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Proof of Proposition 1
1. Let us prove that production and consumption variables grow at the rate g =
(1—a)gs—ap.

The production functions (1) imply Yy/Ys = (Ly/@Ls)Y"*(Ry/Rs)®. The first-order
conditions (8) imply Ry/Rs = (Yu/(1 + 6y))/(Ys/(1 + 65)). Then,
Yy/Ys = (Ly/@Ls) (05 + 1) /(6y + 1))¥ =D As Ly and Lg are inelastic and 8y and 6 are
constant, then gy, = gy, = gy. The world resource constraint (7) implies gy = g¢. The
Ramsey-Keynes conditions (15) then give g, = r — p. Using the first-order conditions (8) and
Jvy = Gvg» ONE Obtains g = gr, = gg- The Hotelling rule (10) can be rewritten using (8) like
gr = gy — 7. Then. gy = r — p above implies g = —p. Finally, the production functions (1)
give gy = (1 —a)g, + aggr. Using ggr = —p, it yields gy = (1 — a)g, — ap. Overall, g, =
(1—a)ga—ap =gyy = Gvs = 9c = ey = Yos-

2. This immediately follows from Yy /Ys = (Ly/@Ls)((8s + 1)/(8y + 1))%/ =% proven

above.

a
On+1

3. Let us show that Cy(t) = (1 — Wy () —F(t), Cop(t) = (1 — a)Ys(t) + F(t) and

a
On+1

Csr(t) = (G—7) Yw(O)+ a¥s (D).

Let us first develop the instantaneous budget constraints of the three groups. From the first-
order conditions (9), wy = (1 —a)Yy/Ly and wg = (1 —a)Ys/Lg. From the first-order
conditions (8), pOyRy = a¥yOy/(Oy + 1), pOsRs = a¥sBs/(6s+ 1) and p(Ry + Rs) =
aYy/(Oy + 1) + a¥s/(6s + 1). By substituting these revenues into (11), (12) and (13) and
rearranging, the instantaneous budget constraints become Cy/Ly + By/Ly = (1 —a/(0y +

1)Yy/Ly +vBy/Ly — F /Ly, Csp/Ls + Bsp/Ls = (1 — a)Ys/Ls + rBsp/Ls + F/Lg  and



Csg + Bsg = a¥y/(Oy + 1) + a¥s + rBgp.

Moreover, we have shown above that gy =r—p and gy = (1 —a)g, — ap. These
equations imply r = (1 — a)(g4 + p)-

Next, solving the instantaneous budget constraints as first-order differential equations in By,

Bsp and Bgg, One obtains the following intertemporal budget constraints satisfied for all T > 0:
By(De ™™ + [ Cy(De ™ dt = (1 — a/(8y + 1)) [, Yy(t)e "t dt — [ F(£)e " dt + By(0),

Bsp(T)e ™™ + [ Cop(e™dt = (1 — a) [ Ys(t)e ™ dt + [] F(t)e " dt + Bsp(0) and

[24
On+1

Bsp(T)e ™™ + [ Cop(t)e "t dt = —— ["Yy(t)e ™ dt + +a [, Ys(t)e " dt + Bgz (0).

The no-Ponzi-game conditions (14) write limy_ B;(T)e™"" =0, i = N,SP,SR. Thus,
taking the limit as T goes to infinity and using the assumption By (0) = Bsp(0) = Bgz(0) = 0,

we obtain

[ Cy(De"tdt = (1 _ L) [ Yy(Demdt — [ F(t)e"tdt.

