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Section 3: First Best Allocations.

Proof of Lemma 1. a. Ω (x1, µ) is (at least once) continuously differentiable in

x1, with Ω (0, µ) = +∞, and Ω (1, µ) = −∞. By the Intermediate Value Theorem

a value z ∈ (0, 1) such that Ω (z, µ) = 0 exists and is unique, since
∂Ω(x1,µ)

∂x1 =

µu′′ (x1) + (1− µ)u′′ (1− x1) < 0 for all µ ∈ (0, 1) and x1 ∈ [0, 1]. b. By the

Implicit Function Theorem, z (µ) is (at least once) continuously differentiable in µ,

with ∂z(µ)
∂µ

= −
∂Ω(x1,µ)

∂µ

∂Ω(x1,µ)
∂x1

‖x1=z > 0, since
∂Ω(x1,µ)

∂µ
= u′ (x1) + u′ (1− x1) > 0 for all

µ ∈ (0, 1) and x1 ∈ [0, 1]; c. z (0) = 0 and z (1) = 1, since a type with zero

weight in the objective function should be assigned zero consumption at an optimum;

Ω
(
x1
t ,

1
2

)
= 1

2
[u′ (x1

t )− u′ (1− x1
t )] = 0⇔ x1

t = 1− x1
t , hence, z

(
1
2

)
= 1

2
.�

Section 4: Non-Monetary Regime.

The proof of Lemma 2 requires some definitions and three preparatory Lemmas.

Although only values of y ≥ 1
2

are feasible, it will be more convenient to consider

y ∈ [0, 1], as a first step. Then, we will restrict y to the feasible interval
[

1
2
, 1
]
. Let

the function ΨT (y, β) : [0, 1]× (0, 1)→ R be defined as

ΨT (y, β) ≡ fT (β) [u (1− y)− u (0)]− gT (β) [u (1)− u (y)] , (24)

i.e. as the difference between the LHS and the RHS of (9). Define also yT (β) : (0, 1)→

[0, 1] as the function that explicitly relates pairs of values (y, β) ∈ [0, 1]× (0, 1) such

that ΨT (y, β) = 0, for any given T . Define the function ŷT (β) : (0, 1) →
[

1
2
, 1
]
, as

ŷT (β) ≡ max
{
yT (β) , 1

2

}
, for any β ∈ (0, 1) and T , i.e. the restriction of yT (β) to
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feasible values in
[

1
2
, 1
]
.

Lemma A1. a. For any β ∈ (0, 1) and T > 0, there exists exactly one value

y ∈ [0, 1) s.t. ΨT (y, β) = 0. b. For any T > 0, the function yT (β) is (at least twice)

continuously differentiable in β, with ∂yT (β)
∂β

< 0 for all β ∈ (0, 1) .

Proof. a. The function ΨT (y, β) : [0, 1] × (0, 1) → R is (at least twice)

continuously differentiable in y. Observe that, for any T > 0, the following are

true: i. ΨT (0, β) = −1+βT+1

1+β
[u (1)− u (0)] < 0, ii. ΨT (1, β) = 0, iii. ∂ΨT (y,β)

∂y
=

−β(1−βT )
1−β2 u′ (1− y) + 1−βT+2

1−β2 u′ (y), iv. ∂ΨT (0,β)
∂y

= +∞, ∂ΨT (1,β)
∂y

= −∞, v. ∂2ΨT (y,β)
∂y2 =

β(1−βT )
1−β2 u′′ (1− y) + 1−βT+2

1−β2 u′′ (y) < 0. Hence, for any β ∈ (0, 1) and T > 0, there is

exactly one y ∈ [0, 1) s.t. ΨT (y, β) = 0. b. The derivative ∂ΨT (y,β)
∂y

evaluated at any

(y, β) ∈ (0, 1)× (0, 1) such that ΨT (y, β) = 0 is given by

gT (β) [u (1)− u (y)]

[
u′ (y)

u (1)− u (y)
− u′ (1− y)

[u (1− y)− u (0)]

]
> 0, (25)

since u′(y)
u(1)−u(y)

> 1
1−y > u′(1−y)

