9 Appendix

Section 3: First Best Allocations.
Proof of Lemma 1. a. Q (x!, i) is (at least once) continuously differentiable in

x', with Q (0, ) = 400, and Q (1, ) = —oo. By the Intermediate Value Theorem

8Q(x1,,u)
Ox!

a value z € (0,1) such that Q(z,u) = 0 exists and is unique, since
pu” (1) + (1 —p)u” (1 —2') < 0 for all p € (0,1) and z' € [0,1]. b. By the

Implicit Function Theorem, z (1) is (at least once) continuously differentiable in p,

BQ(:cl,u) 1
with 82(5) = — ity llet=s > 0, since %ﬂw) =o' (') + o (1 —2') > 0 for all
20(alu)

p € (0,1) and z' € [0,1]; ¢. 2(0) = 0 and 2 (1) = 1, since a type with zero

weight in the objective function should be assigned zero consumption at an optimum;

) =

Section 4: Non-Monetary Regime.

Q (x%, [ (z}) — v/ (1 —2})] =0« 2} =1— 1z}, hence, 2 (%) = %.I

D=
D=

The proof of Lemma 2 requires some definitions and three preparatory Lemmas.
Although only values of y > % are feasible, it will be more convenient to consider

y € [0,1], as a first step. Then, we will restrict y to the feasible interval [%, 1}. Let

the function ¥ (y, 5) : [0,1] x (0,1) — R be defined as

U (y,8) = fr (B) [u(l —y) —u(0)] —gr (8) [u(l) —u(y)], (24)
i.e. as the difference between the LHS and the RHS of (9). Define also yr (5) : (0,1) —
[0, 1] as the function that explicitly relates pairs of values (y, ) € [0, 1] x (0, 1) such
that Ur (y,5) = 0, for any given T. Define the function yr (5) : (0,1) — [%, 1}, as
Ur (B) = max {yr (B), 3}, for any g € (0,1) and T, i.e. the restriction of yr (8) to
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feasible values in [%, 1}.
Lemma Al. a. For any B € (0,1) and T > 0, there ezists exactly one value
€1[0,1) s.t. ¥r(y,B)=0. b. For any T > 0, the function yr (5) is (at least twice)
continuously differentiable in (3, with 8yT wrB) () for all B € (0,1).
Proof. a. The function ¥r(y,3) : [0,1] x (0,1) — R is (at least twice)

continuously differentiable in y. Observe that, for any 7' > 0, the following are

true: i. Wy (0,8) = =222 (1) —w(0)] < 0, ii. Wp(1,8) = 0, iii. 2zld

1+ oy
B(1-87 T+2 ) 2
% 5 )u (1—y)+ ﬁﬁﬁ u (y), iv. a\pgg/o,g) = 400, wgy B = oo, v. TLzWA ‘Igy(yﬁ)

g7 2
%u"(l —y) + 1;?;: u” (y) < 0. Hence, for any g € (0,1) and T" > 0, there is

exactly one y € [0,1) s.t. Ur (y,5) = 0. b. The derivative Ng—gj”ﬁ) evaluated at any

(y,B) € (0,1) x (0,1) such that ¥r (y,3) = 0 is given by

gr (B () —uy) | LW Yoy

1 u'(1-y)
Ty ~ Tu(l—y)—u(0)]

since u(lu)—u(y) > for any y € (0,1) by strict concavity of the

utility function. Therefore, the Implicit Function Theorem applies and yz (5) is (at

least twice) continuously differentiable in 3. The derivative =5 5

evaluated at any

(y,B) € (0,1) x (0,1) such that ¥r (y, 3) = 0 is given by

gr (8) [u (1) — u (y) [jﬁ Eg; & Egﬁ] -0, (26)

T T
since fr.(8) = (2 —1) 77 > Y 257" = gi(B) and gr (B) = 5
j=1 j=0
AT
—5(11_52 ) _ fr (B). Thus, 8y§ﬂ < 0, for any 5 € (0,1) and T > 0, since it is given

by the ratio (26) to (25) changed of sign, as an application of the Implicit Function
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Theorem.H

There are two possible cases, T infinite or finite. Case 1. T = oo. Define
8= % € (0,1).

Lemma A2. T' (f) = [Uso (B) , 1] for all 5 € (0,1), where Yu () is continuous,
and

i Joo (B) = 5, if B> B;

i §oo (B) = oo (B) € (5,1), if B < B.

