
Appendix

A Proof of Lemma 1

As shown in Figure 5, the intersection of ε(xt) and η(ϕt−1) determines the value of xt,

which satisfies (19) for a given ϕt−1. When ϕt−1 increases, the function η(ϕt−1) increases,

as depicted by the broken line in Figure 5. Thus, xt rises correspondingly. As a result, the

ϕt = ϕt−1 locus can be depicted as an upward-sloping curve on the (xt, ϕt−1) plane in Figure

1. Note that the definition of ϕt implies ϕt−1 ∈ (0, 1). Let us define ϕ̃ as ϕ̃ ≡ η−1(ε(0)).

Since limϕt−1→1 η(ϕt−1) = +∞ and limϕt−1→0 η(ϕt−1) = −∞, the ϕt = ϕt−1 locus has an

asymptote ϕt−1 = 1 when xt →∞ and ϕt−1 has a lower limit ϕ̃ when xt = 0.18

Figure 5: Derivation of the xt+1 = xt locus.

B Proof of Lemma 2

We derive the xt+1 = xt locus. Differentiating ζ(xt) with respect to xt yields

ζ ′(xt) =

[
γ(1 + xt)

(
1 + λΓ

xt

)
+ (1 + γxt)

(
1 + λΓ

xt

)
− (1 + γxt)(1 + xt)

λΓ
x2t

]
β(1 + xt)[1 + γ(xt + µ1)]

−

[
(1 + γxt)(1 + xt)

(
1 + λΓ

xt

)
− ᾱ(1− γ)µ1

]
[1 + γ(1 + 2xt + µ1)]

β(1 + xt)2 [1 + γ(xt + µ1)]2
. (B.1)

We rearrange (B.1) as follows:

ζ ′(xt) =
(1 + xt)

2
[
γ2µ1

(
1 + λΓ

xt

)
− (1 + γxt)(1 + γxt + γµ1)λΓ

x2t

]
β(1 + xt)2 [1 + γ(xt + µ1)]2

+
ᾱ(1− γ)µ1 [1 + γ(1 + 2xt + µ1)]

β(1 + xt)2 [1 + γ(xt + µ1)]2
,

=
Γ(1 + xt)

2 [γ2(1− g)x2
t − λ{1 + γ(2xt + µ1)}+ ᾱ(1− γ)µ1x

2
t [1 + γ(1 + 2xt + µ1)]]

βx2
t (1 + xt)2 [1 + γ(xt + µ1)]2

,

=
σ(xt)

βx2
t (1 + xt)2 [1 + γ(xt + µ1)]2

,
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where

σ(xt) ≡ Γ(1+xt)
2
[
γ2(1− g)x2

t − λ{1 + γ(2xt + µ1)}
]
+ᾱ(1−γ)µ1x

2
t [1 + γ(1 + 2xt + µ1)] .

We then differentiate σ(xt) with respect to xt as follows:

σ′(xt) = µ2x
3
t + µ3x

2
t + µ4xt + µ5,

where

µ2 ≡ 4Γγ2(1− g) + 2γᾱ(1− γ)µ1 > 0,

µ3 ≡ 6Γγ{γ(1− g)− λ}+ 2ᾱ(1− γ)µ1(1 + 2γ + γµ1),

µ4 ≡ 2Γγ2(1− g) + 2γᾱ(1− γ)µ1 − 8λΓγ − 2λΓ(1 + γµ1),

µ5 ≡ −2λΓ(1 + γ + γµ1) < 0.

Assuming that γ(1− g) > λ, we obtain µ4 > 0. As a result, there is a unique ¯̄x > 0 that

satisfies σ′(¯̄x) = 0. σ′(xt) < 0 holds when 0 < xt < ¯̄x and σ′(xt) > 0 holds when xt > ¯̄x.

Moreover, since σ(0) = −λΓ(1+γµ1) < 0 and limxt→∞ σ(xt) =∞, there is a unique x̄ > 0

that satisfies σ(x̄) = 0. σ(xt) < 0 holds when 0 < xt < x̄ and σ(xt) > 0 holds when xt > x̄.

