A Appendices

A.1 Detailed Properties of IEES Functions
A.1.1 IEES(I)

In the following we shall consider four specific cases of IEES(IT) functions, delineated

by the assumptions made with respect to ¢ and oy.

Case with ¢ > 0 and 0y > 1. In this case, factors of production are always gross substi-
tutes and hence the capital share increases with the capital-labor ratio k. Since also the
elasticity of substitution increases with the capital share, it follows that the elasticity of
substitution increases with k as well. The production function is well-defined, increas-

ing and concave in its entire domain k € [0, +00). We obtain the following limits:
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Case with ¢ < 0 and ¢y > 1. In this case, factors of production are always gross
substitutes and hence the capital share increases with the capital-labor ratio k. Since
the elasticity of substitution, on the other hand, decreases with the capital share, it
follows that the elasticity of substitution decreases with k as well. The production

function is well-defined, increasing and concave in its entire domain k € [0, +o0). We



obtain the following limits:

, (k) , (k) o g
BT~ R Toa 1o 0 B9
1
. B o \? : _
lim ¢ (k) = ¢o (00 — 1) <0, lim (k) = —oo, (A.5)
limo(k) = +o00, limo(k)=1 (A.6)
k—0 k—oo

Case with ¢ > 0 and 0y < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital-labor ratio
k. Since the elasticity of substitution, on the other hand, increases with the capital share,
it follows that the elasticity of substitution falls with k. The production function is well-
defined, increasing and concave only for k € [0, kjax|, where kyax = ko(1 — o)~V
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Case with ¢y < 0 and ¢y < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital-labor ratio
k. Since also the elasticity of substitution is inversely related to the capital share, it
follows that the elasticity of substitution increases with k. The production function is

well-defined, increasing and concave only for k € [k, +00), where ky,;, = ko(1 —



o) ~1/¥. We obtain the following limits:
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Our empirical analysis (Section 8) suggests that this case of IEES(IT) functions is

preferred by the data on aggregate production in the post-war US economy.

A.1.2 IEES(MRS)

In the following we shall consider two specific cases of IEES(MRS) functions, delin-

eated by the assumptions made with respect to .

Case with ¢ > 0. In this case, the elasticity of substitution decreases with the marginal
rate of substitution (¢9 < 0) and thus increases with the factor ratio k (recall that by
concavity and constant returns to scale, the MRS necessarily decreases with k). The

production function is well-defined, increasing and concave only for k € [k,i,, +00),

where k,,;, = koe?/%. The relative factor share n(k)k) (and thus the capital’s share

1—7(

rt(k) as well) follows a non-monotonic pattern with k, declining if k € (ki k) and

increasing for k > k. The minimum capital share, obtained at the point k, is equal to:
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We also obtain the following limits:
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Our empirical analysis (Section 8) suggests that this case of IEES(MRS) functions is
preferred by the data on aggregate production in the post-war US economy. We also

find 0y < 1.

Case with 1 < 0. In this case, the elasticity of substitution increases with the marginal
rate of substitution and thus falls with the factor ratio k. The production function is
well-defined, increasing and concave only for k € [0, kyax], where kyx = koe /¥,

The relative factor share ”(k)) (and thus the capital’s share (k) as well) follows a

1—m(k

non-monotonic pattern with k, increasing when k € (0, k) and falling for k € (k, kpuaxe)-

The maximum capital share, obtained at the point k, is equal to:
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A.1.3 IEES(k)

In the following we shall consider two specific cases of IEES(k) functions, delineated

by the assumptions made with respect to 1.

Case with 1 > 0. In this case, we assume that the elasticity of substitution increases

with the factor ratio k. The production function is well-defined, increasing and concave

(k)
1—rmt(k)

in its domain k € [0,4o0). The relative factor share (and thus the capital’s
share 7t(k) as well) follows a non-monotonic pattern with k, declining if k € (0,k) and

increasing for k > k. The minimum capital share, obtained at the point k, is equal to:
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Our empirical analysis (Section 8) suggests that this case of IEES(k) functions is
preferred by the data on aggregate production in the post-war US economy. We also

find 0y < 1.

Case with ¢ < 0. In this case, we assume that the elasticity of substitution decreases

with the factor ratio k. The production function is well-defined, increasing and concave

(k)

in its domain k € [0, +-c0). The relative factor share ;—- ®

(and thus the capital’s share

7t(k) as well) follows a non-monotonic pattern with k, increasing when k € (0,k) and



falling for k > k. The maximum capital share, obtained at the point &, is equal to:
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A.14 IEES(m)

In the following we shall consider four specific cases of IEES(77) functions, delineated

by the assumptions made with respect to 1 and 0.

