Do social protection programs foster short-term and long-term migration adaptation strategies?

Valerie Mueller^{1*}, Clark Gray², Sudhanshu Handa² and David Seidenfeld³

¹ Arizona State University, International Food Policy Research Institute, Tempe, Arizona, USA ² University of North Carolina, Chapel Hill, North Carolina, USA and ³American Institutes of Research, Washington, DC, USA

*Corresponding author. Email: vmuelle1@asu.edu

ONLINE APPENDIX

	(1)	(2)
Rain	-0.734	-0.068
	(1.820)	(1.557)
Temp	-6.734	-2.554
	(1.801)***	(1.658)
R^2	0.07	0.12
N	2,284	2,284
District FEs?	No	Yes

Table A1. Household baseline consumption per capitaregression, current climate anomalies

Notes: Unit of analysis is household. Village-clustered standard errors reported. * *p*<0.1, ** *p*<0.05, *** *p*<0.01.

	Any move		Move	s near	Moves far	
	(1)	(2)	(3)	(4)	(5)	(6)
	Men	Women	Men	Women	Men	Women
Т	-0.074	-0.005	-0.068	-0.032	-0.015	-0.013
	(0.022)***	(0.012)	(0.016)***	(0.003)***	(0.011)	(0.003)***
T x Rain	0.013	-0.000	0.020	0.009	-0.004	-0.009
	(0.019)	(0.013)	(0.014)	(0.009)	(0.017)	(0.010)
T x Temp	-0.009	0.000	-0.023†	0.001	0.011	0.002
	(0.018)	(0.011)	(0.015)	(0.010)	(0.013)	(0.008)
Rain	0.056	0.005	0.043	-0.004	0.018	0.010
	(0.025)**	(0.011)	$(0.015)^{***}$	(0.009)	(0.022)	(0.010)
Temp	-0.045	0.003	-0.032	-0.000	-0.019	0.001
	(0.023)*	(0.011)	(0.016)**	(0.009)	(0.017)	(0.010)
R^2	0.10	0.11	0.08	0.07	0.07	0.06
Ν	6,198	8,208	5,992	8,024	5,941	7,972
F test, p-values						
$H_a=Rain + T \times Rain; H_a = 0$	0.003	0.649	0.000	0.558	0.417	0.946
$H_b=Temp + T x Temp; H_b = 0$	0.019	0.757	0.001	0.953	0.610	0.610
$H_a (1/3/5) = H_a (2/4/6)$		0.014		0.004		0.473
$H_b (1/3/5) = H_b (2/4/6)$		0.023		0.004		0.519

Table A2. Intent-to-treat and heterogeneous effects of cash transfer on migration, current climate anomalies, village-fixed effects

Notes: Unit of analysis is person-year. T abbreviates treatment. Village-clustered standard errors reported. All specifications include individual and household explanatory variables, as well as village and survey fixed effects. The notation H_a (1/3/5) indicates equation H_a using the estimates from models 1, 3, or 5, respectively, depending on the table column. Thus, H_a (1/3/5)= H_a (2/4/6) is testing whether the expression H_a is equal for men and women using the estimates from models (1/3/5) and (2/4/6), respectively, depending on the table column. * p < 0.1 ** p < 0.05; *** p < 0.01.

