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1 Proof of Proposition 1

The equilibria of the system of ordinary differential equations (3) - (4) in
the main text correspond to the solutions of the following nonlinear system
of algebraic equations:

0 = L(t)LfaP_L(t)] (A1)
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It is straightforward to verify that the origin is an equilibrium E; = (0, 0).
Straightforward algebra leads to the other two equilibria, Fy = (€2,,0) and
E3 = (L, P), with:
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The parametric restriction in Proposition 1 guarantees that L > 0 and
P > 0; indeed, B — dp > 0 ensures that L > 0, while Q'=®7A46p > 5 — 6p

that P > 0.
The stability property of the origin £y cannot be analyzed via the tradi-

P = -1]. (A4)
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tional linearization method. It is however possible to show that the trajec-
tories are eventually escaping from a circular sector surrounding the origin,
provided that the radius of this sector is small enough. For this purpose, let
us express the vector of the initial condition as:

L(0) = Lo (A5)
P(O) = PQ:ULQ, (AG)



where v = tan(f)~! implicitly defines the direction of the vector of initial
conditions (Lg, Py), whose angle with respect to the L axis is §. The idea is
to show that, Vv € (0, +00), the following vector field:
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has both positive components eventually, when Ly — 0. When Lg tends to
zero, equations (A7) - (A8) can be written as:
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Given that © > 0, the quantity on the RHS of equation (A9) will eventually
become positive, no matter the value of v. As for equation (A10), the RHS
is always positive Vv € (0,+0o0), provided that the parametric restriction
required by Proposition 1 is met. It remains to explore the extreme case
where v = 0 or v = 400, that is the axes P = 0 and L = 0 respectively.
When P = 0, the RHS of equation (3) in the main text is eventually positive,
in the limit Ly — 0, as shown before, while in equation (4) in the main text,
the RHS is identically null. When L = 0, the RHS in equation (3) is null,
while the RHS in equation (4) is positive, because f—dp > 0 by assumption.
The trajectories are eventually escaping from a circular sector in the positive
orthant around the origin.

For what concerns the other two equilibria, linearization can be applied.

The associated Jacobian matrix is given by:
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Let us start with Ey = (£2,0). The Jacobian matrix (A1l) evaluated at Es

reads as follows:
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Since the term ag 2 is negative, due to the parametric restriction required by
Proposition 1, the determinant is positive and the trace is negative, thus the
equilibrium Es is asymptotically stable. Finally we consider E3 = (L, P).



Simple inspection of the Jacobian matrix (A11) shows that the terms a2
and ag 1 are both positive under Proposition 1. The Jacobian matrix (A11)
evaluated at F3 in this case becomes:
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Both the determinant and the trace are negative, thus the equilibrium Fj
is saddle point stable.
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