On+1

a
On+1

Jy Csp(D)eTtdt = Jy, Yn(®etdt + a [, Ys(t)e "t dt and

J, Cp(De™dt = (1—a) [, Ys(De ™t dt + [° F(De "tdt.
We know that Cy, Csp Csg Yy, Ys and F grow at the same rate r — p. Note that for any
variable X such that gy =r—p, we have fOOOX(t)e_Ttdt = fowx(o)e(r—r))te—rtdt =

X(0) f0°° e Ptdt = X(0)/ p. Therefore, the intertemporal budget constraints imply

[24
On+1

Cn(0) = (1 = =¥ (0) = F(0),

Csp(0) = (1 — a)¥s(0) + F(0),

Csr(0) = (= )YN(0)+aYS(0),and

On+1

a
On+1

Cy(@)=(1- Yy (t) — F(t) = Cy(Oy, 65, F)(D),



Csr(t) = ( . )YN(t) + a¥s(t) = Csr(0y, 05)(t) and

On+1
Csp(t) = (1 — )Y () + F(t) = Csp (O, bs, F)(D).
These expressions imply that for given Yy (t) and Ys(t), 8y has a positive effect on Cy(t), a
negative effect on Cgz(t) and no effect on Csp(t) while 65 has no effect on the consumption

levels.

Proof of Proposition 2

From the above expressions of the consumption functions, note that Cy(8y,8s, F)(t) =
Cn (O, 05, 0)(t) — F(t) and Csp (B, Os, F)(t) = Csp(Oy, 05, 0)(8) + F ().
a. Let us show that the governments’ optimization problems reduce to the constrained
maximization of date O utilities.

From Proposition 1, Cy, Csp, Csg and F grow at the same rate g = (1 — a)g, + agg. Then,
Cn (O, 05,0)(t) = Cy(By,65,0)(0)e, Csp(Bn, 65, 0)(t) = Csp(By, 05,0)(0)e9",
Csr(On, B5)(t) = Csp(Oy, 05)(0)ed" and F(t) = F(0)e".

Therefore, the North and South governments’ optimization problems become respectively

Cn(0n,05,0)(0)—F(0) Csp(On,05,0)(0)+F(0) © _pt
QMaX [LN ln( » ) + 6L51n( L )] J, e7Ptdt +[Ly +

SLg] fooo gt e Ptdt, subject to F(0)=>0, and r%axln(CSR(HN, 65)(0)) f0°°e‘Ptdt +
S

f0°° gt e Ptdt. Since neither the second terms of these sums nor the factor f0°° e~ Ptdt include the

control variables, the problems are respectively equivalent to

Cn(6n,05,0)(0)—F(0) Csp(8n,65,0)(0)+F(0) :
91,\1,??()6) [LN ln( " ) + 5L51n( s )] subject to F(0) >0, and

T%ESIX In(Csr (6n, 05)(0)).



b. Let us develop the expressions of Cy(6y,60s0)(0), Csp(6y,650)(0) and

CSR (HN' 95) (0)

a
On+1

We have shown in Proposition 1 that Cy(6y,650)(0)=(1— )Yn(0),

a
On+1

Csp(0y,05,0)(0) = (1 —a)Ys(0) and  Csr(Oy,05)(0) = ( )YN(O) + a¥s(0). Let us

compute Yy (0) and Y5(0) as functions of 6y and 6s. The production functions (1) imply
Yy (0) = (AoLy) %Ry (0)* and Ys(0) = (Ag@Ly) " *Rg(0)%. Let us thus compute Ry (0) and
Rs(0). From Proof of Proposition 1, gr = —p. Note now that the stock of resource is
asymptotically exhausted because extraction costs are nil. Then, from (3), Q, = waR(t)dt =
f0°° R(0)e~Ptdt = R(0)/p. Thus, we have R(0) = Q,p. Moreover, the first-order conditions (8)
imply Ry/Rs = (Yu/(1 + 6y))/(Ys/(1 + 65)). Using (1), we then find
Yv/Ys = (Ly/@Ls) (85 + 1)/ (0y + 1)¥/A=® This, in turn, implies Ry(0)/Rs(0) =
((6s +1)/(8y + 1)V A= /(pLs), which, using Ry (0) + Rg(0) = R(0), results in

Ry(0) = pQo/[1 + (pLs/Ly)((6y + 1)/ (65 + 1))/ *~¥] and

Rs(0) = pQo/[1 + (Ly/pLs)((6s + 1)/ (Oy + 1))/ 1~9].