Case with ¢ > 0 and 0y > 1. In this case, factors of production are always gross
substitutes and hence the capital share increases with x, and consequently also the
capital-labor ratio k. Since also the elasticity of substitution increases with the cap-
ital share, it follows that the elasticity of substitution increases with k as well. The

production function is well-defined, increasing and concave for ¥ € [0, kyax], With
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Kmax = Ko (UOHO 1> . We obtain the following limits:
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Case with ¢ < 0 and ¢y > 1. In this case, factors of production are always gross



substitutes and hence the capital share increases with the capital-labor ratio k. Since
the elasticity of substitution, on the other hand, decreases with the capital share, it
follows that the elasticity of substitution decreases with k as well. The production
function is again well-defined, increasing and concave in its domain.

There are however two subcases, depending on the choice of normalization. If
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7'(0(70_ < 1, then the domain is k € [0, +00) and we obtain the following limits:
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Case with ¢ > 0 and 0y < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital-labor ratio
k. Since the elasticity of substitution, on the other hand, increases with the capital
share, it follows that the elasticity of substitution falls with k. The production function
is well-defined, increasing and concave in its domain.

There are again two subcases, depending on the choice of normalization. If 7'(000_ v <

1
1, then the domain is x € [0, Kpayx], With k0 = K9(1 — 0p) ¥ and we obtain the follow-



ing limits:
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Case with ¢ < 0 and ¢y < 1. In this case, factors of production are always gross
complements and hence the capital share is inversely related to the capital-labor ratio
k. Since also the elasticity of substitution is inversely related to the capital share, it

follows that the elasticity of substitution increases with k. The production function is
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We obtain the following limits:
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Our empirical analysis (Section 8) suggests that this case of IEES(7t) functions is

preferred by the data on aggregate production in the post-war US economy.



A.1.5 IEES(r)

In the following we shall consider two specific cases of IEES(r) functions, delineated
by the assumptions made with respect to 1. We restrict ourselves to the choice of

_(7071 1
normalization constants where mpe ¥ UO‘P < 1.

Case with ¢ > 0. In this case, the elasticity of substitution decreases with the marginal
product of capital (r = f’(k)) and thus — by concavity of f —increases with the capital-
labor ratio k. The production function is well-defined, increasing and concave in its
support. However, due to restrictions in the range of F(K, L), the support of « is re-
stricted to k € [Kyin, Kmax] Where k,,;, and Kpqy are the two solutions to the equation
nt(x) = 1. The capital’s share 77(x) follows a non-monotonic pattern with «, declining
if k € (kpin, &) and increasing for « € (&, kmar). The minimum capital share, obtained

at the point %, is equal to:

—_

)
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Tnin = 71(R) = moe ¥ o € (0,1). (A.41)
Our empirical analysis (Section 8) suggests that this case of IEES(r) functions is
preferred by the data on aggregate production in the post-war US economy. We also

find 0y < 1.

Case with ¢ < 0. In this case, the elasticity of substitution increases with the marginal
product of capital f'(k) and thus falls with k. The production function is well-defined,
increasing and concave for x € [0, kyax|, Where Kpax = koe~%/¥. The capital share

7(x) follows a non-monotonic pattern with x, increasing when x € (0,«) and falling



for k € (&, kmax). The maximum capital share, obtained at the point &, is equal to:
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We also obtain the following limits:
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(A.44)

A16 IEES(k/y)

In the following we shall consider two specific cases of IEES(x) functions, delineated

by the assumptions made with respect to 1. We restrict ourselves to the choice of

_ (TO -1 _
normalization constants where mpe ¥ o

&=

<1

Case with ¢ > 0. In this case, the elasticity of substitution increases with the capital-
output ratio k. The production function is well-defined, increasing and concave in
its domain. However, due to restrictions in the range of F(K, L), the support of « is
restricted to X € [Kyin, Kmax] Where i, and ky,x are the two solutions to the equation
7t(x) = 1. The capital’s share 7t(x) follows a non-monotonic pattern with «, declining
if K € (kpin, &) and increasing for «k € (&, Kmqay). The minimum capital share, obtained

at the point %, is equal to:
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Our empirical analysis (Section 8) suggests that this case of IEES(x) functions is

preferred by the data on aggregate production in the post-war US economy. We also

10



find oy < 1.

Case with ¢ < 0. In this case, we assume that the elasticity of substitution decreases
with the capital-output ratio x. With the current choice of normalization constants, the
production function is well-defined, increasing and concave in its domain x € [0, +0).
The capital’s share 77(k) follows a non-monotonic pattern with «, increasing when x €

(0,%) and falling for x > &. The maximum capital share, obtained at the point &, is

equal to:
_o-t -1
Tinax = T0(R) = o ¥0 0, ¥ € (0,1), (A.46)
with the following limits:
limt(x) =0, lim 7(x) = 0. (A47)
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A.2 Self-Duality of IEES Functions: Analytical Method and Detailed

Results

To demonstrate self-duality of IEES functions, we proceed as follows. First, we note
that perfect competition in factor markets implies that factors of production are remu-
nerated to the amount of their marginal products. We also observe that the dual cost
function obtains homogeneity (constant returns to scale) from its primal counterpart.
Keeping this in mind, we derive the dual cost function TC(r,w) = rK* + wL* asso-
ciated with a given (primal) production function Y = F(K, L) using the Shephard’s

lemma (Shephard, 1953). We obtain:

dTC(r,w) r

N o  TCrw) TrK* ot
1— A 9TC(rw) w ~ wL*  1—m1 I, (A.48)
Jw  TC(r,w)

where A is the partial elasticity of the total cost function with respect to the capital’s

rate of return 7, 1 — A is the partial elasticity of the total cost function with respect to

JOF(K,L) K

the wage rate w, and 7 = == OF(K.L) L

and 1 — 7w = =7 FKL)

are the capital and

labor’s share of output, respectively. Asterisks denote values in the firm’s optimum.

