6 Online Appendix (Not Intended for Publication)

6.1 Additional Simulation Results

6.1.1 Loss Function Surfaces for Alternate Gain Values

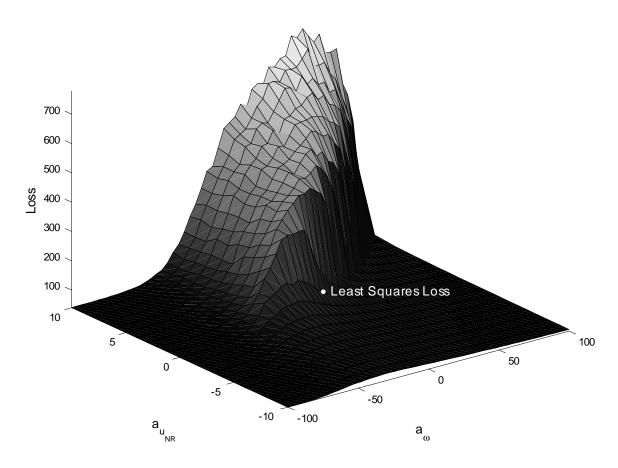


Figure 13. Loss Function $(L(x_t), 0.0025 \text{ gain}).$

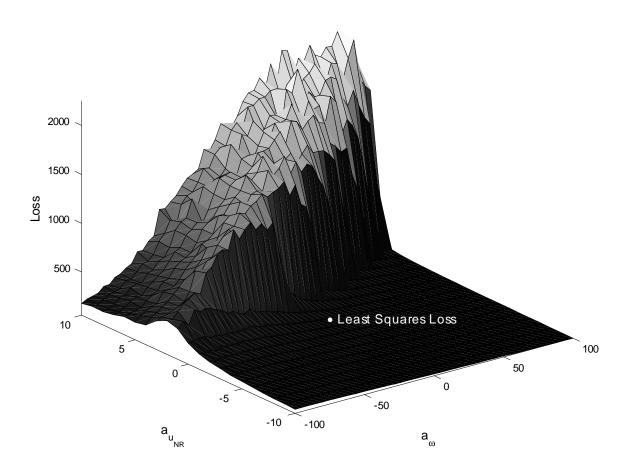


Figure 14. Loss Function $(L(x_t), 0.1 \text{ gain}).$

6.1.2 Additional Time Paths

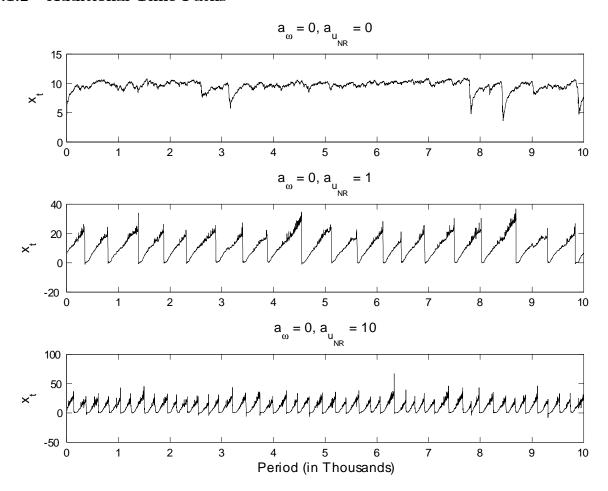


Figure 15. Targeted Inflation $(a_{\omega} = 0, a_{u_{NR}} > 0)$.

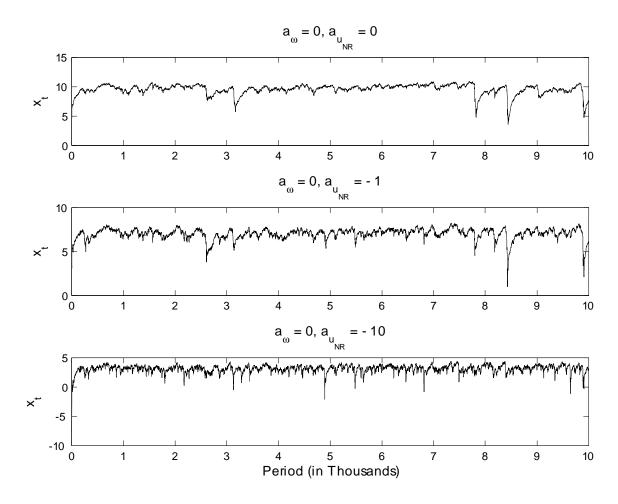


Figure 16. Targeted Inflation $(a_{\omega} = 0, a_{u_{NR}} < 0)$.