Finally, we have

Yy (0) = (AoLw)'~*[pQo/[1 + (pLs/Ly)((By + 1)/ (65 + 1) 1=9]]" and

Y5(0) = (AopLs)*~[pQo/[1 + (Ln/@Ls) (85 + 1)/ (8 + 1)) A-D]]",

and then

Cn(On, 85,0)(0) = (1 - (GN“H)) (AOLN)l—“[ 2% )1,(1a)]] :

@Lg\(On+1
1+( )(95+1

Ly



Csp(Oy,605,0)(0) = (1 — a)(AopLs)' ™ n pefil w7 and
(g (e

Csr (HN' 95) 0) =

a a

_x 1-a PQo 1-«a pQo
OniD) (AoLy) + a(AopLs)

QLg\(On+1 1/(1-a) Ly \(0s+1 1/(1-a)
() (5) +5i5) ()

Let us finally find an expression of the resource price p(t). From (1) and (8), one has

a 1/(1-a) « 1/(1-a) )
Ry = (p(9N+1)) ALy and Rg = (—p(95+1)) @ALs. Using now Ry(t) + Rs(t) =

(xtp)t 1/(1-a) 1/(1-a) 1-a
— —pt — Ape a a
R(t) = pQye~Pt, one gets p(t) [ o ((9N+1) Ly + (95+1) q)Ls) l

C. Let us solve the South’s maximization problem.
This program amounts to the maximization of Csz (8, 65)(0) with respect to 6. After some

simplifications, 09Csz(0y,05)(0)/00s <0 can be shown to be equivalent to

(L_N)l‘“ [1+(<pLs/LN)((9N+1)/(es+1))1/(1—00]‘“‘1 oLs (M)—l/(l—a) -

@Ls 1+(Ln/9Ls)((0s+1)/(Oy+1) Y/ (1-®) Ly \(Oy+1)
L_N Os+1 1/(1-a) . .. .
(ms) (—9N+1) @y +1). This condition can still be reduced to

By + D71 ((0s + 1) /(0y + 1)) 0-D < (65 + 1) /(8y + 1))/1%, which is equivalent to
(65 + 1) > 1. Thus, 65° = 0 maximizes Cgz(0y, 85)(0) for all 8.
d. Let us solve the North’s optimization problem.

Taking as given the South’s dominant strategy 6s° = 0, the North solves the program

Cn(6n,0,0)(0)—F(0) Csp(6n,0,0)(0)+F(0) :
011\11‘1}9()6) [LN ln( . )+ 6L51n( I )] subject to F(0)>0. The

associated Lagrangian function writes

L= Lyln (OLDDTON 4 51,61 (<eCEDOFD) 4 7F(0), where  is the multiplier
S

N



associated to the constraint. The first-order conditions are the following:

(C1) 9L/30y = 0,
(C2) dL/AF(0) = 0,
(C3) nF(0) = 0,
(C4) F(0) = 0,
(C5) 7> 0.

e Casel:F(0)=0.

Ly dCN(0,0,0)(0) SLg dCsp(6n,0,0)(0) _
(C1) becomes e 000 260y Csp(On,0,0)(0) 20y = 0.

Let us show that this has a unique solution 85 (6) > 0.
Using the expressions of Cy(6y,0,0)(0) and Csp(6y,0,0)(0) computed in b and after some

simplifications, (C1) is equivalentto Z1(8y) = 0, where

-1/(1-a)
Zl(BN) = (On+1) + (pLs/Lyn) _ (pLs/Ln) + (%)ﬁ(@l\, + 1)—1/(1—&). For any

On+l1-a On+1-a 1-a Ly
Oy < a—1, Cy(6y,0,0)(0) is negative and the objective is not defined. Let us then look for
solutions on Oy > a — 1. On this set, one can check that Z1'(6y) <0, Z1(0) > 0 and

limg,, 4+ Z1(8y) < 0. These properties imply that for all § = 0, there exists a unique 85 (5)

such that Z1(85(6)) = 0. Moreover, 65(5) > 0. In this case, (C2) and (C5) required <

(Cop(05(8), 0, 0)(0)/Ls)/(Cn (65(8),0, 0)(0)/Ly). As ZEZHEDE > 0 for all Gy, (C1)

dCn(65(5),0,0)(0)
00N

implies that 85, is such that < 0.