Proof. The value é satisfies

o< (34) - 2 b E) o] (] -

Thus, Y (8) = 3. By Lemma A1, y, (8) is (at least twice) continuously differentiable

and strictly decreasing function for any 8 € (0,1) . Hence, we have that for 3 € (0, 3),

Yo (B) > 3, ﬂl_igl_yoo (8) = 3 and for 8 € [8,1), yo (B) < 3. By definition §r (8) =

max {yT (B), %} Thus, we have
3 it >4

Yoo (B) = :
Yoo (B) it p<p

which is continuous in £ € (0,1), since lim yo (8) = 5.1

B—pB~
Case 2. T finite, 0 < T < oo. Notice that T is defined in the text as T =
{%J € N, where, for any w € R, |w| denotes the largest natural number
not greater than w.
Lemma A3. I'r (8) = [yr (B),1] for all B € (0,1), where yr (B) is continuous,

and
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a. if T >T, there exists a unique (3, € (0,1) such that:
i gr(8) =35, for B> B,;

ii. gr (B) = yr (B) € (5,1), for B< B,;

b. if T<T, forall B €(0,1), Jr (B) =yr (B) € (1,1).

Proof. a. Evaluate U7 (y,3) at y = 5 and 8 — 1, obtaining éirri\IJT (3.8) =
—

(D) [u(3) —uw©@)] = (£ +1) [u(@)—u(})]. SinceT >T, %{l_}ni\IJT (3,8) > 0. Eval-

2

uate ¥r (y,8) at y = 5 and 8 — 0, obtaining %LI%QJT (%,B) = — [u(l) —u (%)] < 0.

Since Uy (%,ﬁ) is continuous in [, by the Intermediate Value Theorem there ex-

ists a value 8, € (0,1) that solves Wr (3,8) = 0. The derivative B\PT(,)(;’B) =

fr(B8) [u(3) —u(0)] — g7 (B) [u(1) —u(3)] > 0, since f7.(8) > g7 (B) and u (3) —
u(0) > u (1) —u (3) by strict concavity of the utility function. Hence, 8  1s unique. i.

By Lemma A1, yr (3) is continuously differentiable with lim yr (8) = %, lim yr (8) =

B—B B—0t
1 and 8y8T—/3(,’8) < 0. Hence, for g € [@TJ), yr(B) < 5 and gr(8) = 3. 1. If
B e (O,QT>, once again by Lemma Al, yr (3) € (%, 1) and yr (8) = yr (B). There-

fore, by definition of 77 (3),

I S hy
T - )

yr(8),  ifB<pB,

which is continuous in # € (0,1), since lim yr (f) = % b. Since T < T,y = % never
BB

satisfies the participation constraint for any g € (0,1). A solution of U7 (y,) = 0
iny € (%, 1) exists for any 5 € (0,1), by the Intermediate Value Theorem, and is

unique by the same argument used in part a. By Lemma Al, yr (f) is continuously
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differentiable in 8 with ﬂligl_yT (B) > %, 51LI(I)1+yT (6) =1 and ayg—éﬂ) < 0. Hence, for
all B € (0,1), yr (B) € (%, 1). Therefore, by definition of yr (8), yr (8) = yr (B8), for
all € (0,1).1

Proof of Lemma 2. With 7" = 0, I'y () = {1}, hence, in this case the statement
follows immediately. Consider 7' > 0. By Lemmas A2-A3, for any § € (0,1) and
T > 0, I'r(B8) = [yr(B),1] is a non-empty, closed and bounded interval of the
real line, hence, I'r () is non-empty, compact and convex-valued. For any 7" > 0,
the upper boundary of I'r (f) is constant and the lower boundary, yr (3), varies
continuously with 3, by the previous Lemmas A2-A3, hence the correspondence I' ()
is continuous in £.1

The next Lemma is the formal proof of the statement made in the text that the
set of sustainable allocations becomes larger for larger values of 1. Define, for given
T, Gr(I'r) = {(y.8) € [5,1] x(0,1) | y € I'r (B)}, the graph of the correspondence
Ir.

Lemma A4. Gr (I'r) C Gr (I'1v) C Gr (L), for any finite T', T with T > T.

Proof. (24) can be rewritten as ¥r (y, 3) =

fr (8)
gr (B)

gr (P) { [u(l—y) —u(0)] —[u(l) —u (y)]} > 0. (27)

The term gr (8) = 1;?;;2 is clearly increasing in 7. The term g—% =0 (11_557;2)

< [, and approaches § when T' — oo. Moreover, for any § € (0,1) and any

’ : g7 -7
T',T such that T' > T > 0, &8 < [ since B(liﬁ—%z) < 5(—1_6 ) <

T (1 — 52) (1 — 6T/_T> > (0. Hence, the LHS of (27) is strictly higher for larger T,
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for any given [ and y.H

Section 5: Monetary Regime.