6.2 On the Value of the Precautionary Parameter

Let a_t be the slope precautionary parameter employed at time t, and let l_t be the resulting loss. We define

$$L_t(a) = \sum_{s=0}^t l_s I(a_s = a)$$

as the total loss incurred as of time t when the precautionary parameter was a, where $I(\phi)$ is an indicator function that is 1 if ϕ is true and 0 otherwise. We define

$$L_t^2(a) = \sum_{s=0}^t l_s^2 I(a_s = a)$$

as the total squared loss incurred as of time t when the precautionary parameter was a and

$$n_t(a) = \sum_{s=0}^t I(a_s = a)$$

as the number of periods as of time t when the precautionary parameter was a. Thus the average loss as of time t when the parameter was a will be

$$\Lambda_t(a) = \frac{L_t(a)}{n_t(a)},$$

and the standard error estimate will be

$$\sigma_t(a) = \sqrt{\frac{\frac{L_t^2(a)}{n} - \Lambda_t(a)^2}{n_t(a)}}.$$

Also define

$$Z_t(a,b) = \frac{\Lambda_t(a) - \Lambda_t(b)}{\sqrt{\sigma_t(a)^2 + \sigma_t(a)^2}}$$

to be the Z score for comparison of $L_t(a)$ with $L_t(b)$.

Let T > 0 be an experimental time span. Let $\varepsilon > 0$ be the absolute value of the optimal precautionary parameter according to Section 2.2 and let $\phi^* > 0$ be the critical value of the

Z score for comparing $L_t(a)$ at different values of a. We propose the following algorithm:

- 1. If the optimal parameter is \widetilde{a} , employ it for T periods, $\widetilde{a} \varepsilon$ for T periods, and $\widetilde{a} + \varepsilon$ for T periods.
- 2. If $-\phi^* < Z_t(\widetilde{a}, \widetilde{a} \varepsilon) < \phi^*$ and $-\phi^* < Z_t(\widetilde{a}, \widetilde{a} + \varepsilon) < \phi^*$, there is no significant evidence so return to Step 1.
- 3. If $Z_t(\widetilde{a}, \widetilde{a} \varepsilon) \leq -\phi^*$ and $Z_t(\widetilde{a}, \widetilde{a} + \varepsilon) \leq -\phi^*$, conclude a minimum, and employ \widetilde{a} until $\Lambda_t(\widetilde{a}) > \Lambda_t(\widetilde{a} \varepsilon)$ or $\Lambda_t(\widetilde{a}) > \Lambda_t(\widetilde{a} + \varepsilon)$, in which case go back to Step 1 and recheck that \widetilde{a} is a minimum.
- 4. If $Z_t(\widetilde{a}, \widetilde{a} \varepsilon) > \phi^*$ or $Z_t(\widetilde{a}, \widetilde{a} + \varepsilon) > -\phi$, conclude that \widetilde{a} is not a minimum. Let

$$a' = \begin{cases} \widetilde{a} - \varepsilon & \Lambda_t(\widetilde{a} - \varepsilon) < \Lambda_t(\widetilde{a} + \varepsilon) \\ \widetilde{a} + \varepsilon & \Lambda_t(\widetilde{a} - \varepsilon) \ge \Lambda_t(\widetilde{a} + \varepsilon) \end{cases}.$$

If $\Lambda_t(\tilde{a}+\varepsilon)-2\Lambda_t(\tilde{a})+\Lambda_t(\tilde{a}-\varepsilon)>0$, the loss function is locally convex and

$$a'' = a' - \varepsilon \frac{\Lambda_t(\widetilde{a} + \varepsilon) - \Lambda_t(\widetilde{a} - \varepsilon)}{\Lambda_t(\widetilde{a} + \varepsilon) - 2\Lambda_t(\widetilde{a}) + \Lambda_t(\widetilde{a} - \varepsilon)}$$

is the result of taking a Newton step from a'. Employ the parameter a'' for a maximum of T periods as long as $Z_t(a'',a') \in (-\phi^*,\phi^*)$. If $Z_t(a'',a') \leq -\phi^*$ (or $Z_t(a'',a') < 0$ after T periods), return to step 1 with $\tilde{a} = a''$.

5. Let $\widetilde{\varepsilon} = \mp \varepsilon$ if $a' \leq \widetilde{a}$. Try $a' + \widetilde{\varepsilon}$ for a maximum of T periods as long as $Z_t(a' + \widetilde{\varepsilon}, a') \in (-\phi^*, \phi^*)$. If $Z_t(a' + \widetilde{\varepsilon}, a') \geq \phi^*$ (or $Z_t(a' + \widetilde{\varepsilon}, a') \geq 0$ after T periods), return to step 1

with $\widetilde{a} = a'$. If $Z_t(a' + \widetilde{\varepsilon}, a') \le -\phi^*$ (or $Z_t(a' + \widetilde{\varepsilon}, a') < 0$ after T periods), let $a' = a' + \widetilde{\varepsilon}$, double $\widetilde{\varepsilon}$, and repeat step 5.