . . . −0.090 −0.090 0.022 0.000 0.018 0.022 0.947

Level 2 (conditional) . . . . . . . . . . . . . . −0.027 −0.027 0.031 0.000 0.025 0.032 0.952
(comparable pairs) . . . . . . . . . −0.027 −0.027 0.022 0.000 0.018 0.022 0.945

Level 3 (conditional) . . . . . . . . . . . . . . 0.053 0.053 0.032 −0.001 0.025 0.032 0.946
(comparable pairs) . . . . . . . . . 0.053 0.053 0.023 −0.001 0.018 0.022 0.940

Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 0.065 0.032 0.001 0.025 0.032 0.950

Categorical 2

Level 1 (conditional) . . . . . . . . . . . . . . −0.027 −0.027 0.021 0.000 0.017 0.021 0.949
(comparable pairs) . . . . . . . . . −0.027 −0.027 0.019 0.000 0.015 0.019 0.953

Level 2 (conditional) . . . . . . . . . . . . . . −0.047 −0.047 0.021 0.000 0.017 0.021 0.953
(comparable pairs) . . . . . . . . . −0.047 −0.047 0.020 0.000 0.016 0.020 0.952

Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.007 0.007 0.021 0.000 0.017 0.021 0.948
Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.067 0.067 0.021 0.000 0.017 0.021 0.954

Categorical 2 (interaction with Categorical 1)

Level 1 (conditional) . . . . . . . . . . . . . . −0.027 −0.026 0.021 0.000 0.017 0.021 0.946
(comparable pairs) . . . . . . . . . −0.046 −0.046 0.020 0.000 0.016 0.019 0.945

Level 2 (conditional) . . . . . . . . . . . . . . −0.047 −0.046 0.021 0.000 0.017 0.021 0.948
(comparable pairs) . . . . . . . . . −0.027 −0.027 0.020 0.000 0.016 0.020 0.946

Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.007 0.006 0.021 0.000 0.017 0.021 0.945
Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.067 0.066 0.021 0.000 0.017 0.021 0.946

Notes.—Target values represent the ACPs analytically calculated from the parameters of the simulation (Ta-
ble d1). The MAE is the mean absolute error.



Table d3: Differences in ACPs from the Monte-Carlo Simulation between Groups 1 and 2 (4,000
observations; 5,000 simulations)

Target Mean SD Bias MAE Avg. Covg.SE

Continuous

Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.000 0.000 0.001 0.000 0.001 0.001 0.949

Binary

Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.200 0.200 0.022 0.000 0.017 0.022 0.948
Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.200 −0.200 0.022 0.000 0.017 0.022 0.948

Categorical 1

Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.097 −0.097 0.045 0.000 0.036 0.045 0.950
Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.050 −0.050 0.045 0.000 0.036 0.045 0.952
Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.060 0.059 0.045 −0.001 0.036 0.045 0.944
Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.087 0.088 0.046 0.001 0.036 0.045 0.947

Categorical 2

Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.040 −0.040 0.030 0.000 0.024 0.030 0.951
Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.037 0.037 0.030 0.000 0.024 0.030 0.947
Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . −0.027 −0.026 0.030 0.000 0.024 0.030 0.952
Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.030 0.030 0.030 0.000 0.024 0.030 0.951

Notes.—Target values represent the differences ACPs analytically calculated from the parameters of the simula-
tion (Table d1). The MAE is the mean absolute error.



Table d4: Estimated Preference Parameters from the Monte-Carlo Simulation (Group 1; 2,000
observations; 5,000 simulations)

Target Mean SD Bias MAE Avg. Covg.SE

Continuous

Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.001 0.001 0.001 0.000 0.000 0.001 0.948

Binary

Levels 1 vs. 2 . . . . . . . . . . . . . . . . . . . . . 0.100 0.100 0.016 0.000 0.012 0.015 0.945

Categorical 1

Levels 1 vs. 2 . . . . . . . . . . . . . . . . . . . . . −0.050 −0.049 0.055 0.001 0.044 0.055 0.946
Levels 1 vs. 3 . . . . . . . . . . . . . . . . . . . . . −0.120 −0.121 0.054 −0.001 0.043 0.054 0.951
Levels 1 vs. 4 . . . . . . . . . . . . . . . . . . . . . −0.100 −0.102 0.054 −0.002 0.043 0.054 0.944
Levels 2 vs. 3 . . . . . . . . . . . . . . . . . . . . . −0.030 −0.029 0.055 0.001 0.044 0.055 0.948
Levels 2 vs. 4 . . . . . . . . . . . . . . . . . . . . . −0.100 −0.101 0.054 −0.001 0.043 0.054 0.943
Levels 3 vs. 4 . . . . . . . . . . . . . . . . . . . . . 0.010 0.008 0.057 −0.002 0.045 0.055 0.942

Categorical 2

Levels 1 vs. 2 . . . . . . . . . . . . . . . . . . . . . 0.100 0.099 0.036 −0.001 0.029 0.036 0.954
Levels 1 vs. 3 . . . . . . . . . . . . . . . . . . . . . −0.080 −0.080 0.037 0.000 0.029 0.037 0.946
Levels 1 vs. 4 . . . . . . . . . . . . . . . . . . . . . −0.100 −0.100 0.035 0.000 0.028 0.036 0.953
Levels 2 vs. 3 . . . . . . . . . . . . . . . . . . . . . 0.000 0.000 0.037 0.000 0.029 0.037 0.954
Levels 2 vs. 4 . . . . . . . . . . . . . . . . . . . . . −0.040 −0.041 0.037 −0.001 0.030 0.037 0.949
Levels 3 vs. 4 . . . . . . . . . . . . . . . . . . . . . −0.060 −0.060 0.037 0.000 0.029 0.037 0.944

Notes.—Target values represent the parameters of the simulation (Table d1). The MAE is the mean absolute error.



preferences—the ACP—and even to recover the vector of average preferences P itself.
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