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Appendix A More Empirical Evidence Based on PM2.5

To further support our theoretical results, in this section we present the empirical evidence based

on world cross-sectional data with PM2.5 serving as the proxy of pollution instead of PM10. As a

preview, our theoretical results are still supported by the empirical evidence. Figure A.1 shows

the negative relationship between pollution and economic growth rate from 2013 to 2015. The

pattern is similar to Figure 2 in the main text.
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Figure A.1: The Negative Relationship between Pollution and Growth in the World (PM2.5)

To illustrate the existence of two BGPs, in Table A.1 we use K-means algorithm to

conduct cluster analyses based on the growth rate of real GDP per capita (“growth rate” in the

second column) and on logged values for PM2.5 weighted by population (“pollution” in the third

column). The same 149 countries with complete data are endogenously divided into two groups

in 1990 (Panel A of Table A.1) and in 2016 (Panel B of Table A.1). In Panel A, Group 1 consists

of 75 countries and Group 2 consists of 74 countries. The average growth rate is higher and

pollution is lower in Group 1 than in Groups 2. In Panel B, Group 1 consists of 73 countries and

Group 2 consists of 76 countries. Again, the average growth rate is higher and pollution is lower
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in Group 1 than in Group 2. Thus, in 1990 and in 2016, Group 1 is on the desirable BGP whereas

Group 2 is on the inferior BGP.

Table A.1: Cluster Analyses for two Groups of Countries Based on PM2.5

Growth rate Pollution

Panel A: Cluster analysis in 1990

Group 1

(75 countries)

1.78%

[0.03% 3.52%]

-0.01

[-0.13 0.11]

Group 2

(74 countries)

0.64%

[-1.50% 2.78%]

1.40

[1.27 1.52]

Panel B: Cluster analysis in 2016

Group 1

(73 countries)

1.82%

[1.19% 2.46%]

-0.20

[-0.31 -0.09]

Group 2

(76 countries)

1.12%

[0.33% 1.90%]

1.19

[1.07 1.32]

Notes. Each cell reports the group mean and 95% confidence interval in the bracket.

To illustrate the stability of the two BGPs, we carefully keep track of the transitions of

each country between groups from 1990 to 2016 based on Table A.1 and construct the associated

Markov transition matrix in Table A.2. We find that 97.33% of the countries that were on the

desirable BGP in 1990 remain on the desirable BGP in 2016, but 2.67% of the countries that were

on the desirable BGP in 1990 transition to the inferior BGP in 2016. However, no country

transitions from the inferior BGP to the desirable BGP from 1990 to 2016. Therefore, the

transition dynamic properties of the two BGPs are stable.
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Table A.2: Markov Transition Matrix for Countries Based on PM2.5 from 1990 to 2016

Desirable BGP Inferior BGP

Desirable BGP 0.9733 0.0267

Inferior BGP 0 1

Notes. (1) Table A.2 is calculated based on the transitions of the same 149 countries between

Groups in Table A.1.

(2) The Markov transition matrix shows the probability that a country transitions from one BGP to

another. For example, the table cell indexed (1,1) says the probability that a country remains on the

desirable BGP from 1990 to 2016 is 97.33%, and the table cell indexed (2,1) says the probability

that a country transitions from the inferior BGP to the desirable BGP is 0.

From Figure A.1, Table A.1 and A.2, we find that if we use PM2.5 to serve as another

proxy for pollution, our theoretical results are robustly consistent with the empirical evidence .

