Lemma 1 The borrowing limit for a generation-(t - 1) agent, \overline{b}_{t-1} , is increasing in x_t , his inheritance. That is, agents with bigger future inheritance are allowed to borrow more.

Proof. Applying the implicit function theorem on equation (14), we get

$$\frac{\partial \bar{b}_{t-1}}{\partial x_t} = -\frac{\frac{\partial H}{\partial x_t}}{\frac{\partial H}{\partial b_{t-1}} \left| b_{t-1} = \bar{b}_{t-1}} \right| = -\frac{\frac{1}{\omega_m + f(\bar{b}_{t-1}) + x_t - \bar{b}_{t-1}R - \hat{s}_t} - \frac{1}{\omega_m + f(\bar{b}_{t-1}) + x_t}}{\frac{\partial H}{\partial b_{t-1}} \left| b_{t-1} = \bar{b}_{t-1}}$$

It is obvious that the numerator of $\partial \bar{b}_{t-1}/\partial x_t$ is positive. Thus the sign of $\partial \bar{b}_{t-1}/\partial x_t$ is equivalent to the sign of $-\partial H/\partial b_{t-1}\Big|_{b_{t-1}=\bar{b}_{t-1}}$. Notice that H is continuously differentiable with b_{t-1} . As stated earlier, we have H(0) > 0 and $H(\infty) < 0$. Hence H must intersect the horizontal axis from above at least once. Moreover, if there are multiple intersections, it must be true that the curve H will intersect the horizontal axis from above at the first and the last intersection points. Since $H \ge 0$ holds for all $b_{t-1} \in [0, \bar{b}_{t-1}]$, \bar{b}_{t-1} corresponds to the first and the smallest intersection point. Since H intersects the horizontal axis from above at \bar{b}_{t-1} , it must be that $\partial H/\partial b_{t-1}\Big|_{b_{t-1}=\bar{b}_{t-1}} < 0$. Hence, $\partial \bar{b}_{t-1}/\partial x_t > 0$.