Let us show that 85 (&) is increasing in &.

B . _l-a [ 1 ¢Ls/Ly 1/(1-a) _
Z1(8y) =0 can be rearranged to give S—LS/LN[ 6N+1—a+ - Oy +1)

@Ls (9N+1)1/(1-0-’)

]. Here, it is straightforward that the first term into brackets is increasing in 6.
Ly Oy+1l-«a



The derivative of the second and third terms is of the same sign as

(On+1)%/ (1= ((6N+1—a)2 _

(On+1-a)? 1-a

(%)) + (8y + DYE=®  which is positive for all 8y > 0. Thus, the solution 8,°(5) is
increasing in § > 0.
In particular, let us denote by 8, the solution for § = 0, i.e. 8, = 65(0). Its definition is then

dCpn(Oy,0,0)(0) — 0. Hence dCyn(8y,0,0)(0)

< 0 if and only if 85 > 6,. Note that 85(5) = 6, for all
80N Y

6=0.

e Case2: F(0)>0.

(C3) implies = = 0 and (C2) implies F(0) = 25w (QN'O’O)L(O);SLZV Csp (B 0.0)(0) Replacing F(0)
N S

9Cn(6n,0,0)(0) | 9Csp(ON,0,0) _

20y a0y 0.

in (C1) and simplifying, one gets
Let us show that this equation has a unique solution 8 > 0.
Using the expressions of Cy(6y,0,0)(0) and Csp(8y,0,0)(0) computed in b and
simplifying, (C1) becomes Z2(6y) = 0, where
Z2(0y) = (Ly/ ¢Ls) Oy + ™A= 4+ (2 — @) /(1 — @) = By + 1)/(1 = a).
One can check that Z2'(8y) < 0 for all 8y, limg, 1. Z2(8y) < 0 and Z2(0) > 0. These
properties imply that there exists a unique 8 such that Zl(Q) = 0. Moreover, 8 > 0.
In this case, (C4) requires § > (Csp(8,0,0)(0)/Ls)/(Cy(8,0,0)(0)/Ly) = 6.
e Using Cases 1 and 2, let us check that the North’s problem has a unique solution for all 6.

First, note that when 6 = (Csp(05(5),0,0)(0)/Ls)/(Cn(65(5),0,0)(0)/Ly), then 85(6) =

(CSPI(‘QJO'O))
s
(CN(Q'()'O))

Ly

6. Thus, as 6x(8) is increasing in §, § > = § is equivalent to 85(6) > 6. Second,




aCN(6n.0,0)(0)

after some computations, one can show that m =1+ ;TN(GN + 1)~ V=) — 9"’;#,
o < -
20y

dCsp(On,0,0)(0)

which is decreasing in 6y. Hence, —W is also decreasing in 6y. Since
B
dCsp(6,0,0)(0) 9Csp(0,0,0)(0)
a0 P EL . .
_W(I)\,IO)(O) =1, by definition of Q, then _W{\(I),o)(m < 1ifand Only if QN > Q
0N 36N
(—CSP,(,%O'O)) . . 8LsCn(6,0,0)(0)~LyCsp(6,0,0)(0) .
. Assume5>W=§.Then,6N=QandF(O)z 5l iIs a
0,0, N S
Ly

solution (from Case 2). Let us now show that 8y = 65(6) and F¢(0) = 0 is not a solution (i.e.
we cannot be under Case 1).