	Any move		Move	es near	Мо	Moves far		
	(1)	(2)	(3)	(4)	(5)	(6)		
	Men	Women	Men	Women	Men	Women		
Т	-0.016	0.006	-0.017	0.005	-0.002	0.003		
	(0.012)	(0.009)	(0.008)**	(0.005)	(0.009)	(0.008)		
T x Rain	0.008	0.013	0.023	0.020	-0.012	-0.005		
	(0.019)	(0.016)	(0.014)	(0.010)**	(0.017)	(0.012)		
T x Temp	-0.016	0.001	-0.034	-0.004	0.014	0.007		
	(0.017)	(0.013)	(0.013)***	(0.009)	(0.012)	(0.010)		
Rain	0.078	0.007	0.048	-0.009	0.034	0.017		
	(0.022)***	(0.012)	$(0.014)^{***}$	(0.008)	(0.018)*	(0.009)**		
Temp	-0.059	-0.004	-0.033	0.002	-0.032	-0.009		
	(0.018)***	(0.010)	(0.013)**	(0.008)	(0.014)**	(0.007)		
R^2	0.07	0.09	0.04	0.06	0.04	0.05		
Ν	6,198	8,208	5,992	8,024	5,941	7,972		
F test, p-values								
H _a =Rain + T x Rain; H _a =0	0.000	0.139	0.000	0.231	0.133	0.181		
$H_b=Temp + T x Temp; H_b = 0$	0.000	0.867	0.000	0.769	0.255	0.255		
$H_a (1/3/5) = H_a (2/4/6)$		0.009		0.000		0.593		
$H_b (1/3/5) = H_b (2/4/6)$		0.007		0.000		0.460		

Table A3. Intent-to-treat and heterogeneous effects of cash transfer on migration, current climate anomalies, rainfall-pixel clustered standard errors

Notes: Unit of analysis is person-year. T abbreviates treatment. Rainfall-pixel clustered standard errors reported. All specifications include individual and household explanatory variables, as well as district and survey fixed effects. The notation H_a (1/3/5) indicates equation H_a using the estimates from models 1, 3, or 5, respectively, depending on the table column. Thus, H_a (1/3/5)= H_a (2/4/6) is testing whether the expression H_a is equal for men and women using the estimates from models (1/3/5) and (2/4/6), respectively, depending on the table column. * p<0.1 ** p<0.05; *** p<0.01.

	Any move		Move	es near	Mov	Moves far	
	(1)	(2)	(3)	(4)	(5)	(6)	
	Men	Women	Men	Women	Men	Women	
Т	-0.016	0.006	-0.017	0.005	-0.002	0.003	
	(0.011)	(0.010)	(0.007)**	(0.006)	(0.011)	(0.008)	
T x Rain	0.008	0.013	0.023	0.020	-0.012	-0.005	
	(0.022)	(0.021)	(0.012)*	(0.011)*	(0.017)	(0.014)	
T x Temp	-0.016	0.001	-0.034	-0.004	0.014	0.007	
	(0.023)	(0.015)	(0.018)*	(0.012)	(0.014)	(0.009)	
Rain	0.078	0.007	0.048	-0.009	0.034	0.017	
	(0.021)***	(0.014)	(0.013)***	(0.008)	(0.018)*	(0.010)	
Temp	-0.059	-0.004	-0.033	0.002	-0.032	-0.009	
	(0.016)***	(0.012)	$(0.010)^{***}$	(0.008)	(0.013)**	(0.009)	
R^2	0.07	0.09	0.04	0.06	0.04	0.05	
Ν	6,198	8,208	5,992	8,024	5,941	7,972	
F test, p-values							
H _a =Rain + T x Rain; H _a =0	0.001	0.249	0.002	0.286	0.076	0.303	
$H_b=Temp + T x Temp; H_b = 0$	0.007	0.863	0.002	0.797	0.243	0.243	
$H_a (1/3/5) = H_a (2/4/6)$		0.045		0.019		0.630	
$H_b (1/3/5) = H_b (2/4/6)$		0.051		0.016		0.467	

Table A4. Intent-to-treat and heterogeneous effects of cash transfer on migration, current climate anomalies, temperature-pixel clustered standard errors

Notes: Unit of analysis is person-year. T abbreviates treatment. Temperature-pixel clustered standard errors reported. All specifications include individual and household explanatory variables, as well as district and survey fixed effects. The notation H_a (1/3/5) indicates equation H_a using the estimates from models 1, 3, or 5, respectively, depending on the table column. Thus, H_a (1/3/5)= H_a (2/4/6) is testing whether the expression H_a is equal for men and women using the estimates from models (1/3/5) and (2/4/6), respectively, depending on the table column. * p<0.1 ** p<0.05; *** p<0.01.