[u(1−y)−u(0)]
for any y ∈ (0, 1) by strict concavity of the

utility function. Therefore, the Implicit Function Theorem applies and yT (β) is (at

least twice) continuously differentiable in β. The derivative ∂ΨT (y,β)
∂β

evaluated at any

(y, β) ∈ (0, 1)× (0, 1) such that ΨT (y, β) = 0 is given by

gT (β) [u (1)− u (y)]

[
f ′T (β)

fT (β)
− g′T (β)

gT (β)

]
> 0, (26)

since f ′T (β) =

T
2∑
j=1

(2j − 1) β2j−2 >

T
2∑
j=0

2jβ2j−1 = g′T (β) and gT (β) = 1−βT+2

1−β2 >

β(1−βT )
1−β2 = fT (β). Thus, ∂yT (β)

∂β
< 0, for any β ∈ (0, 1) and T > 0, since it is given

by the ratio (26) to (25) changed of sign, as an application of the Implicit Function
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Theorem.�

There are two possible cases, T infinite or finite. Case 1. T = ∞. Define

β ≡ u(1)−u( 1
2)

u( 1
2)−u(0)

∈ (0, 1).

Lemma A2. Γ∞ (β) = [ŷ∞ (β) , 1] for all β ∈ (0, 1), where ŷ∞ (β) is continuous,

and

i. ŷ∞ (β) = 1
2
, if β ≥ β;

ii. ŷ∞ (β) = y∞ (β) ∈
(

1
2
, 1
)
, if β < β.

Proof. The value β satisfies

Ψ∞

(
1

2
, β

)
=

1

1− β2

[
β

[
u

(
1

2

)
− u (0)

]
−
[
u (1)− u

(
1

2

)]]
= 0.

Thus, y∞
(
β
)

= 1
2
. By Lemma A1, y∞ (β) is (at least twice) continuously differentiable

and strictly decreasing function for any β ∈ (0, 1) . Hence, we have that for β ∈
(
0, β
)
,

y∞ (β) > 1
2
, lim
β→β−

y∞ (β) = 1
2

and for β ∈
[
β, 1
)
, y∞ (β) ≤ 1

2
. By definition ŷT (β) ≡

max
{
yT (β) , 1

2

}
. Thus, we have

ŷ∞ (β) =


1
2
, if β ≥ β

y∞ (β) , if β < β

,

which is continuous in β ∈ (0, 1), since lim
β→β−

y∞ (β) = 1
2
.�

Case 2. T finite, 0 < T < ∞. Notice that T is defined in the text as T ≡⌊
2[u(1)−u( 1

2)]
2u( 1

2)−u(1)−u(0)

⌋
∈ N, where, for any w ∈ R+, bwc denotes the largest natural number

not greater than w.

Lemma A3. ΓT (β) = [ŷT (β) , 1] for all β ∈ (0, 1), where ŷT (β) is continuous,

and
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a. if T > T , there exists a unique β
T
∈ (0, 1) such that:

i. ŷT (β) = 1
2
, for β ≥ β

T
;

ii. ŷT (β) = yT (β) ∈
(

1
2
, 1
)
, for β < β

T
;

b. if T ≤ T , for all β ∈ (0, 1), ŷT (β) = yT (β) ∈
(

1
2
, 1
)
.

Proof. a. Evaluate ΨT (y, β) at y = 1
2

and β → 1, obtaining lim
β→1

ΨT

(
1
2
, β
)

=(
T
2

) [
u
(

1
2

)
− u (0)

]
−
(
T
2

+ 1
) [
u (1)− u

(
1
2

)]
. Since T > T , lim

β→1
ΨT

(
1
2
, β
)
> 0. Eval-

uate ΨT (y, β) at y = 1
2

and β → 0, obtaining lim
β→0

ΨT

(
1
2
, β
)

= −
[
u (1)− u

(
1
2

)]
< 0.