That is, we obtain

ζ ′(xt) < 0 if 0 < xt < x̄,

ζ ′(xt) > 0 if xt > x̄.

In addition, we obtain the following results:

lim
xt→0

ζ(xt) =∞,

lim
xt→∞

ζ(xt) = lim
xt→∞


(

1
xt

+ γ
)(

1
xt

+ 1
)(

1 + λΓ
xt

)
− ᾱ(1−γ)µ1

x2t

β
(

1
xt

+ 1
)(

1+γµ1
xt

+ γ
) − αP

 =
1

β
− αP .

By using these results, we obtain a curve, the xt+1 = xt locus, which is U-shaped and has

the asymptotes ϕt−1 = 1
αR−αP

(β−1 − αP ) > 1 when xt →∞ and ϕt−1 →∞ when xt → 0.
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Figure 1 depicts the xt+1 = xt locus.

C Properties of the Kt+1/Kt = 0 locus

By differentiating Λ(xt) with respect to xt, we obtain

Λ′(xt) =

[
(1 + γxt)

(
1 + λΓ

xt

)
+ γxt

(
1 + λΓ

xt

)
− (1 + γxt)

λΓ
xt

]
β(1 + xt)[1 + γ(xt + µ1)]

−

[
xt(1 + γxt)

(
1 + λΓ

xt

)
− ᾱ(1− γ)µ1

]
[1 + γ(1 + 2xt + µ1)]

β(1 + xt)2 [1 + γ(xt + µ1)]2
,

=
(1 + 2γxt + γλΓ)(1 + xt)[1 + γ(xt + µ1)]− (1 + γxt)(xt + λΓ)[1 + γ(1 + 2xt + µ1)]

β(1 + xt)2[1 + γ(xt + µ1)]2

+
ᾱ(1− γ)µ1 [1 + γ(1 + 2xt + µ1)]

β(1 + xt)2 [1 + γ(xt + µ1)]2
,

=
(1− λΓ)(1 + γxt)

2 + γµ1(γx2
t + 2γxt + 1− λΓ + γλΓ)

β(1 + xt)2[1 + γ(xt + µ1)]2

+
ᾱ(1− γ)µ1 [1 + γ(1 + 2xt + µ1)]

β(1 + xt)2[1 + γ(xt + µ1)]2
. (C.1)

By using µ1 ≡ Γ(1 + λ− g), we can rewrite the numerator of (C.1) as

ν1x
2
t + ν2xt + ν3,

where

ν1 ≡ γ2[1 + (1− g)Γ],

ν2 ≡ 2γ{1 + [γλ+ (1− g)γ − λ]Γ + (1− γ)ᾱµ1},

ν3 ≡ (1 + γµ1){1 + [ᾱ(1− γ)(1 + λ− g)− λ]Γ}+ γ2µ1λΓ + ᾱ(1− γ)γµ1.

Assuming that ᾱ(1− γ)(1 + λ− g) > λ and using the assumption γ(1− g) > λ in Lemma

2, ν1 > 0, ν2 > 0, and ν3 > 0 hold, and hence Λ′(xt) > 0 holds for all xt ≥ 0. In addition,

we obtain the following property for Λ(xt):

lim
xt→∞

Λ(xt) = lim
xt→∞


(

1
xt

+ γ
)(

1 + λΓ
xt

)
− ᾱ(1−γ)µ1

x2t

β
(

1
xt

+ 1
)(

1+γµ1
xt

+ γ
) − αP

 =
1

β
− αP .
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Thus, the Kt+1/Kt = 0 locus is upward sloping if ᾱ(1 − γ)(1 + λ − g) > λ and has an

asymptote ϕt−1 = 1
αR−αP

(β−1 − αP ) > 1 when xt →∞ on the (xt, ϕt−1) plane.

D Phase diagram

First, we examine whether ϕt > ϕt−1 or ϕt < ϕt−1 at each point of the (xt, ϕt−1) plane.