	Any	v move	Move	s near	Mov	es far
	(1)	(2)	(3)	(4)	(5)	(6)
	Men	Women	Men	Women	Men	Women
Panel A: Lagged Climate Anom	alies					
Т	-0.009	0.009	-0.006	0.004	-0.003	0.007
	(0.013)	(0.009)	(0.010)	(0.006)	(0.008)	(0.007)
T x Rain	-0.005	0.002	-0.009	0.001	0.003	0.003
	(0.012)	(0.007)	(0.008)	(0.005)	(0.010)	(0.006)
T x Temp	-0.013	0.018	-0.029	-0.001	0.017	0.024
	(0.031)	(0.020)	(0.023)	(0.013)	(0.022)	(0.017)
Rain	0.003	0.001	-0.000	-0.002	0.001	0.003
	(0.010)	(0.006)	(0.006)	(0.004)	(0.008)	(0.005)
Temp	-0.080	-0.024	-0.051	-0.008	-0.040	-0.021
-	(0.035)**	(0.016)	(0.027)*	(0.012)	(0.023)*	(0.013)
R^2	0.07	0.09	0.04	0.06	0.04	0.05
F test, p-values						
$H_a=Rain + T x Rain; H_a=0$	0.697	0.491	0.099	0.677	0.426	0.170
$H_b=Temp + T x Temp; H_b = 0$	0.006	0.773	0.003	0.467	0.232	0.232
$H_a (1/3/5) = H_a (2/4/6)$		0.463		0.260		0.823
$H_b (1/3/5) = H_b (2/4/6)$		0.032		0.018		0.301
Panel B: Positive vs. Negative I	Lagged Climate	Anomalies				
Т	0.005	0.002	0.004	0.004	0.002	-0.001
	(0.015)	(0.011)	(0.013)	(0.007)	(0.010)	(0.007)
T x Rain-	-0.065	0.042	-0.031	0.011	-0.040	0.035
	(0.049)	(0.031)	(0.035)	(0.021)	(0.034)	(0.026)
T x Rain+	-0.019	0.009	-0.015	0.003	-0.005	0.008
	(0.017)	(0.009)	(0.011)	(0.006)	(0.015)	(0.008)
T x Temp-	0.018	-0.021	0.025	-0.004	-0.008	-0.022
*	(0.040)	(0.024)	(0.029)	(0.015)	(0.029)	(0.020)
T x Temp+	-0.147	0.086	-0.215	-0.087	0.044	0.154

Table A5. Intent-to-treat and heterogeneous effects of cash transfer on migration, lagged climate anomalies

	(0.254)	(0.203)	(0.189)	(0.126)	(0.151)	(0.148)
Rain-	0.028	-0.023	0.002	0.008	0.031	-0.028
	(0.039)	(0.023)	(0.028)	(0.018)	(0.032)	(0.016)*
Rain+	0.009	0.000	-0.001	-0.000	0.009	0.001
	(0.016)	(0.008)	(0.010)	(0.005)	(0.014)	(0.007)
Temp-	0.073	0.010	0.050	0.001	0.034	0.012
	(0.040)*	(0.019)	(0.031)	(0.013)	(0.028)	(0.016)
Temp+	-0.080	-0.281	-0.011	-0.081	-0.043	-0.227
	(0.210)	(0.129)**	(0.158)	(0.087)	(0.119)	(0.080)***
R^2	0.07	0.09	0.04	0.06	0.04	0.05
F test, p-values						
H _a =T+T x Rain-; H _a =0	0.337	0.422	0.371	0.250	0.711	0.774
H _b =T+T x Rain+; H _b =0	0.331	0.210	0.057	0.519	0.686	0.152
$H_c=T+T \times Temp-; H_c=0$	0.016	0.580	0.012	0.829	0.208	0.208
H _d =T+T x Temp+; H _d =0	0.092	0.213	0.027	0.073	0.995	0.995
$H_a (1/3/5) = H_a (2/4/6)$		0.273		0.179		0.681
$H_b (1/3/5) = H_b (2/4/6)$		0.150		0.059		0.612
$H_{c} (1/3/5) = H_{c} (2/4/6)$		0.029		0.019		0.198
$H_d (1/3/5) = H_d (2/4/6)$		0.821		0.576		0.479
Ν	6,198	8,208	5,992	8,024	5,941	7,972