Constant returns to scale of the dual cost function imply that we can write % =

(k) = ™5 _ as a function of the ratio of capital to labor remuneration 7 =  only:

LA K*
7 -TC (%,1) = tc(n), II(y) = tc(171)7 _t;(.zz,(n) = ;L* = nk*. (A.49)

Therefore, to obtain I1(77) and thus identify the dual cost functions associated with
IEES(IT), IEES(MRS) and IEES(k) production functions, it suffices to insert k = IT/7

into the respective formula for I'1(k) and solve the implicit equation for IT(7).

12



Under the capital deepening production function representation y = h(x), where
k = k/y, Shephard’s lemma can be used in an analogous manner. We thus identify the
dual cost functions associated with IEES(7r), IEES(r) and IEES(x) production functions.
Given that 7T = rx, it suffices to insert k = 77/r into the respective formula for 77(x)
and solve the implicit equation for 7r(r).

Detailed results following from applying this analytical procedure are reported in

Table A.1.

13



va upd 4 2

(g (3)n

0p 0p Oy
P (3)

! (4)0 1ena
1 ()0 ewrtig

01 (4)x Teng

01 ()2 TewLIg

1-00
()sdA1 (4)saA1 (12)sHAT SaD a-D
0y 0p 04 0p 01, 0o 0o
sAMva s|vaHN 3Athb 1=2 1=2
Am\v\ = H.HHH>>V NOILVINASHAJAY] ONINAIIA(] H<HH~H<U HHL d04d SLINSHY
I 0\ O 0l 0 0
(%) wd+7 )T NOI R ?

1 (L)oeng

SQV 0p Qvﬁig %@v (T—00)+1 00 I (y)oreunyg
o ((5) wood+ 1) 75 wyye i, () e-pre) S ()5 S (huena
: (o (8)-1) _
LR (uioyre ((BE-)-1)% L()%  wm
()SAAI (SYN)STAT (11)sadI1 SAD a-n
%A%v = o% &Aﬁmﬁv&sv = o% &AEWWH%V = W 1= W [=20

SITINSTY NIVIA

suorejuasarday uondouny SHAT [en( pue [ewiJ 1V 9[qeL

14



A.3 Data Construction

Our dataset contains time series for the non-residential business sector in the US econ-
omy that spans the period from 1948Q1 to 2013Q4. The basic data source is BEA NIPA.

Real and nominal output is calculated as follows. First, gross domestic product
is reduced by government gross value added and gross output in the housing sec-
tor. Then, effects of indirect taxation are subtracted from the data. The data are taken
from BEA NIPA tables 1.3.5 (Nominal GDP, GVA), 1.3.6 (Real GDP, GVA), 1.12 (Indi-
rect Taxes less Subsidies). Effects of indirect taxation are eliminated from real output
by assuming that its share in real output is the same as in nominal output.

The annual real capital stock in the non-residential business sector is taken from
NIPA FAT table 4.2. Because there is no available data on quarterly capital stocks,
growth rates of nominal private non-residential fixed investment (BEA NIPA table
1.1.5) are used to interpolate the series. The obtained quarterly series displays the
same trends as the original annual series.

BEA does not publish data on the labor input at a quarterly frequency. Instead of in-
terpolating the annual series, we use the BLS quarterly series to construct this variable.
Our measure of the labor input is a simple sum of the number of employees (FRED
code: USPRIV) and the self-employed (LNS12032192). Since the proposed measure
does not take ongoing changes in labor composition into consideration, as a robust-
ness check we use Fernald’s (2012) data on quality-adjusted aggregate hours which
can be easily converted from annualized growth rates into an index.

To measure factor income shares that are consistent with our definition of output
we proceed as follows. The labor share is adjusted by the number of the self-employed

in order to deal with the problem of assignment of ambiguous income to either capital

15



or labor (see Muck et al., 2018, for a wider discussion):

Labor share: 1— 7 (A.50)

. tht . CEt 1 %
- Pth - Outputt Et

where CE; denotes compensation of employees, Output; is the above described output
in nominal terms, SE; and E; stand for the number of the self-employed and employ-
ees, respectively. The data on SE; and E; are consistent with our measure of the labor
input. For consistency in terms of the range of economy, CE; is calculated as the com-
pensation of employees reduced by wages and salaries in the government sector and
supplements to wages in this sector.! These series are taken from NIPA table 1.12.