Appendix B Proof of Proposition 1 (The PE and NPE Regimes)

Proof. Inequality (8) is the condition under which the representative agent does not invest in

private education. Substituting equations (1b), (2b), and (9b) into inequality (8) gives

Φ(kt ,zt)<
µτ(1−∆)

χβ (1−α)(1− τ)
, (B.1)

where Φ(kt ,zt) =
φ(kt ,zt)

1+φ(kt ,zt)
is the agent’s propensity to save with zero private education

expenditures. Because the longevity function satisfies φ(kt ,zt) ∈ (φ ,φ), it can be shown that

Φ(kt ,zt) ∈
(

φ

1+φ ,
φ

1+φ

)

. Three cases may arise. First, if
µτ(1−∆)

χβ (1−α)(1−τ) ≤
φ

1+φ , which says that the

right-hand side of (B.1) is even smaller than the lower bound of Φ(kt ,zt), inequality (B.1) never

holds. The representative agent always invests in private education (et > 0) for any combinations

of zt and kt . Second, if
µτ(1−∆)

χβ (1−α)(1−τ) ≥
φ

1+φ
, which says that the right-hand side of (B.1) is even

larger than the upper bound of Φ(kt ,zt), inequality (B.1) always holds. The representative agent

never invests in private education (et = 0) for any combinations of zt and kt . Third, if
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φ

1+φ < µτ(1−∆)
χβ (1−α)(1−τ) <

φ

1+φ
, the representative agent may or may not invest in private education

depending on the combination of zt and kt exogenous to her. The boundary dictating the agent’s

decision is defined by

Φ(kt ,zt) =
µτ(1−∆)

χβ (1−α)(1− τ)
. (B.2)

Because
∂φ(kt ,zt)

∂kt
< 0 and

∂φ(kt ,zt)
∂ zt

< 0, we have
∂Φ(kt ,zt)

∂kt
< 0 and

∂Φ(kt ,zt)
∂ zt

< 0. Totally

differentiating (B.2) and rearranging gives

dkt

dzt

=−
∂Φ(kt ,zt)/∂ zt

∂Φ(kt ,zt)/∂kt

< 0,

implying that the boundary (B.2) is downward sloping in the (zt ,kt) space. With this

downward-sloping boundary, the (zt ,kt) space is divided into the PE and NPE regimes. For the

combinations of zt and kt lying to the bottom left of the downward-sloping boundary (B.2) and

satisfying Φ(kt ,zt)>
µτ(1−∆)

χβ (1−α)(1−τ) , the agent invests in private education (et > 0), thus giving rise

to the PE regime. For the combinations of zt and kt lying to the upper right of the

downward-sloping boundary (B.2) and satisfying (B.1), the agent does not invest in private

education (et = 0), thus giving rise to the NPE regime.

Because the third case is interesting as it shows that the agent’s decision on private

education expenditures are endogenously determined by the stock of pollution zt and the ratio of

physical-to-human capital kt , we summarize the third case in Proposition 1.

Appendix C Proof of Proposition 2 (Slope of the kk Locus)

In this section, we prove the slopes of the kk loci under the PE and NPE regimes. Intuitively, the

slopes of the kk loci reflects how the pollution stock affects the ratio of physical-to-human capital

through health. We mathematically show that the slopes of the kk loci depend on the capital

accumulation differential caused by pollution. We will first prove the slope of the kk locus under

the PE regime and then under the NPE regime.
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Proof. Under the PE regime, taking natural logs on both sides, totally differentiating

equation (13a), and rearranging gives the slope of the kk locus in the (zt ,kt) space:

dkt

dzt

∣
∣
∣
∣
PE

=
kt

zt

EΦt+1,zt
−β

(
EΩt+1,zt

+Eλt ,zt

)

(1−α +αβ )−
(
EΦt+1,kt

−βEΩt+1,kt

) =
kt

zt

Ψt,PE

1−α +αβ −Λt,PE
︸ ︷︷ ︸

(+)

. (C.1)

The denominator of equation (C.1) is positive because 1−α +αβ > 0 and Λt,PE < 0 by (17). The

numerator is the capital accumulation differential of pollution under the PE regime in (16). As is

evident in equation (C.1), the slope of the kk locus depends on the sign of the capital accumulation

differential Ψt,PE . The kk locus slopes up if the capital accumulation differential is positive

(Ψt,PE > 0), and slopes down if the capital accumulation differential is negative (Ψt,PE < 0).

