Appendix

A  Proof of Lemma 1

As shown in Figure 5, the intersection of ¢(z;) and n(¢:—1) determines the value of xy,
which satisfies for a given ;1. When ¢,_; increases, the function 7(p;_1) increases,
as depicted by the broken line in Figure 5. Thus, x; rises correspondingly. As a result, the
¢ = 1 locus can be depicted as an upward-sloping curve on the (x;, ;1) plane in Figure
1. Note that the definition of o, implies ¢; ; € (0,1). Let us define ¢ as ¢ = n~1(£(0)).
Since limy, |1 n(pi—1) = +00 and lim,, , 0 7(pi—1) = —o0, the ¢, = ¢, locus has an

asymptote ¢;_; = 1 when z, — oo and ¢,_; has a lower limit ¢ when z, = 0.8

Figure 5: Derivation of the z;,1 = z; locus.

B Proof of Lemma 2

We derive the z;,1 = x; locus. Differentiating ((x;) with respect to z; yields

[7(1 + 24) (1 + %) + (14 yay) (1 + %) — (14 ya) (1 + xt)%]
B+ )L+ (@ + )]
[(1 + ya) (1 + ) (1 + ;—F) —a(l - v)ul} (14 (1 + 22 + 1))
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We rearrange (B.1]) as follows:

(1+22)? [v% (1 + Q—F) — (L yz) (L4 vz + ) 3
B(L+2)? [1+ y(z, + )]
a(l =) [L+ (1 + 22, + )]
B(L+ )2 [1+ y(z; + )]
(1 +2)* [y (1 = g)af = M1+~ + )} +a(l = y)mag [L+ (1 + 22 + )]
Br(1+x,)2 [1+y(z; + m))*
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where
o(ze) = D(1+a)? [v(1 — g)af — M1+ 722 + )} +a@(l—7)pax] [T+ v(1 + 22 + 1)) -
We then differentiate o(z;) with respect to z; as follows:

o' (1) = pow} + ps} + pazy + pis,

where

pz = 4072 (1 — g) + 27a(l — ) > 0,
ps = 6Iy{y(1 — g) — A} +2a(1 — ) (1 + 2y + yp),
pa = 2072 (1 — g) + 29a(1 = )y — 8ATy = 2AT (1 + ),

ps = =201 4+ + ) < 0.

Assuming that v(1 — g) > A, we obtain u4 > 0. As a result, there is a unique & > 0 that
satisfies o/(z) = 0. ¢’(2;) < 0 holds when 0 < z; < Z and o'(x;) > 0 holds when z; > Z.
Moreover, since 0(0) = —A['(1+7u1) < 0 and lim,, , o(x;) = 0o, there is a unique & > 0
that satisfies o(Z) = 0. o(x;) < 0 holds when 0 < z; < Z and o(x;) > 0 holds when z; > 7.

That is, we obtain

C’(xt) <0 if 0< Ty < E,

C/(l't) >0 if Ty > .
In addition, we obtain the following results:

lim ((z;) = oo,
(Et*)O

() (e () -em
t
—Qp| = —= — Qp.

B

li = li
xtl—I}looC(xt) xtl—I>noo ﬁ (%t + 1) (1+x'1,u1 + 7)

By using these results, we obtain a curve, the z;,; = x; locus, which is U-shaped and has

1
ap—ap

(7' — ap) > 1 when z; — oo and ;_; — oo when z; — 0.

the asymptotes ¢, 1 =
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Figure 1 depicts the z;,1; = x; locus.