Since ΨT

(
1
2
, β
)

is continuous in β, by the Intermediate Value Theorem there ex-

ists a value β
T
∈ (0, 1) that solves ΨT

(
1
2
, β
)

= 0. The derivative
∂ΨT ( 1

2
,β)

∂β
=

f ′T (β)
[
u
(

1
2

)
− u (0)

]
− g′T (β)

[
u (1)− u

(
1
2

)]
> 0, since f ′T (β) > g′T (β) and u

(
1
2

)
−

u (0) > u (1)−u
(

1
2

)
by strict concavity of the utility function. Hence, β

T
is unique. i.

By Lemma A1, yT (β) is continuously differentiable with lim
β→β−

T

yT (β) = 1
2
, lim
β→0+

yT (β) =

1 and ∂yT (β)
∂β

< 0. Hence, for β ∈
[
β
T
, 1
)

, yT (β) ≤ 1
2

and ŷT (β) = 1
2
. ii. If

β ∈
(

0, β
T

)
, once again by Lemma A1, yT (β) ∈

(
1
2
, 1
)

and ŷT (β) = yT (β). There-

fore, by definition of ŷT (β),

ŷT (β) =


1
2
, if β ≥ β

T

yT (β) , if β < β
T

,

which is continuous in β ∈ (0, 1), since lim
β→β−

T

yT (β) = 1
2
. b. Since T ≤ T , y = 1

2
never

satisfies the participation constraint for any β ∈ (0, 1). A solution of ΨT (y, β) = 0

in y ∈
(

1
2
, 1
)

exists for any β ∈ (0, 1), by the Intermediate Value Theorem, and is

unique by the same argument used in part a. By Lemma A1, yT (β) is continuously
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differentiable in β with lim
β→1−

yT (β) ≥ 1
2
, lim
β→0+

yT (β) = 1 and ∂yT (β)
∂β

< 0. Hence, for

all β ∈ (0, 1), yT (β) ∈
(

1
2
, 1
)
. Therefore, by definition of ŷT (β), ŷT (β) = yT (β) , for

all β ∈ (0, 1).�

Proof of Lemma 2. With T = 0, Γ0 (β) = {1}, hence, in this case the statement

follows immediately. Consider T > 0. By Lemmas A2-A3, for any β ∈ (0, 1) and

T > 0, ΓT (β) = [ŷT (β) , 1] is a non-empty, closed and bounded interval of the

real line, hence, ΓT (β) is non-empty, compact and convex-valued. For any T > 0,

the upper boundary of ΓT (β) is constant and the lower boundary, ŷT (β), varies

continuously with β, by the previous Lemmas A2-A3, hence the correspondence ΓT (β)

is continuous in β.�

The next Lemma is the formal proof of the statement made in the text that the

set of sustainable allocations becomes larger for larger values of T . Define, for given

T , Gr (ΓT ) ≡
{

(y, β) ∈
[

1
2
, 1
]
× (0, 1) | y ∈ ΓT (β)

}
, the graph of the correspondence

ΓT .

Lemma A4. Gr (ΓT ) ⊂ Gr (ΓT ′) ⊂ Gr (Γ∞), for any finite T ′, T with T ′ > T .

Proof. (24) can be rewritten as ΨT (y, β) =

gT (β)

{
fT (β)

gT (β)
[u (1− y)− u (0)]− [u (1)− u (y)]

}
≥ 0. (27)

The term gT (β) = 1−βT+2

1−β2 is clearly increasing in T. The term fT (β)
gT (β)

= β
(

1−βT
1−βT+2

)
≤ β, and approaches β when T → ∞. Moreover, for any β ∈ (0, 1) and any

T ′, T such that T ′ > T ≥ 0, fT (β)
gT (β)

<
fT ′ (β)

gT ′ (β)
, since β

(
1−βT

1−βT+2

)
< β

(
1−βT

′

1−βT ′+2

)
⇔

βT
(
1− β2

) (
1− βT ′−T

)
> 0. Hence, the LHS of (27) is strictly higher for larger T ,
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for any given β and y.�

Section 5: Monetary Regime.

Lemma A5. An allocation x̃ ∈
[

1
2
, 1
)

that solves (18) exists and is unique for

every π ∈ [β − 1,∞) and β ∈ (0, 1).