The measurement of the user cost of capital is extremely problematic. We also
assume throughout the analysis that the production function has constant returns to

scale. Therefore, the capital share is calculated residually:

K L
Capital share: T = % =1- % (A.51)

As shown by McAdam and Willman (2013), this agnostic approach of measuring the
capital share allows to identify correctly the most critical parameters characterizing the

supply side of the postwar US economy.
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A.4 Rolling Window Estimation of ¢ with CES Production

In each of the following figures, we document the estimated values of the elasticity
of substitution ¢, average capital share 77y, and the pace of labor-augmenting technical
change v; and capital-augmenting technical change 7y, with respective 95% confidence
intervals. We also present the results of (window-specific) ADF stationarity tests for

residuals. Dashed lines represent the 5% significance threshold.
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Figure A.2: Rolling window estimates; Baseline (45Y)
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Figure A.3: Rolling window estimates; Quality-Adjusted Labor Input (45Y)
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Figure A.4: Rolling window estimates; with KATC (45Y)
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Figure A.6: Rolling window estimates; Baseline (60Y)
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Figure A.7: Rolling window estimates; Baseline (55Y)
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Figure A.8: Rolling window estimates; Baseline (40Y)
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A.5 Robustness Checks: Detailed Results

Table A.2: Summary of Estimates of IEES Production Functions: Quality-Adjusted

Labor Input
| CES IEES(IT) IEES(MRS) IEES(k) IEES(mw) IEES(r) IEES(k)
Single-Equation NLS (7; = 0.005)
TTo 0.3277%  0.324% 0.3237 0.3237%  0.363""*  0.324™F  0.324™F
(0.001)  (0.001) (0.001) (0.001) (0.02) (0.001)  (0.001)
00 0.706***  0.773*** 0.777*** 0.767*** 0.757***  0.751***  0.745"**
(0.024)  (0.036) (0.036) (0.035)  (0.041)  (0.034)  (0.029)
P —5.79%** 2.121%* 3.196"** —8.958** 1.879**  2.676"**
(1.385) (0.372) (0.645)  (4225)  (0.744)  (0.726)
Ot N\
Ho:CES [0.000] [0.000] [0.000] [0.012] [0.034] [0.000]
ADF —2.735""" —2.969***  —2.978***  —2.973*** —2.648"** —2.674"" —2.688"**
Two-Step (0p = 0.775 and ; = 0.005)
TTo 0.324 0.323" 0.323"%  0.357°"F  0.324™F  0.324™
(0.001) (0.001) (0.001)  (0.008)  (0.001)  (0.001)
P —5.872%* 2.102%* 3.322%*—10.51***  2.227***  3.172%**
(0.546) (0.179) (0.404)  (2.275)  (0.542)  (0.591)
0t N\ N\ N\
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADF —3.395"**  —3.401*** —3.398*** —2.973"** —3.001*** —3.014"**
System Approach
o 0.3317F  0.3247 0.3237 0.3237% 0.325% 0.325"F  0.325F
(0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001)  (0.001)
00 0.775***  0.887*** 0.862*** 0.846**  0.888***  0.868"**  0.856***
(0.001)  (0.019) (0.02) (0.019)  (0.023)  (0.023) (0.02)
¢ 1.001***  1.000*** 1.000%** 1.000%**  1.002***  1.002***  1.002***
(0.002)  (0.002) (0.002) (0.002)  (0.002)  (0.002)  (0.002)
M 0.005***  0.005*** 0.005*** 0.005***  0.005***  0.005"**  0.005***
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)
P —7.061** 1.399** 1.654**—10.219***  1.842***  2.045***
(0.905) (0.161) (0.216) (1.9) (0.32) (0.327)
0 N ~ N N N \
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADFg —2.681"** —3.14**  —3.133** 3.1 = —3.012"** —3.02*"* —3.002"**
ADFy, —3.4**  -3.552%* 3517 —3.505"** —3.528*** —3.529"** —3.514***
ADFy —2.665""" —2.653"**  —2.657***  —2.652*** —2.616"** —2.642*** —2.643***

Notes: the superscripts

kkk o sk
4

and * denote rejection of the null about parameters” insignif-

icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.
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Table A.3: Summary of Baseline Estimates of IEES Production Functions: Box-Cox
Labor-Augmenting Technical Change