Notes: Unit of analysis is person-year. T abbreviates treatment. Rain+ and Temp+ use the absolute values of z-scores that are greater than or equal to zero. Rain- and Temp- use the absolute values of z-scores that are less than zero. Village-clustered standard errors reported. All specifications include individual and household explanatory variables, as well as district and survey fixed effects. The notation H_a (1/3/5) indicates equation H_a using the estimates from models 1, 3, or 5, respectively, depending on the table column. Thus, H_a (1/3/5)= H_a (2/4/6) is testing whether the expression H_a is equal for men and women using the estimates from models (1/3/5) and (2/4/6), respectively, depending on the table column. * p<0.1 ** p<0.05; *** p<0.01.

	Any	y move	Move	es near	Mov	Moves far	
	(1)	(2)	(3)	(4)	(5)	(6)	
	Men	Women	Men	Women	Men	Women	
Panel A: Contemporaneous Clima	ate Levels						
Т	0.040	-0.027	0.112	0.039	-0.057	-0.142	
	(0.409)	(0.274)	(0.335)	(0.196)	(0.244)	(0.170)	
T x Rain	-0.000	0.000	0.001	0.000	-0.001	0.000	
	(0.001)	(0.000)	(0.001)	(0.000)	(0.000)	(0.000)	
T x Temp	-0.002	0.001	-0.007	-0.002	0.004	0.006	
-	(0.018)	(0.012)	(0.015)	(0.008)	(0.010)	(0.007)	
Rain	0.002	0.000	0.001	-0.000	0.001	0.000	
	(0.001)***	(0.000)	(0.000)	(0.000)	(0.000)***	(0.000)	
Temp	-0.000	0.015	0.006	0.006	-0.006	0.009	
1	(0.011)	(0.005)***	(0.007)	(0.003)*	(0.007)	(0.004)**	
R^2	0.07	0.09	0.04	0.06	0.05	0.05	
F test, p-values							
$H_a = Rain + T x Rain; H_a = 0$	0.036	0.842	0.119	0.871	0.040	0.702	
H_{b} =Temp + T x Temp; H_{b} =0	0.888	0.142	0.969	0.540	0.795	0.795	
$H_a(1/3/5) = H_a(2/4/6)$		0.104		0.162		0.177	
$H_b(1/3/5) = H_b(2/4/6)$		0.242		0.672		0.124	
Panel B: Lagged Climate Levels							
T	-0.378	-0.011	-0.366	0.097	-0.068	-0.175	
	(0.433)	(0.293)	(0.338)	(0.201)	(0.257)	(0.194)	
T x Rain	-0.000	-0.000	0.000	-0.000	-0.000	-0.000	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
T x Temp	0.017	0.001	0.015	-0.003	0.004	0.008	
1	(0.018)	(0.012)	(0.014)	(0.008)	(0.011)	(0.008)	
Rain	0.001	0.000	-0.000	0.000	0.001	0.000	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)**	(0.000)	
Temp	-0.005	0.013	-0.000	0.006	-0.005	0.007	

Table A6. Intent-to-treat and heterogeneous effects of cash transfer on migration, contemporaneous and lagged climate levels