Proof. Φ (x, π, β) is (at least once) continuously differentiable in x, with Φ (1, π, β) =

−∞, and Φ
(

1
2
, π, β

)
= u′ (x)

(
1− β

1+π

)
≥ 0. Hence, by the Intermediate Value The-

orem, there exists a value x̃ ∈
[

1
2
, 1
)

that solves (18) for any π ∈ [β − 1,∞) and β ∈

(0, 1). Moreover, x̃ is unique for any π and β, since ∂Φ(x,π,β)
∂x

= u′′ (x)+ β
1+π

u′′ (1− x) <

0 for all π ∈ [β − 1,∞), β ∈ (0, 1) and x ∈
[

1
2
, 1
)
.�

Lemma A6. a. The function x̃ (π, β) is at least once continuously differentiable

in π; b. i. x̃ (β − 1, β) = 1
2
, ii. lim

π→∞
x̃ (π, β) = 1 for any β ∈ (0, 1); c. the derivative

∂x̃(π,β)
∂π

> 0 for any β ∈ (0, 1).

Proof. Part a. and part c., follow from the Implicit Function Theorem, since

∂Φ(x,π,β)
∂x

‖x=x̃ < 0 from Lemma A5 and ∂Φ(x,π,β)
∂π

‖x=x̃ = β

(1+π)2u′ (1− x̃) > 0. Part b.i.

is obvious from inspection of (18) and b. ii. from the Inada condition.�

Proof of Lemma 3. The set Γ̃ (0, β) = [x̃ (0, β) , 1] is non-empty, since x̃ (0, β) <

1 for any β ∈ (0, 1), compact, convex-valued and continuous in β since x̃ (0, β) is con-

tinuous in β by Lemma A6. The set
(

Γ̃ (β − 1, β) \ Γ̃ (0, β)
)

=
[

1
2
, 1
]
\ [x̃ (0, β) , 1] =[

1
2
, x̃ (0, β)

)
is non-empty, since x̃ (0, β) > 1

2
, by (18) with π = 0, for any β ∈ (0, 1).

The set ΓT (β) = [ŷT (β) , 1] is non-empty, compact, convex-valued and continuous

in β for any T ≥ 0 by Lemma 2. The set
(

Γ̃ (β − 1, β) \ Γ̃ (0, β)
)
∩ ΓT (β) =

40



[
1
2
, x̃ (0, β)

)
∩ [ŷT (β) , 1] could be: 1. empty, if ŷT (β) ≥ x̃ (0, β); or 2. equal to

[ŷT (β) , x̃ (0, β)), if ŷT (β) < x̃ (0, β). The set ΓMT (β) =
[

1
2
, x̃ (0, β)

)
∩ [ŷT (β) , 1] ∪

[x̃ (0, β) , 1] is equal to [x̃ (0, β) , 1] in case 1. and [ŷT (β) , x̃ (0, β)) ∪ [x̃ (0, β) , 1] =

[ŷT (β) , 1] in case 2. In either case, ΓMT (β) is non-empty, compact, convex-valued and

continuous in β for any T ≥ 0.�

Section 6: Comparison of the Regimes.

Proof of Proposition 1. ΓMT (β) ≡
((

Γ̃ (β − 1, β) \ Γ̃ (0, β)
)
∩ ΓT (β)

)
∪Γ̃ (0, β)

by definition. For any given β ∈ (0, 1) and T ≥ 0, there are two possible cases:

the intersection is empty or not. 1.
(

Γ̃ (β − 1, β) \ Γ̃ (0, β)
)
∩ ΓT (β) = ∅. Since

Γ̃ (β − 1, β) \ Γ̃ (0, β) =
[

1
2
, 1
]
\ [x̃ (0, β) , 1] =

[
1
2
, x̃ (0, β)

)
and ΓT (β) = [ŷT (β) , 1]

for the intersection to be empty it must be the case that ŷT (β) ≥ x̃ (0, β), therefore

ΓMT (β) = (∅ ∪ [x̃ (0, β) , 1]) = [x̃ (0, β) , 1] ⊇ [ŷT (β) , 1] = ΓT (β). Clearly, the inclu-

sion is strict if ŷT (β) > x̃ (0, β), while the two sets coincide if ŷT (β) = x̃ (0, β). 2.(
Γ̃ (β − 1, β) \ Γ̃ (0, β)

)
∩ ΓT (β) 6= ∅. For the intersection to be non-empty it must

be the case that ŷT (β) < x̃ (0, β) , therefore ΓMT (β) =
([

1
2
, x̃ (0, β)

)
∩ [ŷT (β) , 1]

)
∪

[x̃ (0, β) , 1] = [ŷT (β) , x̃ (0, β)) ∪ [x̃ (0, β) , 1] = [ŷT (β) , 1] = ΓT (β).�

The proof of Proposition 2 requires some definitions and a preparatory Lemma.