By using (9), we obtain

ϕt R ϕt−1 ⇔ ε(xt) R η(ϕt−1).

Suppose that (x, ϕ) is a combination that satisfies (19); that is, ε(x) = η(ϕ) holds. More-

over, let us define x by x > x. Since ε(xt) is increasing in xt, ε(x) < η(ϕ) holds. As

a result, we obtain ϕt < ϕt−1 on the left of the ϕt = ϕt−1 locus. Similarly, we obtain

ϕt > ϕt−1 on the right of the ϕt = ϕt−1 locus.

Next, we investigate whether xt+1 > xt or xt+1 < xt at each point of the (xt, ϕt−1)

plane. From (6), we obtain

xt+1 R xt ⇔ ϕt−1 Q ζ(xt).

Therefore, we obtain xt+1 > xt below the xt+1 = xt locus and xt+1 < xt above the xt+1 = xt

locus. By using these results, we can depict a phase diagram, as shown in Figure 1.

E Local stability around the steady states

By approximating (17) and (18) linearly around the steady state k (k ∈ {S, U}), we obtain

 ϕt − ϕ∗k
xt+1 − x∗k

 =

Jkϕϕ Jkϕx

Jkxx Jkxϕ

ϕt−1 − ϕ∗k
xt − x∗k

 , (E.1)
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where

Jkϕϕ =
ϕ∗kG

R
ϕ (x∗k, ϕ

∗
k) +GR(x∗k, ϕ

∗
k)− ϕ∗kGA

ϕ(x∗k, ϕ
∗
k)

GA(x∗k, ϕ
∗
k)

,

Jkϕx =
ϕ∗kG

R
x (x∗k, ϕ

∗
k)− ϕ∗kGA

x (x∗k, ϕ
∗
k)

GA(x∗k, ϕ
∗
k)

,

J ixx =
GA(x∗k, ϕ

∗
k)(1− λΓ)− (1 + x∗k)(x

∗
k + λΓ)GA

x (x∗k, ϕ
∗
k)

[(1 + x∗k)G
A(x∗k, ϕ

∗
k)− (x∗k + λΓ)]2

,

Jkxϕ =−
(x∗k + λΓ)(1 + x∗k)G

A
ϕ(x∗k, ϕ

∗
k)

[(1 + x∗k)G
A(x∗k, ϕ

∗
k)− (x∗k + λΓ)]2

,

whereGR
z (x∗k, ϕ

∗
k) ≡

∂GR(xt,ϕt−1)
∂z

∣∣
(xt,ϕt−1)=(x∗k,ϕ

∗
k)

andGA
z (x∗k, ϕ

∗
k) ≡

∂GA(xt,ϕt−1)
∂z

∣∣
(xt,ϕt−1)=(x∗k,ϕ

∗
k)

for z ∈ {xt, ϕt−1}. Note that GA(x∗k, ϕ
∗
k) = GR(x∗k, ϕ

∗
k) holds. Let us denote the two eigen-

values of the Jacobian matrix of the linearized system as ek1 and ek2. These eigenvalues are

the roots of the characteristic polynomial: P (e) = e2 − (Jkϕϕ + Jkxx)e+ (JkxxJ
k
ϕϕ − JkϕxJkxϕ).

To consider this, we conduct a numerical analysis. We adopt the following benchmark

parameters: γ = 0.2, Γ = 12, g = 0.2, δ = 0.5, β = 0.3, αR = 0.45, and αP = 0.25. Table

3 shows the two eigenvalues for each steady state.

λ (eS1 , e
S
2 ) (eU1 , e

U
2 )

0.01 (0.098, 0.378) (0.219, 2.566)

0.02 (0.104, 0.439) (0.207, 2.227)

0.03 (0.113, 0.527) (0.193, 1.874)

0.04 (0.126, 0.678) (0.174, 1.467)

Table 3: Eigenvalues at the steady states S and U .