| CES IEES(IT) IEES(MRS) IEES(k) 1IEES(mw) IEES(r) IEES(x)
Single-Equation NLS (y; = 0.005 and A; = 1.148)
770 0.3257  0.327% 0.3277 0.326™*  0.363"F  0.324 0.324™
(0.001) (0.001) (0.001) (0.001) (0.02) (0.001) (0.001)
0o 0.634***  0.61*** 0.607*** 0.609***  0.757***  0.751***  0.745"**
(0.019) (0.021) (0.021) (0.023) (0.041) (0.034) (0.029)
P 3.339**  —1.001* —1.318 —8.958"*  1.879**  2.676™**
(1.567) (0.567) (0.897) (4.225) (0.744) (0.726)
ot / S /! \ \ .
Ho:CES [0.033] [0.077] [0.142] [0.012] [0.034] [0.000]
ADF —3.37%*%  —3.738***  —3.697*** —3.619"** —2.648"** —2.674"** —2.688"**
Two-Step (0p = 0.775, 7; = 0.005 and A; = 1.148)
770 0.323% 0.323% 0.3237% 03647 0.324F  0.324™
(0.001) (0.001) (0.001) (0.012) (0.001) (0.001)
P —b5.34* 1.719*** 2.334*%* —8.816***  1.929***  2.833***
(0.572) (0.239) (0.505) (2.348) (0.548) (0.587)
ot \ \ \ \ \ N\
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADF —3.562"* 3418  —3.292%* —2965"* —2.99*** —3.004***
System Approach
770 0.337%  0.323% 0.323% 0.3237%  0.324™F  0.325"  0.325""
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
0o 0.755"**  0.861*** 0.837*** 0.826™*  0.836™*  0.812***  0.805***
(0.001) (0.016) (0.015) (0.015) (0.021) (0.019) (0.015)
¢ 0.988***  0.987*** 0.985"** 0.985"**  0.991***  0.991***  0.991***
(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004)
07 0.005***  0.005*** 0.005*** 0.005***  0.005***  0.005***  0.005***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Al 1.148**  1.188*** 1.205%** 1.203***  1.17*** 1.168***  1.165***
(0.031) (0.026) (0.026) (0.027) (0.029) (0.029) (0.03)
P —5.913*** 1.159*** 1.376"** —6.943"**  1.261"**  1.456"**
(0.673) (0.149) (0.215)  (1.294)  (0.264)  (0.243)
ot \ \ \ \ \ \
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADFg —2.715%* —3.132***  —2.856*** —2.83*** —2.968"** —2.916"** —2.903"**
ADF —3.646"** —3.578***  —3.519** 352" _—3.672"** —3.613"** —3.601"**
ADFy —2.494*F  —2.47** —2.487**  —2.489*" —2474*" —2488"* —249**

Notes: the superscripts

kKK Kk
7

and * denote rejection of the null about parameters’ insignif-

icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.
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Table A.4: Summary of Baseline Estimates of IEES Production Functions: Box-Cox
Labor-Augmenting Technical Change & Quality-Adjusted Labor Input

| CES IEES(IT) IEES(MRS) IEES(k) 1IEES(mw) IEES(r) IEES(x)
Single-Equation NLS (y; = 0.005 and A; = 0.883)
770 0.328%*  0.325"** 0.325%* 0.325***  0.363"**  0.324"** (0.324"**
(0.001) (0.001) (0.001) (0.001) (0.02) (0.001) (0.001)
0o 0.69*** 0.744*** 0.73*** 0.716***  0.757***  0.751***  (0.745***
(0.025) (0.04) (0.034) (0.03) (0.041) (0.034) (0.029)
P —6.598*** 2.29%** 3.399*** —8.958**  1.879**  2.676"**
(1.898) (0.545) (0.9) (4.225) (0.744) (0.726)
ot \ \ \ N\ N\ .
Ho:CES [0.001] [0.000] [0.000] [0.012] [0.034] [0.000]
ADF —2.787°%% —2.968*** = —2.947**  —2.934** 2,648 —2.674"** —2.688"**
Two-Step (0p = 0.767, 7; = 0.005 and A; = 0.883)
770 0.325** 0.324* 0.324** 0.359"**  0.324"** (0.324"**
(0.001) (0.001) (0.001) (0.009) (0.001) (0.001)
P —7.599*** 2.831%* 4.438*** —9.799***  2.103***  3.031***
(0.686) (0.289) (0.697) (2.307) (0.545) (0.589)
ot \ \ \ \ \ N\
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADF —-3.36"**  —3.336"** —3.302"** —2.969*** —2.996"** —3.009***
System Approach
770 0.332%  0.324" 0.324 0.324** 0.325"* 0.326"* 0.326"**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
0o 0.767***  0.891*** 0.84*** 0.825***  0.874***  (0.844***  (.834***
(0.001) (0.02) (0.019) (0.018) (0.025) (0.023) (0.019)
¢ 1.012***  1.007*** 1.006*** 1.006***  1.01%** 1.01%** 1.01%**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Y 0.005***  0.005*** 0.005*** 0.005***  0.005***  0.005***  0.005***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
A 0.883***  0.924*** 0.934*** 0.931*** 0.917*** 0.914*** 0.911***
(0.019) (0.019) (0.019) (0.019) (0.02) (0.02) (0.02)
P —8.534*** 1.345%** 1.54%**  —9.261*** 1.514*** 1.609***
(1.274) (0.200) (0.256) (1.921) (0.345) (0.344)
ot \ \ \ \ \ \
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADFg —2.693*** —3.13***  —=3.064***  —3.021*** —2.995*** —2.974*** —2.946***
ADFp —3.316""* —3.478***  —3.408*** —3.384"** —3.469*** —3.429*** —3.404***
ADFy —2.693*** —2.67***  —2.669"** —2.668"*F —2.642*** —2.662*** —2.665***