The ex-ante welfare functions in the non-monetary and monetary regimes are the

same, given by

1

1− β2 {µ [u (h) + βu (1− h)] + (1− µ) [u (1− h) + βu (h)]} . (28)

with h ∈ R+. Consider the problem of maximizing the ex-ante welfare function
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with the only constraint that the choice should be feasible, i.e. maximize (28) in

h ∈
[

1
2
, 1
]
. The objective function (28) is (at least twice) continuously differentiable,

strictly increasing and strictly concave in the choice variable, h. Hence, for any

(µ, β) there exists a unique, global maximizer, which is characterized by the following

necessary and sufficient conditions

µ [u′ (h)− βu′ (1− h)] + (1− µ) [−u′ (1− h) + βu′ (h)]− ρ+ ν = 0, (29)

ρ (1− h) = 0, (30)

ν

(
h− 1

2

)
= 0, (31)

where ρ ≥ 0 and ν ≥ 0 are the multipliers for the boundary conditions on h. Define

h∗ (µ, β):[0, 1] × (0, 1) →
[

1
2
, 1
]

as the function that satisfies (29), (30), (31). Define

also h̃ (β):(0, 1)→
[

1
2
, 1
]

as the function that satisfies

u′ (h)− βu′ (1− h) = 0, (32)

for any β ∈ (0, 1). Such a function is continuous in β ∈ (0, 1) , by the same argument

used in Lemma A6 with π = 0.

Lemma A7. h∗ (µ, β) ≤ h̃ (β) for all µ ∈ [0, 1] at any β ∈ (0, 1).

Proof. First, observe that ρν = 0. Second, ρ = 0 always. Suppose ρ > 0, instead.

By (30), h = 1 and (29) gives ρ = −∞, which contradicts ρ > 0. Define

Φ (h, µ, β) ≡ µ [u′ (h)− βu′ (1− h)] + (1− µ) [−u′ (1− h) + βu′ (h)] + ν = 0,

where Φ (1, µ, β) = −∞, Φ
(

1
2
, µ, β

)
= (1− β)u′

(
1
2

)
(2µ− 1) + ν, and

∂Φ (h, µ, β)

∂h
= u′′ (h) (µ+ β − µβ) + u′′ (1− h) (1− µ+ µβ) < 0.
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Hence, for µ ∈
[
0, 1

2

)
, ν > 0 and h∗ (µ, β) = 1

2
< h̃ (β) by (31) and (32) for any

β ∈ (0, 1). For µ ∈
[

1
2
, 1
]
, we have ν = 0. Observe that Φ (h, 1, β) = u′ (h) −

βu′ (1− h) = 0, which gives h∗ (1, β) = h̃ (β) for any β ∈ (0, 1), and Φ
(
h, 1

2
, β
)

=

1
2

(1 + β) [u′ (h)− u′ (1− h)] = 0, which gives h∗
(

1
2
, β
)

= 1
2
< h̃ (β) for any β ∈ (0, 1).

The derivative

∂h∗ (µ, β)

∂µ
= − (1− β) [u′ (h) + u′ (1− h)]

u′′ (h) (µ+ β − µβ) + u′′ (1− h) (1− µ+ µβ)
> 0.