Lemma A5. An allocation T € [1,1) that solves (18) ezists and is unique for

every m € [ —1,00) and B € (0,1).
Proof. ¢ (z,, ) is (at least once) continuously differentiable in x, with ® (1, 7, 3)

—00, and P (%,71’,5) = (z) (1 — —) > 0. Hence, by the Intermediate Value The-

orem, there exists a value x € [%, 1) that solves (18) for any m € [ — 1,00) and § €

0®(x,m,B) _ o’ (:C)—i— B

(0,1). Moreover, 7 is unique for any 7 and 3, since =5~ mu"(1—x2) <

0forall T €[8—1,00), € (0,1) and z € [1,1).W

Lemma A6. a. The function T (, ) is at least once continuously differentiable
inm; b.i. T(f—1,08)= %, . 7}1_)12105 (m,8) =1 for any B € (0,1); c. the derivative
w > 0 for any B € (0,1).

Proof. Part a. and part c., follow from the Implicit Function Theorem, since

o0(emB) ) Pl o= L ou'(1-7F) > 0. Part bi.

(147)

7 < 0 from Lemma A5 and
is obvious from inspection of (18) and b. ii. from the Inada condition.H

Proof of Lemma 3. The set I' (0, 8) = [Z (0, 3), 1] is non-empty, since 7 (0, 8) <
1 for any 8 € (0, 1), compact, convex-valued and continuous in £ since 7 (0, 3) is con-
tinuous in J by Lemma A6. The set ( (8—1,8)\T (0, )) [1.1]\[Z(0,8),1] =
[%,f((),ﬁ)) is non-empty, since z (0, 8) > %, by (18) with = = 0, for any S € (0,1).

The set I'r (8) = [yr (£),1] is non-empty, compact, convex-valued and continuous

in § for any 7" > 0 by Lemma 2. The set <f (B — 1,ﬁ)\f(0,ﬁ)> NIy (B) =
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[%,5(0,6)) N [yr (B),1] could be: 1. empty, if yr(8) > 7(0,5); or 2. equal to
[r (8),%(0,8)), if §r (B) < T(0,B). The set T4/ (8) = [3,7(0,5)) N [5r (8),1] U
[Z(0,3),1] is equal to [Z(0,3),1] in case 1. and [gr (8),Z(0,5)) U [Z(0,8),1] =
[r (8),1] in case 2. In either case, T} (3) is non-empty, compact, convex-valued and
continuous in S for any 7" > 0.1

Section 6: Comparison of the Regimes.

Proof of Proposition 1. I'¥ (3) = ((f (3-1,8)\T (0,6)) NIy (ﬁ)) uT (0, 8)
by definition. For any given § € (0,1) and 7" > 0, there are two possible cases:
the intersection is empty or not. 1. (f (B — 1,/8)\1:(0,5)) NI'7(8) = @. Since
FE=1LANT0.8) = [31]\[7(0,8),1] = [3,7(0,5)) and Tz (8) = [ir (), 1]
for the intersection to be empty it must be the case that yr (8) > 7 (0, ), therefore
MY (8) = (2Uz(0,8),1]) = [#(0,8),1] 2 [Ir (8).1] = I'r(B). Clearly, the inclu-
sion is strict if yr (8) > 7 (0, 5), while the two sets coincide if yr (5) = z (0,3). 2.
(f (B—1,8)\T (0, ﬂ)) NI'r(8) # @. For the intersection to be non-empty it must
be the case that yr (8) < 7 (0, (), therefore T'¥ (3) = ([%,f(&ﬁ)) N [yr (B), 1]) U
[(0,8),1] = [yr (), (0,8)) Uz (0, 8) 1] = [yr (8) , 1] = Tz (5).W

The proof of Proposition 2 requires some definitions and a preparatory Lemma.

The ex-ante welfare functions in the non-monetary and monetary regimes are the

same, given by

1
1-p

{plw(h) +Bu(t=h)]+ (1 =) [u(l —h)+ Bu(h)]}. (28)

with h € R,. Consider the problem of maximizing the ex-ante welfare function
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with the only constraint that the choice should be feasible, i.e. maximize (28) in
h e [%, 1]. The objective function (28) is (at least twice) continuously differentiable,
strictly increasing and strictly concave in the choice variable, h. Hence, for any

(11, B) there exists a unique, global maximizer, which is characterized by the following

necessary and sufficient conditions
plu' (h) = pu' (1 =B+ (1 = p) [~u' (L = h) + pu' (W) —p+v =0,  (29)

p(1—h) =0, (30)

u(h—%):o, (31)

where p > 0 and v > 0 are the multipliers for the boundary conditions on h. Define
W (p, 8):00,1] x (0,1) — [4,1] as the function that satisfies (29), (30), (31). Define

2

also h (8):(0,1) — [1,1] as the function that satisfies

u' (h) —pu' (1—h)=0, (32)

for any 5 € (0,1). Such a function is continuous in 5 € (0,1), by the same argument
used in Lemma A6 with 7 = 0.
Lemma A7. h* (u, ) < h(B) for all u € [0,1] at any B8 € (0,1).

Proof. First, observe that pr = 0. Second, p = 0 always. Suppose p > 0, instead.