First, since 85 (&) is increasing in &, in this case, 85(6) > 6. Second, by definition of 85 (6)

(CSP(96N(5)°'0)> aCsp(6%(8),0,0)(0)

Ls _ a0y o e .

above, <CN( o (8)‘0’0)> = <6CN(9?V ©00) (0)>, which is lower than § because 65 (8) > 8. Finally,
Ly 0N

6 > (Csp(605(8),0,0)/Ls)/(Cy(B5(6),0,0)/Ly), i.e. we cannot be in Case 1.

Csp(8,0,0)
o Assume § < —((CN(L;OO))) = 8. Then 65 = Gand F°(0) = SLSCN(Q'O'O)EO);;fCSP (80000 g
Y, N S
Ly

not a solution (because we cannot be in Case 2). Let us show that 85 = 65(5) and F¢(0) =0 is

a solution (i.e. we are in Case 1).

(CSP(G?V(S)rO-O)> aCsp(6%(8),0,0)(0)

. . . Lg 96 .

e - _ N

First, in this case, 85 < 8. Second, (cN(B%(S).0,0)> ) (acN(e;;,(a),o,o)(o)> is greater than §.
Ly 90N

Finally, § < (Csp(65(6),0,0)/Ls)/(Cn(05(5),0,0)/Ly), i.e. we are in Case 1.

e Tosum up, the solution to the North’s problem is (85, F¢(0)) such that



Csp(8,00)
(Cuteoc))

Ly

0y =05(6) and F¢(0) =0, if 6§ < = §, where 65(6) is increasing from 6, =

05(0) to 8 = 6§(8), and

8LsCn(8,0,0)(0)-LyCsp(8,0,0)(0) (CSP£Q,0,0))
0% = 6 and F¢(0) = SN_"LN+SZILSP—" 20,if62(chw))=g_
Ly

Proof of Proposition 3

Whether the contract is accepted or not, the South’s problem remains unchanged. In
particular, if the contract is accepted, I(t) is taken as given and the South seeks to maximize its
consumption. Thus, 6§ = 6§ = 0.

The same way as in Proposition 2, one can check that the North’s problem reduces to the

maximization of date O utility:

max
On,1(0),F(0) Ly Ls

1(0) >0 and Cgz(6%,0)(0) < Csz(8y,0)(0) —1(0). Since the North’s objective function is
increasing with 1(0), the South’s participation constraint is binding: 1(0) = Csg(8y,0)(0) —

Csr(05,0)(0). Here, Csg(8y,0) can be shown to decrease with 6,: From Proof of Proposition 2

a
On+1

b, one can see that Csz (6y,0)(0) = p(0)R(0) =

Yy (0) + a¥s(0), where p(0)R(0) appears

to be decreasing in 8. Hence, 1(0) = 0 is equivalent to 6y < 6. Taking as given the South’s

dominant strategy 8¢ = 0, the North’s problem becomes

max Ly In (CN(QN,O.O)(O)—F(O)) + §Lgln (CSP(QN’O,O)(0)+F(0)+CSR(GN:O)_CSR(QNvO))’ subject to
On,F(0) N Ls
F(0)=0 and Oy < 05. The associated Lagrangian function writes

— _ e
L=1Lyln (CN(GN,O.O)(O) F(O)) + 8Lgln (Csp(ew,o,O)(0)+F(0)+65R(HN.O) CSR(HN,O)) + UF(0) +

Ly Ls



9(6y° — 0y), where u and 9 are respectively the multipliers associated to the positivity

constraint on F(0) and to the constraint on the tax rate. The first-order conditions are the

following:
(C6) dL/26y = 0,
(C7) 9L/dF(0) = 0,
(C8) uF(0) =0,
(C9) F(0) = 0,
(C10) u=0
(C11) (6§ —Oy) =0,
(C12) 9 >0,
(C13) Oy < 65

e Casel: 0y =06y, F()=0.
Then, (C6) is equivalent to

Ly 0Cn(6n,0,0)(0) OLs 0Csp(6y,0,0)(0) + dCsr(6n,0)(0)