	(0.014)	(0.005)**	(0.008)	(0.003)*	(0.009)	(0.005)
R^2	0.07	0.09	0.04	0.06	0.04	0.05
F test, p-values						
$H_a=Rain + T x Rain; H_a = 0$	0.269	0.995	0.934	0.464	0.105	0.397
$H_b=Temp + T x Temp; H_b = 0$	0.331	0.207	0.172	0.707	0.812	0.812
$H_a (1/3/5) = H_a (2/4/6)$		0.185		0.617		0.096
$H_b (1/3/5) = H_b (2/4/6)$		0.727		0.155		0.100
Ν	6,198	8,208	5,992	8,024	5,941	7,972

_

Notes: Unit of analysis is person-year. T abbreviates treatment. All specifications include individual and household explanatory variables, as well as district and survey fixed effects. The notation H_a (1/3/5) indicates equation H_a using the estimates from models 1, 3, or 5, respectively, depending on the table column. Thus, H_a (1/3/5)= H_a (2/4/6) is testing whether the expression H_a is equal for men and women using the estimates from models (1/3/5) and (2/4/6), respectively, depending on the table column. * p<0.1 ** p<0.05; *** p<0.01.

Variable	R _t	T _t	R _{t-1}	T _{t-1}
R _t	1.00			
T _t	0.44	1.00		
R _{t-1}	0.16	0.34	1.00	
			-	
T _{t-1}	0.18	-0.08	0.59	1.00

Table A7. Pearson correlation coefficients

Notes: R and T refer to rainfall and temperature z-scores, respectively. The subscripts t and t-1 denote 0- and 1-year lagged variables.

	(1)
	Moves near one-year lag
Т	-0.028
	(0.013)**
T x Rain	0.029
	(0.018)
T x Temp	-0.036
	(0.016)**
T x Lagged Rain	-0.002
	(0.010)
T x Lagged Temp	-0.036
	(0.026)
Rain	0.056
	(0.016)***
Temp	-0.016
	(0.016)
Lagged Rain	-0.019
	(0.010)*
Lagged Temp	-0.041
	(0.025)
R^2	0.05
F statistic, p-values	
H _a =Rain + T x Rain; H _a =0	0.000
$H_b=Temp + T x Temp; H_b = 0$	0.001
H_c =Lagged Rain + T x Lagged Rain; H_c =0	0.020
H_d =Lagged Temp + T x Lagged Temp; H_d =0	0.001
Ν	5,992

Table A8. Intent-to-treat and climate heterogeneous effects of cash transferon male migration, by temporal differences in climate exposure

Notes: Unit of analysis is person-year. T abbreviates treatment. Village-clustered standard errors reported. All specifications include individual and household explanatory variables, as well as district and survey fixed effects. * p<0.1 ** p<0.05 *** p<0.01.

-

	Any move		Moves near		Moves far	
	(1)	(2)	(3)	(4)	(5)	(6)
	Men	Women	Men	Women	Men	Women
Т	-0.021	0.003	-0.028	-0.003	0.003	0.007
	(0.016)	(0.009)	(0.010)***	(0.008)	(0.013)	(0.007)
T x Rain	0.002	0.005	0.009	0.008	-0.005	-0.002
	(0.011)	(0.008)	(0.008)	(0.005)	(0.010)	(0.006)
T x Temp	-0.027	0.002	-0.050	-0.007	0.017	0.012
	(0.026)	(0.015)	(0.020)**	(0.012)	(0.020)	(0.011)
Rain	0.045	0.007	0.028	-0.001	0.019	0.009
	(0.013)***	(0.008)	(0.010)***	(0.005)	(0.011)	(0.006)
Temp	-0.067	-0.010	-0.035	-0.002	-0.036	-0.013
	(0.028)**	(0.013)	(0.020)*	(0.010)	(0.022)	(0.009)
R^2	0.07	0.09	0.04	0.06	0.04	0.05
Ν	6,198	8,208	5,992	8,024	5,941	7,972
F statistic, p-values						
H _a =Rain + T x Rain; H _a =0	0.000	0.139	0.000	0.191	0.077	0.196
H _b =Temp + T x Temp; H _b =0	0.000	0.637	0.000	0.420	0.176	0.176
$H_a (1/3/5) = H_a (2/4/6)$		0.021		0.005		0.541
$H_b(1/3/5) = H_b(2/4/6)$		0.006		0.001		0.369

