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1 Characterizations of the Logit Shift: Mini-
mum Summed KL Divergences

First, we show that the logit shift minimizes the summed KL divergence from
the original scores pi to the updated scores p̃i, subject to

∑
p̃i = D constraint.

We denote a generic optimization variable as zi, and define the minimum-
KL-divergence optimization problem as

minimize
∑
i∈V
−zi log

(
pi
zi

)
− (1− zi) log

(
1− pi
1− zi

)
subject to

∑
i∈V

zi = D, 0 ≤ zi ≤ 1 for i ∈ V.
(1)

The Lagrangian for Optimization Problem 1 is

L ({zi}, {λi}, {νi}, γ) =
∑
i∈V
−zi log

(
pi
zi

)
− (1− zi) log

(
1− pi
1− zi

)
+

∑
i∈V

λi(zi − 1)− νix̃i + γ

(∑
i∈V

zi −D

)
.

We make the standard assumptions that 0 < pi < 1 for all i ∈ V and 0 < D <
|V|. Define the point ({zi}, {λi}, {νi}, γ) = ({p̃i}, {0}, {0}, log(α)). We consider
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the Karush-Kuhn-Tucker (KKT) conditions at this point. For the Lagrangian
gradient condition, observe:

∇L ({p̃i}, {0}, {0}, log(α)) = − log

(
pi/(1− pi)
p̃i/(1− p̃i)

)
+ log(α)

= − log

(
pi/(1− pi)

pi/(α(1− pi))

)
+ log(α)

= 0 ,

while the other four KKT conditions are automatically satisfied at this point.
It follows that this point is dual optimal. Lastly, because the objective function
is convex and there exist choices of zi satisfying 0 < zi < 1 for i ∈ V and∑
i∈V zi = D, strong duality is attained. Hence, our point is optimal and the

p̃i are a solution to Optimization Problem 1. For background technical details,
see Boyd et al. (2004).

2 Proof of Theorem 1

Define g(v, s) as the function

g(v, s) =
∑
i∈V

f(vi, si)

where v = {vi}i∈V and s = {si}i∈V . Observe that g(v, s) is monotonically
decreasing in every component of s. Denote α = {α}i∈V , the vector repeating
α a total of |V| times, and φ = {φi}i∈V . Because

g(p,φ) = D and g(p,α) = D,

it follows immediately that α must lie between the largest and smallest value of
φi across all choices of i.

3 Proof of Theorem 2

The log-concavity of the Poisson-Binomial distribution is a well-established re-
sult (see e.g. Wang, 1993). Hence, for any choice of i, we have

P

∑
j 6=i

Wj = D − 2

P

∑
j 6=i

Wj = D

 ≤ P

∑
j 6=i

Wj = D − 1

2

(2)
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Multiplying both sides of the equality by pi, and adding the same quantity to
both sides, we obtain an updated inequality

piP

∑
j 6=i

Wj = D − 2

P

∑
j 6=i

Wj = D

+ (1− pi)P

∑
j 6=i

Wj = D − 1

P

∑
j 6=i

Wj = D

 ≤
piP

∑
j 6=i

Wj = D − 1

2

+ (1− pi)P

∑
j 6=i

Wj = D − 1

P

∑
j 6=i

Wj = D

 .

Collecting terms, we get

P

∑
j 6=i

Wj = D

piP
∑
j 6=i

Wj = D − 2

+ (1− pi)P

∑
j 6=i

Wj = D − 1

 ≤
P

∑
j 6=i

Wj = D − 1

piP
∑
j 6=i

Wj = D − 1

+ (1− pi)p

∑
j 6=i

Wj = D


(3)

The terms in parentheses can be collapsed into a single Poisson-Binomial prob-
ability, making use of the recursion defined in Footnote 5. Subbing these ex-
pressions into Inequality 3, we obtain

P

∑
j 6=i

Wj = D

P

∑
j∈V

Wj = D − 1

 ≤ P

∑
j 6=i

Wj = D − 1

P

∑
j∈V

Wj = D

 ,

which yields the upper bound in Theorem 2.
The proof of the lower bound proceeds by incrementing D by 1 in Inequality

2 and following the same set of steps.