[ ” -9 > 0.
cn(On.00)(0) 96y Csp(65,0,0)(0) 0y 0y o= 65

Using the expressions of the consumption levels and after some computations, one can check

_aCSR(GN,O)(O) _aCSR(BN,O)(O)
a0 _ Ly —1/(1- .- . 060
that WN?"O)(O) =1 +E(9N + 1) /( a). This Implles that W]\]ﬁo)(o) > 1 for all HN!

a0 30N

dCsp(Hn,0,0)(0) , 9Csr(6y,0)(0)

o ) . dCsp(ON00)(0) _ o | 3Ys(0)
which is equivalent to T + T < 0, since — ey = 1-a) o0y >
0. Hence, from the expression of (C6) above, 8y is such that 9y (6x.00)0) > 0 which is

90N On= 0§

aCN(HN,O,O) (0)

< 0 from Proof of Proposition 2. Thus, 8y = 05, F(0) =0
90N On=0F

contradicted by

cannot be a solution.



e Case2:60y =06y, F()>0.

Then, (C6) is equivalent to

Ly 0Cn(6y,0,0)(0) SLs [aCSP(GN,O.O)(O) 0Csr(On, 0)(0)” -9
Cn(6y,0,0)(0)—F(0) 00y Csp(6y,0,0)(0)+F(0) 20y 00y =065 '
For the same reason as in Case 1, this cannot be a solution.
e Case3:0y <6y, F(0)=0.
Then, (C6) is equivalent to
Ly 0Cn(6y,0,0)(0) SLs [aCsp(G’N.O,O)(O) dCsgr(On, 0)(0)] _
Cn(6.0,0)(0) a0y Csp(8n,0,0)(0)+Csr(ON,0)—Csr(65.0) G 20y
0. Let us denote any solution to this equation by 85(8). As 2£sen00©) | 2CsrONOO) )

a0y 20N

acn(65(8),0,0)(0)

from above, 05(6) is such that
a0y

> 0. Note that, from Proof of Proposition 2,

W > 0 is equivalent to 8y < 8,, thus implying that any solution 85 (&) is such that
N
05 (6) < 6, forall § > 0. One can check that 85(0) = 6,.

Ly _ SLs
cn(65(8),00)(0)  Csp(05(8),0,0)(0)+Csr(05(8),0)(0)-Csr(65,0)(0)

Moreover, (C7) implies u =

(csp(6§(8),0,0)(0)+Csr(65(8),0)(0)~Csr (5, 0)(0))/Ls

i <
Hence, (C10) requires & e (85(3)00)0)/In

e Cased: 0y <0y, F(0)>0.

Then, (C7) implies F(O)=‘SLSCN(BN,O,O)(0)_LN[CSP(9NLO,(:)6((I)’)+CSR(GN'O)(O)_CSR(GI%'O)(O)].
N S

dCN(On,0,0)(0) | 9Csp(6p,0,0)(0) aCSR(é’N,O)(O)=
a0y 20y 20y

Replacing F(0) and simplifying, (C6) becomes

aYn(0) +ays(o) aY (0)
0N 90y 90y

= 0. One can check that the unique solution to this equation is 8y = 0.

(€5p(0,0,0)(0)+C5r(0,0)(0)~Csr(65,0)(0))/Ls
Cn(0,0,0)(0)/Ly

Moreover F(0) > 0 requires § >

5.

e Let us now review the solutions to the North’s problem for all §.



(c5p(65(5)0.0)0)+C5r(65(5).0) 0)~Csr(65,0)®))/Ls
Ccn(65(8),0,0)(0)/Ly

First, one can check that for 6 = , 05(6) = 0.