By (30), h =1 and (29) gives p = —o0, which contradicts p > 0. Define
@ (h,p, B) = plu' (h) = pu’ (1 = h)] + (1= p) [=u' (1 = h) + pu’ (B)] +v =0,

where ® (1, 1, 8) = —oo, ® (3,11, 8) = (1 = B)v (3) (2u— 1) + v, and

0% (h, i, B)

SIS 2D (B) (5 — i)+ (1= ) (1= i+ uf) < 0.
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Hence, for pp € [0,1), v > 0 and h* (1, 8) = & < h(B) by (31) and (32) for any

D) 2

B € (0,1). For p € [3,1], we have v = 0. Observe that ® (h,1,58) = u' (h) —

29

Bu' (1 —h) = 0, which gives h*(1,8) = h(B) for any g € (0,1), and ® (h,3,5) =

(14 8) [/ (h) — ' (1 — h)] = 0, which gives h* (1,3) =1 < h(B) for any 8 € (0, 1).

2

The derivative

o (u.5) _ (1= B) [ (h) + ' (1 h)] - 0.

Op w' (h) (p+ B8 —pB) +u’ (1 —h) (1 —p+ pp)

The statement follows.H

bhi

Proof of Proposition 2. i. ”if” part. From the Proof of Proposition 1,
L7 (B) Cc TH(B) & gyr(B) > 7(0,8) for any given 8 € (0,1) and 7" > 0. From
Lemma A7, h* (u, ) < 71(6) for all u € [0,1] at any given § € (0,1). By def-

inition, 7 (0,5) = h(B) for any given g € (0,1). If yr(8) > z(0,5) for some
B € (0,1) and T > 0, we have h* (u,8) < h(B) = %(0,8) < ¥r(B), for any
given 1 € [0,1], at those values of § € (0,1) and 7" > 0. Since (28) is strictly
concave in h and h* (u,[) is the global maximum for any given u € [0,1] and
g € (0,1), the function (28) is strictly decreasing in h for any h > h*(u, ), for
given p € [0,1] and 8 € (0,1). By definition, Wi (i, ) = max {(28) | h € [yr (5), 1]}
and WA (u, 8) = max{(28) | h € [7(0,8),1]}. The statement follows. ii. ”only
if” part. Suppose, I'r (3) = I'¥ (8) for some B € (0,1) and T > 0. The objective
functions (11) and (21) are identical. The statement follows by definition of W7 (1, 5)
and WA (u, 3).1

'@)

Proof of Proposition 3. For any (5, 7 (0, ) satisfies 8 = m Moreover,
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u/(T) u(1)—u(T)
u/(1-7) u(1-2)—u(0

) for any x by strict concavity of the utility function. Hence,
U (z,8) > 0, for any 8 € (0,1). Thus, for any 3 € (0,1), T2 (8) = [ (8),1] =
I (5).1

Proof of Proposition 4. For any T' < oo, yr (8) and 7 (0, 5) are continuous in
B € (0,1), by Lemmas A2-A3 and A6 respectively. When T < T, we have é;rriﬂT (B) =
Yp > %; moreover, él_)ﬂ{:’f 0,58) = % Therefore, by continuity, there exists an interval
Br C (0,1) with non-empty interior, such that yr (5) > 7 (0, 5), for § € Br, and,
thus, I'z (8) = [gr (8),1] C [2(0,8),1] =T¥ (B), for B € Br.M

Section 7: Discriminatory Transfers.

The proof that the set of allocations that satisfies (22) and (23) simultaneously

is not empty requires some definitions. Let o (8,T) = gr(B) _ L_g7T">

hr(B) (1+8)(1-87+1)
s(1-" ~
that }JZ((’Z)) = (1+ﬁ§(15T)+1) = 1—0(5,T). Define also v (8,T) = o (8,T)u (1) +

. Notice

(1—0(B,T))u(0) and (8, T)=(1—0 (8, T))u(l)+0(8,T)u(0). Let
Z(B,T)=4{2€(0,1]:2>u"(0(B,T)) and 2 <1—u" (0 (8,7))},

which identifies the allocations that can be sustained as a monetary equilibrium with
discriminatory transfers. Define Int (Z (3,T)) = (v (0 (8,7)),1 —u™' (0 (8,T))),
the interior of Z (5,T).

Lemma AS8. Int(Z (8,T)) # @ for any 8 € (0,1) and T > 0.

Proof. By strict concavity of the utility function, U (5,7) < u (o (5,T)), and

v(B,T)<u(l—0(p,T)), for any g € (0,1) and T > 0. Since the utility function is
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strictly increasing, we can invert it and obtain

I @BT) <o (BT)=1-(1-0(8,T)) <1-u (0(8,T)),

for any 5 € (0,1) and 7" > 0, which proves our statement.l
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