C Properties of the K;,1/K; =0 locus

By differentiating A(z;) with respect to z;, we obtain

[(1 + yay) <1 + %) + vy, (1 + %) —(1+ Wxt)%]
B+ z)[1 4+ (2 + )]
- [ast(l + yxy) (1 + %) —a(l— 7)#1] (147 (1 + 224 + 1))

B+ z,)? [T+ y(w + )]
(1 + 2yay + ALY + @) [+ y(@e + pa)] — (L + yo) (@ + AD) [+ (1 + 224 + pa))]
B+ 2)?[1 + (@ + p)]?

a(l =) [1+ (1 + 22 + )]

B+ )2 [L+ 7w+ m)]*
(1 = AD)(1 +y2)® + v (yaf + 292, + 1 = AL +9AD)

B+ )1+ y(ze + m))?

a(l =y [1+ (1 + 22 + )]

B+ z )L+ (e + )

N (zy) =

bl

+

)

+

By using u1 =T'(1 + A — g), we can rewrite the numerator of as
yle + voxy + U3,

where

v =1+ (1 -g)T),
vy =291+ YA+ (1 —g)y = AT + (1 —y)au },

v = (1+yp){l+[a(l = 7)1+ A —g) = AT} +9*mAL +a(1 — )y

Assuming that @(1—~)(1+ X —g) > X and using the assumption y(1 —¢) > A in Lemma
2, 1 >0, 5 >0, and v3 > 0 hold, and hence A’(x;) > 0 holds for all z; > 0. In addition,

we obtain the following property for A(x;):

Ge)(ex)-mn
lim A(z;) = lim . o — —ap _B—OéP
Tt—>00 Tt—00 1 Y
A = ) ()
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Thus, the K;41/K; = 0 locus is upward sloping if a(1 —v)(1 + X —¢) > A and has an

1
aRp—ap

asymptote ¢;_1 = (7' — ap) > 1 when z; — oo on the (zy, ;1) plane.

D Phase diagram

First, we examine whether ¢; > ¢, 1 or ¢, < ¢;_1 at each point of the (x4, ;1) plane.

By using @, we obtain

o Z o1 < () Z nlee).

Suppose that (z, ¢) is a combination that satisfies (19)); that is, e(z) = n(y) holds. More-
over, let us define x by x > x. Since e(z;) is increasing in w;, e(z) < 7(y) holds. As
a result, we obtain ¢; < ¢; 1 on the left of the ¢, = ¢, 1 locus. Similarly, we obtain
©; > ;1 on the right of the ¢, = ¢; 1 locus.

Next, we investigate whether x;,1 > z; or x4y1 < z; at each point of the (x4, ;1)

plane. From @, we obtain

Tit1 ; Ty < Pr-1 ; (@)

Therefore, we obtain x;,1 > x; below the x; 1 = x; locus and x;,; < x; above the z;,1 = x;

locus. By using these results, we can depict a phase diagram, as shown in Figure 1.

E Local stability around the steady states

By approximating and linearly around the steady state k (k € {S,U}), we obtain

* k k *
Pt — P _ J(,D(p Japx $r—1 — P : (El)

k k
Te+1 — 37;; Jx:p ngo Tt — ‘r;;
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where

PrGalai, o) + GR g, vh) — erGo (@, 1)

k
Yoo = GAlat, o) ’
GG e) — piGA (e p1)

o Az o0) ’
G- D) — (1 + a)(af + )G )

o (4 2)CA (e 0]) — (2 + AD)P ’
D0 4G i)

(1 + 23)GA (=g, or) — (g + AL

R(.+ %\ — 0GE(zs,00-1) Af % %) — OGA (z4,p1-1)
where G (a7, ¢}) = 9z |(xt,got_1)=(x;;,g0;;) and G2 (27, ¢f) = 0z ‘(:ct,cpt_l):(xz,%)
for z € {z, p¢_1}. Note that GA(x}, ¢;) = GE(x}, ;) holds. Let us denote the two eigen-
values of the Jacobian matrix of the linearized system as e} and e5. These eigenvalues are
the roots of the characteristic polynomial: P(e) = e* — (J}, + Ji e + (Jh,Jb, — J5,JE ).