Second, as 8y = 0 is equivalent to ay_(o)s 0, it is also equivalent to —[M-f‘
6y 96N
9Csr(ON,0)(0)] -, 9CN(O,0,0)(0)
26y = a6y
e Assume§ > 6.
Then, 6S = 0 and F€(0) = 8LsCp(0,0,0)(0)—Ly[Csp(0,0,0)(0)+Csg(0,0)(0)-Csgr(65,0)(0)] is a solution.

Ly+6Lg
Let us show that 85 = 65(8) and F¢(0) = 0 cannot be solution. From Case 3, any 65 (8) must

Csp(65(6),0,0)(0)+Csr(65(8),0)(0)~Csr(65.0)(0))/Ls
Cn(65(6),0,0)(0)/Ly

satisfy 5§( = §(05(6)), where &(65(8)) is

aCN(05(5),0,0)(0) > 0 and dCsp(6y,0,0)(0)

20N 20y +

strictly decreasing in 85 (6) since 65 (5) is such that

w < 0 for all 8y. Moreover, §(0) = §. Hence, if §(05(8)) = & > §, then any 65(6)
N - =

is strictly negative. Then, by definition of 05(6),

Csp(65(6),0,0)(0)+Csr(65(6),0)(0)-Csr(65(8).0)(0)/Ls
cn(65(8),0,0)(0)/Ly B

8(65(9) = (

a[acsp(efv(s),o,o)(o) . 6CSR(91CV(6),0)(0)]
. ELY; ' ELRY; T . . c . .
2 (05 3)00)0) , Which is strictly lower than § since 65 (8) < 0 is equivalent to
a6y

_ [5CSP(9N.0.0)(0) aCSR(QN,O)(O)] 9Cn(6n,0,0)(0) Thus

20N 20N 20y

Csp(65(8).,0,0)(0)+Csr(65(8) 0)(0)~Csr(65(5) 0)(0)/Ls
cn(65(5),0,0)(0)/Ly

6(05(6)) = ( < &, i.e. we cannot be in Case 3.

e Assumed < 4.

— _ e
Then 65 =0 and Fe(0) = 8LsCn(0,0,0)(0)~Ln[Csp(0,0,0)(0)+C5r(0,0)(0)~Csr(65.0)(0)]

is not a
Ly+6Lg

solution. Let us show that any 65 (8) together with F€(0) = 0 is solution. From above, 65 (5)



cannot be negative. Then, 05(8) =0, thus implying

Csp(05(8),0,0)(0)+Csr(85(8),0)(0)~Csr (85 (8).0)(®))/Ls
cn(65(8),0,0)(0)/Ly B

§(65(9)) = (

S[GCSP(95,(6),0,0)(0)LaCSR(GICV(S),o)(o)
a0 ' 0y
aCN(65,(8),0,0)(0)
0N

> &, which is consistent with Case 3.

e Since we are restricting our attention to § = §, 65 = 6 from Proposition 2. Hence,

(¢5p(0,0,0)(0)+Csr(0,0)(0)-Csr(8.0)(0))/Ls
Cn(0,0,0)(0)/Ly '

[
1]

Then, to sum up, the solution to the North’s problem is

1°(0) = Csp (65, 0)(0) — Csr(8,0)(0) and

913 — 0, F¢(0) = 5LSCN(0,0,0)(0)—LN[C5P(0L0,(£§2)+C5R(0,0)(0)—C5R(Q,0)(0)]’ if s> Q, and
N S =

any 65 (8), such as defined above, and F€(0) = 0, if § < g

In this latter case, one can hardly tell something precise about 65 (6). However, we know
that 65(0) = 6,, Hﬁ(g) = 0 and that any solution 85 (&) for all § in (O,Q) IS such that 0 <
05(6) < 8,.

In this case, the objective function is continuous in § = 0 and in 8y > —1, except at point
Oy = a — 1. Moreover, the objective is not maximized for 6y < a — 1 and as 8y tendsto a — 1
or to +oo, because, then, the objective would tend to —oo. Finally, it is bounded from above
because Cy(6y,0,0)(0) + Csp(6y,65,0)(0) + 1(0) is lower than Y(0), finite. Thus, for any

6 = 0, the existence of a global maximum is ensured. Hence, for any § € [0, Q], there exists at

least one 65 (5) € [0, 6,].