4 Proof of Theorem 3

Under the bounds defined in Inequality 7 in the main text, we obtain the fol-
lowing approximation bounds for αi:

|α− φi|
φi

≤

P(
∑

j∈V Wj=D)
P(

∑
j∈V Wj=D−1)

− P(
∑

j∈V Wj=D+1)
P(

∑
j∈V Wj=D)

P(
∑

j∈V Wj=D+1)
P(

∑
j∈V Wj=D)

. (4)

It is a well-established result that, for large N , the Poisson-Binomial behaves
approximately as a Normal random variable with the same mean and variance
(see e.g. Siripraparat and Neammanee, 2021), namely

µ =
∑
j

pj and σ2 =
∑
j

pj(1− pj).
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Denote as ψ(d) the density of a Normal distributionN (µ, σ2) with this mean and
variance, evaluated at d. Siripraparat and Neammanee (2021) show that over all

possible choices of d, the largest deviation between ψ(d) and P
(∑

j∈VWj = d
)

is bounded above by C1/σ
2 for a constant C1 > 0. Hence

|α− φi|
φi

≤ ψ(D)2

ψ(D − 1)ψ(D + 1)
− 1 +O

(
1

σ2

)
= exp

(
1

σ2

)
− 1 +O

(
1

σ2

)
= O

(
1

σ2

) (5)

This follows from a series expansion of the fraction in (4).
Lastly, we observe

p̃i =
1

1 + 1−pi
pi

α

=
1

1 + 1−pi
pi

φi

(
1 + α−φi

φi

)
=

1

1 + 1−pi
pi

φi
− (1− pi)piφi

(pi + φi − piφi)2

(
α− φi
φi

)
+O

((
α− φi
φi

)2
)

= p?i +O
(

1

σ2

)
,

where the last line follows by plugging in the bound on (α − φi)/φi from In-
equality 5 and observing∣∣∣∣ (1− pi)piφi

(pi + φi − piφi)2

∣∣∣∣ ≤ 1

4
for 0 < pi < 1, 0 < φi.

5 Proof of Theorem 4

Fix a higher-level aggregation unit B ∈ B. Then each person i residing in B also
resides in some aggregation unit Ai ∈ A, with Ai contained in B, and belongs
to one of a set of mutually exclusive population groups (e.g., racial groups),
Gi ∈ G.

For a lower-level unit A ∈ A, define

sg(A) =

∑
i:Ai=A

1{Gi = g}
|{i : Ai = A}|

to be the share of the population of A that belongs to group g ∈ G. The vector
of these group shares s(A) necessarily sums to 1.

Then define a function m(s(A)) = 1−maxg sg(A), which, given a vector of
group shares for a unit A, computes the proportion of people who are in the
minority in unit A. For example, m((0, 1, 0)) = 0 and m((0.4, 0.3, 0.3)) = 0.6.
Notice that since the maximum function is convex, m is concave.
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Let I ∈ {i : i resides in B} be the random variable that is uniformly dis-
tributed across all of the people residing in B. Then s(AI) are the group shares
for the unit containing a randomly-selected person, and E[s(AI)] is the vector
of group shares for the overall unit B (this follows naturally from the definition
of sg(A)).

Similarly, E[m(s(AI))] is the overall proportion of people comprising a mi-
nority within their A unit. We can of course write the proportion of people
comprising a minority within the enclosing unit B as m(E[s(AI)]). The claim
of the theorem is then that E[m(s(AI))] ≤ m(E[s(AI)]). But this follows im-
mediately from Jensen’s inequality, since m is concave.

The inequality will be strict as long as there is at least one unit A where the
majority population differs from the overall majority population, since then the
support of m(s(AI)) will span a region where m is strictly concave.
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