Under the NPE regime, taking natural logs on both sides, totally differentiating equation

(13b), and rearranging gives the slope of the kk locus in the (zt ,kt) space:

dkt

dzt

∣
∣
∣
∣
NPE

=
kt

zt

E
Φt+1,zt

−βEλt ,zt

1−α +αβ −E
Φt+1,kt

=
kt

zt

Ψt,NPE

1−α +αβ −Λt,NPE
︸ ︷︷ ︸

(+)

. (C.2)

The denominator of equation (C.2) is positive because 1−α +αβ > 0 and Λt,NPE < 0 by (17).

The numerator is the capital accumulation differential of pollution under the NPE regime in (16).

Again, the slope of the kk locus depends on the sign of the capital accumulation differential

Ψt,NPE . The kk locus slopes up if the capital accumulation differential is positive (Ψt,NPE > 0),

and slopes down if the capital accumulation differential is negative (Ψt,NPE < 0).

To summarize, we have proved Proposition 2 that under regime i (i = PE,NPE), the slope

of the kk locus in the (zt ,kt) space depends on the sign of the capital accumulation differential

caused by pollution, which can be positive or negative.

Appendix D Proof of Proposition 3 (Dynamic Properties around the BGP)

The mathematical exposition of Proposition 3 is given as follows:
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Proposition. (Dynamic Properties around the BGP) For i = PE and NPE, the capital

accumulation differential Ψ
∗
i evaluated on the BGP is given in (16), and the own effect of the

capital ratio Λ
∗
i evaluated on the BGP is given in (17). The transition dynamic properties around

the BGP can be described in the following three cases.

(1) When −α(1−β )− (1−θ)< Λ
∗
i < 0, the parameters satisfy

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) <−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) <
1−α(1−β )−Λ

∗
i

1−α <
(2−θ)[1+α(1−β )+Λ

∗
i ]

θ(1−α) .

The BGP exhibits locally outward cycles if Ψ
∗
i <

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) , dampened cycles if

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) < Ψ
∗
i <−

[α(1−β )+Λ
∗
i −(1−θ)]

2

4θ(1−α) , stability if

−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) < Ψ
∗
i <

1−α(1−β )−Λ
∗
i

1−α , saddle stability if

1−α(1−β )−Λ
∗
i

1−α < Ψ
∗
i <

(2−θ)[1+α(1−β )+Λ
∗
i ]

θ(1−α) , and instability if
(2−θ)[1+α(1−β )+Λ

∗
i ]

θ(1−α) < Ψ
∗
i .

(2) When −2−α(1−β )− (1−θ)< Λ
∗
i <−α(1−β )− (1−θ), the parameters satisfy

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) <−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) <
(2−θ)[1+α(1−β )+Λ

∗
i ]

θ(1−α) <
1−α(1−β )−Λ

∗
i

1−α .

The BGP exhibits locally outward cycles if Ψ
∗
i <

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) , dampened cycles if

(1−θ)[α(1−β )+Λ
∗
i ]−1

θ(1−α) < Ψ
∗
i <−

[α(1−β )+Λ
∗
i −(1−θ)]

2

4θ(1−α) , stability if

−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) < Ψ
∗
i <

(2−θ)[1+α(1−β )+Λ
∗
i ]

θ(1−α) , saddle stability if

(2−θ)[1+α(1−β )+Λ
∗
i ]

θ(1−α) < Ψ
∗
i <

1−α(1−β )−Λ
∗
i

1−α , and instability if
1−α(1−β )−Λ

∗
i

1−α < Ψ
∗
i .

(3) When Λ
∗
i <−2−α(1−β )− (1−θ), the parameters satisfy

−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) <
(2−θ)[1+α(1−β )+Λ

∗
i ]

θ(1−α) <
1−α(1−β )−Λ

∗
i

1−α .

The BGP features outward cycles if Ψ
∗
i <−

[α(1−β )+Λ
∗
i −(1−θ)]

2

4θ(1−α) , saddle stability if

(2−θ)[1+α(1−β )+Λ
∗
i ]

θ(1−α) < Ψ
∗
i <

1−α(1−β )−Λ
∗
i

1−α , and is unstable if

−
[α(1−β )+Λ

∗
i −(1−θ)]

2

4θ(1−α) < Ψ
∗
i <

(2−θ)[1+α(1−β )+Λ
∗
i ]

θ(1−α) or
1−α(1−β )−Λ

∗
i

1−α < Ψ
∗
i .