Table A9. Intent-to-treat and heterogeneous effects of cash transfer on migration, current wet season climate anomalies

Notes: Unit of analysis is person-year. Village-clustered standard errors reported. * p < 0.1 ** p < 0.05; *** p < 0.01. District and survey fixed effects included. The wet season is defined as December through March.

		Poor			Less Poo	r
	Control	Treated	Difference	Control	Treated	Difference
Age is 19 to 35 years old	0.451	0.496	0.05	0.590	0.567	-0.02
	(0.022)	(0.023)	[0.16]	(0.022)	(0.021)	[0.51]
Age is 36 to 55 years old	0.333	0.291	-0.04	0.262	0.292	0.03
	(0.021)	(0.020)	[0.11]	(0.020)	(0.019)	[0.26]
Age is greater than 55 years old	0.023	0.026	0.00	0.026	0.013	-0.01
	(0.007)	(0.007)	[0.71]	(0.007)	(0.005)	[0.13]
Number of people ages 6 - 12	1.725	1.652	-0.07	1.221	1.325	0.10
	(0.052)	(0.052)	[0.53]	(0.051)	(0.052)	[0.43]
Number of people ages 13 - 18	0.946	0.961	0.02	0.626	0.792	0.17
	(0.048)	(0.046)	[0.88]	(0.041)	(0.041)	[0.08]
Number of people ages 19 - 35	1.315	1.539	0.22	1.600	1.558	-0.04
	(0.038)	(0.039)	[0.01]	(0.046)	(0.041)	[0.71]
Number of people ages 36 - 55	0.845	0.754	-0.09	0.646	0.690	0.04
	(0.036)	(0.035)	[0.20]	(0.036)	(0.035)	[0.51]
Number of people ages 56 - 69	0.060	0.083	0.02	0.097	0.054	-0.04
	(0.012)	(0.014)	[0.47]	(0.014)	(0.011)	[0.14]
Mean of 12-month rainfall, 1981-2009	74.688	76.189	1.50	75.916	77.646	1.73
	(0.478)	(0.594)	[0.59]	(0.525)	(0.531)	[0.52]
SD of 12-month rainfall, 1981- 2009	15.187	15.632	0.44	16.910	16.828	-0.08
	(0.161)	(0.177)	[0.58]	(0.172)	(0.186)	[0.93]
Mean of 12 month-	23.517	23.579	0.06	23.518	23.591	0.07
temperatures, 1981-2009						
L ,	(0.023)	(0.018)	[0.54]	(0.024)	(0.017)	[0.48]
SD of 12 month-temperatures, 1981-2009	0.501	0.507	0.01	0.535	0.522	-0.01
	(0.005)	(0.005)	[0.81]	(0.004)	(0.004)	[0.53]
Kaputa	0.445	0.421	-0.02	0.264	0.327	0.06
	(0.022)	(0.022)	[0.84]	(0.020)	(0.020)	[0.54]
Shangombo	0.412	0.429	0.02	0.364	0.321	-0.04
č	(0.022)	(0.022)	[0.89]	(0.021)	(0.020)	[0.70]
Ν	517	492		503	554	

Table A10. Average individual and household baseline characteristics for males by treatment and wealth status

Notes: P values in brackets for t tests of difference in means. F statistic testing joint significance of all variables for poor sample is 1.35 (p-value=0.20). F statistic testing joint significance of all variables for less poor sample is 1.12 (p-value=0.35).