From Table 3, we find that both eS1 and eS2 take real positive values and satisfy 0 <

eS1 < eS2 < 1, and then the steady state S is a sink. We further find that both eU1 and eU2

take real positive values and satisfy 0 < eU1 < 1 < eU2 , and then the steady state U is a

saddle point.
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F Introduction of redistributive policy

Under the redistributive policy, we rewrite the following optimal conditions of individuals:

bRt+1 =
β [1 + (1− τt+1)rt+1] sRt

1 + τ b
, (F.1)

c1P
t = (1− αP )

[
(1− τt)wt + bPt + Tt

]
, (F.2)

sPt = αP
[
(1− τt)wt + bPt + Tt

]
, (F.3)

The other optimal conditions are the same as in (4a)–(4d). In addition, (5) becomes

sRt = αR

[
(1− τt)wt +

β{1 + (1− τt)rt}
1 + τ b

sRt−1

]
, (F.4)

sPt = αP
[
(1− τt)wt + Tt + β{1 + (1− τt)rt}sPt−1

]
. (F.5)

By substituting (F.1) into the government’s redistributive policy δNτ bbRt = (1 − δ)NTt,

we obtain

Tt =

(
δ

1− δ

)(
τ b

1 + τ b

)
β[1 + (1− τt)rt]sRt−1. (F.6)

The asset market-clearing condition (6), equations determined in the production sector

((7a), (7b), and (7c)), and those in the public sector ((8), (9), and (10)) remain unchanged.

Furthermore, the derivations of the other equations are conducted in the same manner as

described in Section 3. Some algebra rewrites GA(xt, ϕt−1) (in (13), (16), (17), and (18)),

GK(xt, ϕt−1) (in (16) and (18)), and GR(xt, ϕt−1) (in (14) and (17)) into

GA(xt, ϕt−1; τ b) =
ᾱ(1− γ)µ1

(1 + γxt)(1 + xt)
+ β

(
1 +

γµ1

1 + γxt

)[
αR − αP
1 + τ b

ϕt−1 + αP

]
, (F.7)

GK(xt, ϕt−1; τ b) = (1 + xt)G
A(xt, ϕt−1; τ b)− (xt + λΓ), (F.8)

and

GR(xt, ϕt−1; τ b) =
αR
ϕt−1

[
δ(1− γ)µ1

(1 + γxt)(1 + xt)
+

β

1 + τ b

(
1 +

γµ1

1 + γxt

)
ϕt−1

]
, (F.9)
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respectively. Translating these into (17) and (18) transforms the dynamic systems as

ϕt
ϕt−1

=
GR(xt, ϕt−1; τ b)

GA(xt, ϕt−1; τ b)

xt+1

xt
=

1 + λΓ/xt
(1 + xt)GA(xt, ϕt−1; τ b)− (xt + λΓ)

. (F.10)

Setting ϕt = ϕt−1 and xt = xt+1 in (F.10) yields (27) and (28).

G ϕt = ϕt−1 locus under the redistributive policy

We rearrange (27) as follows:

η̃(ϕt−1) =
(1 + τ b)(1− γ)

[αR − (1 + τ b)αP ]− (αR − αP )ϕt−1

(
ᾱ− δαR

ϕt−1

)
.

Here, we assume αR > (1 + τ b)αP . Under this assumption, when ϕt−1 increases, the

function η̃(ϕt−1) increases. Similar to the analysis in Appendix A, the ϕt = ϕt−1 locus

can be depicted as an upward-sloping curve on the (xt, ϕt−1) plane. Moreover, we de-

fine ϕ̂ and ϕ̃(τ b) as ϕ̂ ≡ 1+τb

αR−αP

(
αR

1+τb
− αP

)
< 1 and ϕ̃(τ b) ≡ η̃−1(ε(0)), respectively.

Since limϕt−1→ϕ̂ η̃(ϕt−1) = +∞ and limϕt−1→0 η̃(ϕt−1) = −∞, the ϕt = ϕt−1 locus has an

asymptote ϕt−1 = ϕ̂ when xt →∞ and ϕt−1 has a lower limit ϕ̃(τ b) when xt = 0.19
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