Notes: the superscripts
icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.

kKK Kk
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Table A.5: Summary of Estimates of IEES Production Functions: Break in LATC
| CES IEES(II) IEES(MRS) IEES(K) IEES(7w) IEES(r) IEES(k)

Single-Equation NLS (; = 0.0045, 7, 3 = 0.001 and B = 2003)
TTo 0.3257%  0.325"* 0.3257F 0.3257* 0.363"**  0.324™*  0.324™F
(0.001)  (0.001) (0.001) (0.001) (0.02) (0.001)  (0.001)
00 0.633***  0.633*** 0.633"** 0.633***  0.757***  0.751"**  0.745"**
(0.017)  (0.034) (0.018) (0.017)  (0.041)  (0.034)  (0.029)
P —0.001 0.000 0.000  —8.958**  1.879** = 2.676"**
(1.444) (0.069) (0.001)  (4.225) (0.744)  (0.726)
ot N \ N\ Y N \
Ho:CES [0.972] [0.899] [0.764] [0.012] [0.034] [0.000]
ADF —3.302"* —3.302*** —3.302*** —3.302*** —2.648"* —2.674"** —2.688***
Two-Step (09 = 0.742, ; = 0.0045, 7, 3 = 0.001 and B = 2003)
7o 0.324*** 0.324" 0.324**  0.369"* 0.324™* 0.324™*
(0.001) (0.001) (0.001)  (0.015)  (0.001)  (0.001)
P —3.827+* 1.293*** 1.932%* —7.785***  1.744**  2.621***
(0.541) (0.147) (0.28) (2.385)  (0.549)  (0.588)
o1 N\ \ N\ N\ N N
Ho:CES [0.000] [0.000] [0.000] [0.002] [0.001] [0.000]
ADF —3.656"*  —3.639""* —3.626"** —2.958"** —2.98*** —2.996"**
System Approach
TTo 0.337%  0.324™ 0.3247 0.3237% 0.324*  0.324™* 0.3257*F
(0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001)  (0.001)
0o 0.742***  0.831*** 0.824*** 0.817***  0.824***  0.807***  0.799***
(0.001)  (0.017) (0.016) (0.016)  (0.023)  (0.021)  (0.016)
¢ 0.991***  0.992*** 0.991%** 0.991***  0.993***  0.993***  0.993***
(0.002)  (0.002) (0.002) (0.002)  (0.002)  (0.002)  (0.002)
0% 0.004***  0.004*** 0.004*** 0.004***  0.004***  0.004***  0.004***
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)
Y18 0.001***  0.001*** 0.001*** 0.001***  0.001***  0.001***  0.001***
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)
P —4.663"** 1.181*** 1.542%** —6.462***  1.414***  1.733***
(0.552) (0.134) (0.197)  (1.31)  (0.263)  (0.224)
ot N\ N\ N\ N\ N ~
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ADFg —2.729"* -3.161** —3.147** -3.128*** —3.007*** —3.02*** —3.016"**
ADF;, —4.103"* —4.134**  —4.132** —4.137*** —4.159""* —4.163"** —4.161***
ADFy —2.882" —2.889*** —2.897*** —2.898*** —2.882*** —2.89"** —2.89***

Notes: the superscripts ***, ** and * denote rejection of the null about parameters’ insignif-
icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.
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Table A.6: Summary of Estimates of IEES Production Functions: Break in LATC &
Quality-Adjusted Labor Input

| CES IEES(Il) IEES(MRS) IEES(K) IEES(7w) IEES(r) IEES(k)
Single-Equation NLS (; = 0.0056, 7; 5 = —0.0008 and B = 1964)