As Proposition 3 applies to both the PE and NPE regimes, next we first prove Proposition

3 under the PE regime, and then under the NPE regime.
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The Dynamic Properties under the PE Regime

Proof. When the zz locus intersects the kk locus under the PE regime, the local dynamics are

dictated by (12a) and (14). Totally differentiating (12a) and (14) around the BGP gives

dkt+1 =
A1−β

B
[(1− τ)(1−α)+µτ(1−∆)]1−β [α(1−β )+Λ

∗
PE ]

Φ(k∗PE ,z
∗
PE)

[Ω(k∗PE ,z
∗
PE)λ (z

∗
PE)]

β
(k∗PE)

α−αβ−1dkt

+
A1−β

B
[(1− τ)(1−α)+µτ(1−∆)]1−β Ψ

∗
PE

z∗PE

Φ(k∗PE ,z
∗
PE)

[Ω(k∗PE ,z
∗
PE)λ (z

∗
PE)]

β
(k∗PE)

α−αβ dzt ,

dzt+1 = (1−α)
ρ

∆τA
(k∗PE)

−αdkt +(1−θ)dzt ,

where the BGP values k∗PE and z∗PE are substituted in the partial derivatives, the capital

accumulation differential is Ψ
∗
PE = EΦ∗

PE ,z
∗
PE
−β (EΩ∗

PE ,z
∗
PE
+Eλ ∗

PE ,z
∗
PE
), and the own effect of the

capital ratio is Λ
∗
PE = EΦ∗

PE ,k
∗
PE
−βEΩ∗

PE ,k
∗
PE

. Because k∗PE and z∗PE satisfy (13a) and (15), the

above two equations can be simplified to

dkt+1 = [α(1−β )+Λ
∗
PE ]dkt +Ψ

∗
PE

k∗PE

z∗PE

dzt ,

dzt+1 = θ(1−α)
z∗PE

k∗PE

dkt +(1−θ)dzt .

The associated Jacobian matrix is

JPE =







α(1−β )+Λ
∗
PE Ψ

∗
PE

k∗PE

z∗PE

θ(1−α)
z∗PE

k∗PE

1−θ






. (D.1)

The trace and determinant of the Jacobian matrix are

TrJPE = [α(1−β )+Λ
∗
PE ]+ (1−θ)< 2, (D.2)

DeJPE = (1−θ) [α(1−β )+Λ
∗
PE ]−θ(1−α)Ψ∗

PE . (D.3)

Because α(1−β )< 1, 1−θ < 1, and Λ
∗
PE < 0, inequality (D.2) always holds, implying the
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summation of the eigenvalues is smaller than 2. In (D.3), DeJPE is the product of the eigenvalues.

Define the characteristic polynomial p(v) = v2 − (TrJPE)v+DeJPE , where v is the

eigenvalue. The sign of (TrJPE)
2 −4DeJPE determines whether the eigenvalues have imaginary

parts. From (D.2) and (D.3), we have

(TrJPE)
2 −4DeJPE = {[α(1−β )+Λ

∗
PE ]+ (1−θ)}2 −4(1−θ) [α(1−β )+Λ

∗
PE ]+4θ(1−α)Ψ∗

PE

= [α(1−β )+Λ
∗
PE − (1−θ)]2 +4θ(1−α)Ψ∗

PE . (D.4)

And the following two expressions are useful to determine the eigenvalues relative to 1 and −1:

p(1) = 1−TrJPE +DeJPE = θ [1−α(1−β )−Λ
∗
PE ]−θ(1−α)Ψ∗

PE , (D.5)

p(−1) = 1+TrJPE +DeJPE = (2−θ) [1+α(1−β )+Λ
∗
PE ]−θ(1−α)Ψ∗

PE . (D.6)

Next, we make use of Equations (D.2)−(D.6) to characterize the transition dynamics

around the BGP under the PE regime. But before we proceed, we first specify the following

relationships that will turn out to be useful in the characterization of transition dynamics.