To consider this, we conduct a numerical analysis. We adopt the following benchmark
parameters: v =02, ' =12, g =0.2, 0 = 0.5, = 0.3, ag = 0.45, and ap = 0.25. Table

3 shows the two eigenvalues for each steady state.

A (ef,€3) (ef, €)
0.01 | (0.098,0.378)  (0.219, 2.566)
0.02 | (0.104,0.439)  (0.207, 2.227)
0.03| (0.113,0.527)  (0.193, 1.874)
0.04 | (0.126,0.678)  (0.174, 1.467)

Table 3: Eigenvalues at the steady states S and U.

From Table 3, we find that both e and e take real positive values and satisfy 0 <
ef < e5 <1, and then the steady state S is a sink. We further find that both e} and e
take real positive values and satisfy 0 < e/ < 1 < €Y, and then the steady state U is a

saddle point.
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F Introduction of redistributive policy

Under the redistributive policy, we rewrite the following optimal conditions of individuals:

BL+ (1= Tepr)resa] s

R _
o =1 —ap) [1—m)w +b +T3], (F.2)
sf =ap [(1 — Ty)wy + bf + Tt} , (F.3)

The other optimal conditions are the same as in —. In addition, becomes

Bil+ (1 —7)re} g

st =agr |(1—7)w + T sl (F.4)
si =ap [(L—m)w, + T+ B{L+ (1 — m)rets ] - (F.5)

By substituting (F.1)) into the government’s redistributive policy SNT°0f = (1 — §)NTj,

we obtain

= (5 ( ~ ) Bl (1= st (F.6)

1+ 70

The asset market-clearing condition @, equations determined in the production sector

((74), (7b), and (7d)), and those in the public sector ((8), (9)), and (L0])) remain unchanged.

Furthermore, the derivations of the other equations are conducted in the same manner as

described in Section 3. Some algebra rewrites G (¢, ¢;—1) (in (13), (16), (17)), and (18)),
G5 (x4, 1-1) (in and (18)), and G (24, pr—1) (in and (17)) into

A oy al—=)m VHi aR —ap
G (xt,QOtfl,T)— (1_'_71})(1_'_1:16) +B<1+ 1+’Y»Tt> |: ]__|_7—b Q0t71+Oép ) (F7)

GK(xta Sﬁt—l;Tb) =(1+ xt)GA(xtv Pr-1; Tb) — (zy + A1), (F.8)
and
6(1 =) A Y
Gz, oy 1:7) = 2B n 14 e F.9
(xt Pt—1 7-) i1 <1+7xt)<]—+$t) ].+Tb 1+'7It Pt—1 ( )
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respectively. Translating these into ((17)) and transforms the dynamic systems as

Pt _ GR(IBnSOtfl;Tb)
Pt—1 GA(ZEt, Pt—1; Tb)
Tia1 1 —+ )\F/It

= ) F.10
T (1 —+ .Tt)GA<It, Pr—1; Tb) — (Z't —+ )\F) ( )

Setting ¢, = ;1 and x; = x4y in (F.10)) yields and (28).

G ¢; = ;1 locus under the redistributive policy

We rearrange as follows:

i(pra) = [ L+ =) — <@ B 5043) |

ap — (1 + Tb)aP] - (aR —ap Pr—1

Here, we assume agr > (1 + 7°)ap. Under this assumption, when ¢, ; increases, the
function 7(¢;_1) increases. Similar to the analysis in Appendix A, the ¢, = ¢;_; locus
can be depicted as an upward-sloping curve on the (zy, ;1) plane. Moreover, we de-
n - . b @ - o .
fine ¢ and §(7°) as ¢ = ;- (rfjb - ap) < 1 and ¢(7°) = 771(£(0)), respectively.

Since limy,_, 3 7(0i-1) = +00 and limy,_, 0 7(p-1) = —o0, the ¢, = ¢, locus has an

asymptote ;1 = ¢ when x; — oo and ¢;_; has a lower limit @¢(7°) when x; = 0.1
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