7o 0.329"**  0.327*** 0.327%* 0.327%**  0.363***  0.324™* 0.324™*
(0.001)  (0.001) (0.001) (0.001) (0.02) (0.001)  (0.001)
00 0.671***  0.703*** 0.684*** 0.676***  0.757***  0.751"**  0.745"**
(0.024)  (0.037) (0.028) (0.025)  (0.041)  (0.034)  (0.029)
P —5.391*** 1.659*** 2.328"* —8.958**  1.879** = 2.676™**
(1.984) (0.584) (0.926)  (4.225) (0.744)  (0.726)
ot N\ \ N N N \
Ho:CES [0.007] [0.005] [0.012] [0.012] [0.034] [0.000]
ADF —2.8727 —2.98***  —2.948*** —2.933*** —2.648"* —2.674"** —2.688***
Two-Step (09 = 0.751, ; = 0.0056, ; 5 = —0.0008 and B = 1964)
TTo 0.326"** 0.3257* 0.325"**  0.365"**  0.324™*  0.324™*F
(0.001) (0.001) (0.001)  (0.013)  (0.001)  (0.001)
P —7.594*** 2.818** 3.743*** —8.493***  1.872***  2.767***
(0.745) (0.326) (0.876) (2.36) (0.548)  (0.587)
ot N\ N\ N N N ~
Ho:CES [0.000] [0.000] [0.000] [0.000] [0.001] [0.000]
ADF —3.375"*  —3.321""*  —3.246"* —2.962"** —2.986*** —3.001"**
System Approach
TTo 0.333*  0.325%** 0.326" 0.3267* 0.3277*  0.327F  0.327°
(0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001)  (0.001)
00 0.751%**  0.872*** 0.798*** 0.79***  0.821***  0.795"**  0.793***
(0.001)  (0.022) (0.019) (0.019)  (0.026)  (0.021)  (0.019)
¢ 1.015***  1.013*** 1.013*** 1.013***  1.015***  1.015*** 1.015***
(0.002)  (0.003) (0.003) (0.003)  (0.002)  (0.002)  (0.003)
07 0.006***  0.006*** 0.006"** 0.006***  0.006***  0.006***  0.006***
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)
V1.8 —0.001*** —0.001***  —0.001***  —0.001*** —0.001*** —0.001*** —0.001***
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)
P —8.465"** 1.007*** 1.105*** —5.371***  0.663**  0.745"*
(1.248) (0.237) (0.301)  (1.687) (0.33) (0.338)
0t N\ N\ N N Y N
Ho:CES [0.000] [0.000] [0.001] [0.000] [0.045] [0.028]
ADFk —2.723*** =3.107***  —2.942***  —2.902*** —2.926*** —2.862*** —2.85"**
ADFp —3.439"** —3.46"** —3.407***  —3.403"** —3.484*** —3.475*** —3.473***
ADFy —2.9227 —2.964***  —2963***  —2.967*** —2952*** 297" D 972***

Notes: the superscripts ***, ** and * denote rejection of the null about parameters’ insignif-
icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.
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Table A.7: Summary of Estimates of IEES Production Functions: LATC & KATC

| CES IEES(IT) IEES(MRS) IEES(k) IEES(mwr) IEES(r) IEES(%)
Single-Equation NLS (y; = 0.0056 and ;, = —0.003)
770 0.3277%  0.325% 0.325% 0.3257 1.11 0.3257*  (0.325
(0.001) (0.001) (0.001) (0.001) (1.171) (0.001) (0.001)
0o 0.903***  0.908*** 0.906*** 0.906***  0.908**  0.907***  0.907***
(0.008) (0.01) (0.009) (0.008) (0.009) (0.008) (0.009)
P —0.772* 0.088* 0.1+ —0.815 0.081 0.091
(0.454) (0.046) (0.051) (0.699) (0.059) (0.069)
ot \ \ N\ N\ N N\
Ho:CES [0.089] [0.055] [0.049] [0.170] [0.244] [0.183]
ADF —3.268""* —3.267***  —3.248"**  —3.245"** —3.152*** —3.144"** —3.143"**
Two-Step (0p = 0.883, 7; = 0.0056 and y, = —0.003)
770 0.326™ 0.325% 0.3257% 0.3247F  0.326""  0.326"
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
P —0.290 0.056 0.070  —0.200 0.030 0.037
(0.327) (0.04) (0.047) (0.396) (0.054) (0.059)
ot N\ N\ \ N\ N\ \
Ho:CES [0.375] [0.160] [0.135] [0.647] [0.584] [0.538]
ADF —3.704" 3.7 —3.698"** —3.556"** —3.554*** —3.554***
System Approach
770 0.326™*  0.325%* 0.325 0.3257% 0.325"F  0.324F  0.325""
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
09 0.883"*  0.919*** 0.9227%** 0.922%*  0.918*  (0.912***  (0.922***
(0.001)  (0.012) (0.011) (0.011)  (0.024)  (0.021)  (0.024)
¢ 1.004***  1.003*** 1.003*** 1.003***  1.003***  1.002***  1.003***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
07 0.006™**  0.006*** 0.006*** 0.006***  0.006**  0.006***  0.006™**
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
Yk —0.003*** —0.004***  —0.004***  —0.004*** —0.004*** —0.004*** —0.004**
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)
P —0.423 0.037 0.041 —0.601** —0.112* 0.055
(0.288) (0.025) (0.028) (0.302) (0.067) (0.04)
ot N\ N\ \ N\ e N\
Ho:CES [0.142] [0.141] [0.139] [0.047] [0.093] [0.169]
ADFk —3.563"** —3.488***  —3.483*** —3.482*** —3.486""* —3.474"** —3.485"**
ADF —3.886"** —3.793***  —3.782***  —3.781*** —3.793*** —3.84"* —3.781"**
ADFy —2.423*F  —2421**  —2.412*  —2412*F —2423* —2417* —2415**