Proof of Proposition 4

The utility of northern households is obviously increased with an additional instrument. The
southern rich are indifferent as their participation constraint is binding. We thus only have to
show that the southern poor are better-off when the contract is used by the North. We will

consider two cases: § < §and § > §.
e Casel:§<3d.

o If 6§<4, aid is nil whether the contract is used or not. Let us then show
Csp(05(6),0,0) + I¢ = C5p(05,0,0). Replacing I€, this is equivalent to Cgp(65(6),0,0) +
Csr(05(6),0) = Csr(05,0) + Csp(05,0,0), which is satisfied because Csp(8y,0,0) +
Csr(By,0) is decreasing in 8 and 05 (6) < 05.

If § < 6 <4, aid is nil under the contract and is positive without it. Let us then show

Csp(05(8),0,0) + I€ = Csp(6,0,0) + Fe. This is equivalent to

8LsCn(6,0,0)-LnCsp(6,0,0)
Ly+6Lg

Csp(65(8),0,0) + Csr(05(5),0) — Csx(8,0) = Csp(6,0,0) + which can

be rearranged to give the necessary and sufficient condition ;TN[CSP(9§(6),O,O)+
S

Csr(65(8),0) — Csz(8,0)] = Csx(6,0) + Csp(8,0,0) + Cy(6,0,0) — Csp(65(8),0,0) —
Csr (05(6),0). Here, left-hand side is positive. Then, if right-hand side is negative, the condition
is satisfied. Let us assume this term is positive to check the condition is also satisfied in this case.

Then, the inequality is equivalent to

(CSP (65(6),0,0)+Csr (65 (6),0)~Csr (Q,O))/Ls

< .
S TCon(@.0)7C3p(8,0,0)+Cn (8,0,0)—Csp (9% (8),0.0)—Csr (85 ®).0) ]/ In We have shown that the case

where aid is nil under the contract requires (from Case 3 of Proof of Proposition 3) § <

(CSP(QKJ (8),0,0)+Csr(685(8),0)~Csr (Q,O))/Ls
cn(65(8),0,0)/Ly

. It is thus sufficient to have Cy (85 (5),0,0) = Csz(6,0) +



Csp(8,0,0) + Cy(8,0,0) — Csp(65(5),0,0) — Csr(05(8),0).  This is satisfied because
Cn(65(5),0,0) + Csz(65(8),0) + C5p (85 (8),0,0) = Cy(6,0,0) + Csz(8,0) + Csp(6,0,0),
where both sides equal total output, decreasing in 8, for all 8, = 0, and where 65(5) < 8.

e If§> g aid is positive with or without the contract. Let us show Csp(0,0,0) + F€ +
1€ > CSP(Q, 0,0) + F¢. Developing F€, I€ and F€, one gets the equivalent condition Cy(0,0,0) +
Csp(0,0,0) + C5z(0,0) = Cy(8,0,0) + C5p(8,0,0) + Csx(8,0), which is satisfied since total
output is maximized for 6, = 0.

o Case2:6>56.

e If § <4, aid is nil with and without the contract. The proof is the same as in Case 1

e If§ >4, aid is positive with and without the contract. The proof is the same as in Case 1

6>

1S

If § >4 >4, aid is nil without the contract and positive under it. Let us then show

Csp(0,0,0) + FE+1¢ = Csp(65,0,0). This is equivalent to Csp(0,0,0) + Cs(0,0) —
Csr(05,0) + F€ = Csp(05,0,0). Since F€ >0, a sufficient condition is Csp(0,0,0) +
Csr(0,0) = Csp(65%,0,0) + Csz(65%,0), which is satisfied because Csp(6y,0,0) + Csz(6y,0) is

decreasing in 8y and 65 > 0.