The statement follows.�

Proof of Proposition 2. i. ”if” part. From the Proof of Proposition 1,

ΓT (β) ⊂ ΓMT (β) ⇔ ŷT (β) > x̃ (0, β) for any given β ∈ (0, 1) and T ≥ 0. From

Lemma A7, h∗ (µ, β) ≤ h̃ (β) for all µ ∈ [0, 1] at any given β ∈ (0, 1). By def-

inition, x̃ (0, β) ≡ h̃ (β) for any given β ∈ (0, 1). If ŷT (β) > x̃ (0, β) for some

β ∈ (0, 1) and T ≥ 0, we have h∗ (µ, β) ≤ h̃ (β) = x̃ (0, β) < ŷT (β), for any

given µ ∈ [0, 1], at those values of β ∈ (0, 1) and T ≥ 0. Since (28) is strictly

concave in h and h∗ (µ, β) is the global maximum for any given µ ∈ [0, 1] and

β ∈ (0, 1), the function (28) is strictly decreasing in h for any h > h∗ (µ, β), for

given µ ∈ [0, 1] and β ∈ (0, 1). By definition, W ∗
T (µ, β) = max {(28) | h ∈ [ŷT (β) , 1]}

and WM∗
T (µ, β) = max {(28) | h ∈ [x̃ (0, β) , 1]}. The statement follows. ii. ”only

if” part. Suppose, ΓT (β) = ΓMT (β) for some β ∈ (0, 1) and T ≥ 0. The objective

functions (11) and (21) are identical. The statement follows by definition of W ∗
T (µ, β)

and WM∗
T (µ, β).�

Proof of Proposition 3. For any β, x̃ (0, β) satisfies β = u′(x̃)
u′(1−x̃)

. Moreover,
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u′(x̃)
u′(1−x̃)

> u(1)−u(x̃)
u(1−x̃)−u(0)

for any x̃ by strict concavity of the utility function. Hence,

Ψ∞ (x̃, β) > 0, for any β ∈ (0, 1). Thus, for any β ∈ (0, 1), ΓM∞ (β) = [ŷ∞ (β) , 1] =

Γ∞ (β).�

Proof of Proposition 4. For any T <∞, ŷT (β) and x̃ (0, β) are continuous in

β ∈ (0, 1), by Lemmas A2-A3 and A6 respectively. When T < T , we have lim
β→1

ŷT (β) =

yT >
1
2
; moreover, lim

β→1
x̃ (0, β) = 1

2
. Therefore, by continuity, there exists an interval

BT ⊆ (0, 1) with non-empty interior, such that ŷT (β) > x̃ (0, β), for β ∈ BT , and,

thus, ΓT (β) = [ŷT (β) , 1] ⊂ [x̃ (0, β) , 1] = ΓMT (β), for β ∈ BT .�

Section 7: Discriminatory Transfers.

The proof that the set of allocations that satisfies (22) and (23) simultaneously

is not empty requires some definitions. Let σ (β, T ) ≡ gT (β)
hT (β)

= 1−βT+2

(1+β)(1−βT+1)
. Notice

that fT (β)
hT (β)

=
β(1−βT )

(1+β)(1−βT+1)
= 1 − σ (β, T ). Define also υ̂ (β, T ) ≡ σ (β, T )u (1) +

(1− σ (β, T ))u (0) and υ̃ (β, T ) ≡ (1− σ (β, T ))u (1) + σ (β, T )u (0). Let

Z (β, T ) ≡
{
z ∈ [0, 1] : z ≥ u−1 (υ̂ (β, T )) and z ≤ 1− u−1 (υ̃ (β, T ))

}
,

which identifies the allocations that can be sustained as a monetary equilibrium with

discriminatory transfers. Define Int (Z (β, T )) ≡ (u−1 (υ̂ (β, T )) , 1− u−1 (υ̃ (β, T ))),

the interior of Z (β, T ).

Lemma A8. Int (Z (β, T )) 6= ∅ for any β ∈ (0, 1) and T > 0.

Proof. By strict concavity of the utility function, υ̂ (β, T ) < u (σ (β, T )), and

υ̃ (β, T ) < u (1− σ (β, T )), for any β ∈ (0, 1) and T > 0. Since the utility function is
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strictly increasing, we can invert it and obtain

u−1 (υ̂ (β, T )) < σ (β, T ) = 1− (1− σ (β, T )) < 1− u−1 (υ̃ (β, T )) ,

for any β ∈ (0, 1) and T > 0, which proves our statement.�
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