Notes: the superscripts
icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.
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Table A.8: Summary of Estimates of IEES Production Functions: LATC & KATC &
Quality-Adjusted Labor Input

| CES IEES(II) IEES(MRS) IEES(k) IEES(m) IEES(r) IEES(k)
Single-Equation NLS (y; = 0.013 and y;, = —0.017)
7o 0.3277**  0.325"* 0.324** 0.324**  0.328"** 0.324*** 0.324™*
(0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001)  (0.001)
00 0.977***  0.979*** 0.978*** 0.978** 0.979***  0.978*** 0.978***
(0.002)  (0.002) (0.002) (0.002)  (0.002)  (0.002)  (0.002)
P —0.222** 0.007*** 0.007*** —0.324**  0.01***  0.01***
(0.105) (0.002) (0.002)  (0.158)  (0.003)  (0.004)
ot N\ N N Y N N
Ho:CES [0.035] [0.004] [0.004] [0.040] [0.003] [0.004]
ADF —3.209*** —3.224***  -3.192*** —3.191*** —3.215*** —3.184"** —3.182***
Two-Step (0p = 0.973, 7; = 0.013 and 7, = —0.017)
7o 0.325"* 0.324** 0.324"** 85.474 0.324**  0.324™*
(0.001) (0.001) (0.001)  (300.477)  (0.001)  (0.001)
P —0.115 0.006** 0.006*** —0.179 0.009***  0.01***
(0.074) (0.002) (0.002)  (0.113)  (0.003)  (0.004)
ot N\ N N pY N N
Ho:CES [0.121] [0.011] [0.009] [0.113] [0.007] [0.008]
ADF —3.659"**  —3.649"** —3.648""* —3.633*"** —3.621"** —3.619***
System Approach
TTo 0.3277% 0.326™ 0.325%* 0.3257% 0.326**  0.325"** 0.325"*
(0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001)  (0.001)
00 0.973***  0.972*** 0.972%** 0.972%**  0.972***  0.969***  (0.972***
(0.002)  (0.008) (0.009) (0.009)  (0.008) (0.01) (0.008)
¢ 1.013***  1.008*** 1.008*** 1.008***  1.008***  1.007***  1.008***
(0.003)  (0.003) (0.003) (0.003)  (0.003)  (0.003)  (0.003)
Y1 0.013***  0.012*** 0.011*** 0.011***  0.012***  0.011***  0.011***
(0.001)  (0.002) (0.002) (0.002)  (0.002)  (0.002)  (0.002)
Yk —0.017*** —0.013***  —0.013***  —0.013*** —0.013*** —0.012*** —0.013***
(0.001)  (0.004) (0.004) (0.004)  (0.004)  (0.004)  (0.004)
P —0.08 0.003 0.003  —0.113  —0.007 0.004
(0.068) (0.002) (0.002)  (0.071)  (0.005)  (0.003)
0t N\ N N N /! N
Ho:CES [0.236] [0.198] [0.198] [0.139] [0.113] [0.143]
ADFg —3.615*** —3.556"**  —3.557***  —3.557*** —3.555"** —3.562*"** —3.556"**
ADF;, —3.621*"* —3.643"**  —3.647"** —3.648""* —3.641"** —3.663"** —3.646"**
ADFy —2.61"**  —2.65"** —2.646""*  —2.646""* —2.651"** —2.649"** —2.647***

Notes: the superscripts

kKK Kk
7

and * denote rejection of the null about parameters’ insignif-

icance at the 1%, 5% and 10% significance level, respectively. In the case of 0y, the null hy-
pothesis is that 0y = 1 (Cobb-Douglas production). ADF stands for the Augmented Dickey-
Fuller test without a constant term. The superscripts ***, ** and * in the ADF test denote re-
jection of the null about a unit root of the respective residuals at the 1%, 5% and 10% signif-
icance level. The number of lags for the ADF test has been determined by the BIC criterion.
The numbers in round and squared parentheses denote robust standard errors and probabil-
ity values, respectively.

29



Figure A.10: Implied o}: Baseline Specification; Quality-Adjusted Labor Input
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Single-Equation NLS Two-Step System Approach
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Note: Dashed lines represent 95% confidence intervals computed with the delta method. In the case of
two-step estimates (middle panels), the assessment of variance of estimates may be downward biased
because the delta method has been applied to the second step only, taking the estimates from the first
step as fixed numbers. Observe that o is a nonlinear function of ¢, as in equations (48)—(53). This implies
that (i) around the normalization point, k; & ko and x; & &g, 0t ~ 0y regardless of the value of . Then
the upper and lower bounds converge to the point estimate of ¢y; (ii) in some cases the p-value of the ¢
parameter estimate is only slightly below 0.05. Then at the bound of the 95% confidence interval, ¢ ~ 0
and thus oy ~ ¢p implying that the given bound is almost flat (even if the point estimate of o and the

other bound is not).
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