(1) When 0 < TrJPE < 2 ⇐⇒−α(1−β )− (1−θ)< Λ
∗
PE < 0, it must be true that

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)
<

(−)
︷ ︸︸ ︷

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
<

(+)
︷ ︸︸ ︷

1−α(1−β )−Λ
∗
PE

1−α

<
(1−θ) [α(1−β )+Λ

∗
PE ]+1

θ(1−α)
<

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
.

(2) When −2 < TrJPE < 0 ⇐⇒−2−α(1−β )− (1−θ)< Λ
∗
PE <−α(1−β )− (1−θ),
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it must be true that

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)
<

(−)
︷ ︸︸ ︷

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
<

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

<
(1−θ) [α(1−β )+Λ

∗
PE ]+1

θ(1−α)
<

(+)
︷ ︸︸ ︷

1−α(1−β )−Λ
∗
PE

1−α
.

(3) When TrJPE <−2 ⇐⇒ Λ
∗
PE <−2−α(1−β )− (1−θ), it must be true that

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
<

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
<

(−)
︷ ︸︸ ︷

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)

<
(1−θ) [α(1−β )+Λ

∗
PE ]+1

θ(1−α)
<

(+)
︷ ︸︸ ︷

1−α(1−β )−Λ
∗
PE

1−α
.

Next, we characterize the transition dynamics in the following five sub-cases numbering

from (i) to (v).

(i) The Condition for Stability. When the transition dynamics exhibit stability, the two

real eigenvalues fall in the range (−1,1), which requires







(TrJPE)
2 −4DeJPE > 0

1+DeJPE +TrJPE > 0

1+DeJPE −TrJPE > 0

−1 < DeJPE < 1

9



Then the following four inequalities hold simultaneously:







−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
< Ψ

∗
PE

Ψ
∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α
(1−θ) [α(1−β )+Λ

∗
PE ]−1

θ(1−α)
< Ψ

∗
PE <

(1−θ) [α(1−β )+Λ
∗
PE ]+1

θ(1−α)

(D.7)

When 0 < TrJPE < 2, the stability condition is

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
< Ψ

∗
PE <

1−α(1−β )−Λ
∗
PE

1−α
. (D.8)

When −2 < TrJPE < 0, the stability condition is

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
< Ψ

∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
. (D.9)

When TrJPE <−2, because the four inequalities listed in (D.7) cannot hold

simultaneously, it is not possible for the BGP to become stable.

(ii) The Condition for Saddle Stability. When the transition dynamics exhibit saddle

stability, one real eigenvalue falls within (−1,1), while the other falls outside (−1,1), which

requires







(TrJPE)
2 −4DeJPE > 0

1+DeJPE +TrJPE > 0

1+DeJPE −TrJPE < 0

TrJPE > 0

or







(TrJPE)
2 −4DeJPE > 0

1+DeJPE +TrJPE < 0

1+DeJPE −TrJPE > 0

TrJPE < 0

.
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Substituting (D.4), (D.5), and (D.6) into the above inequalities gives







Ψ
∗
PE >−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE >

1−α(1−β )−Λ
∗
PE

1−α

TrJPE > 0

or







Ψ
∗
PE >−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE >

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α

TrJPE < 0

.

Reorganizing the above inequalities based on the value for TrJPE gives the following

cases:

When 0 < TrJPE < 2, the condition for saddle stability is

1−α(1−β )−Λ
∗
PE

1−α
< Ψ

∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
. (D.10)

When TrJPE is negative, which can be further divided into two ranges, −2 < TrJPE < 0

and TrJPE <−2 , the condition for saddle stability is

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
< Ψ

∗
PE <

1−α(1−β )−Λ
∗
PE

1−α
. (D.11)

(iii) The Condition for Instability. When the transition dynamics exhibit instability, the

two real eigenvalues lie outside (−1,1), which requires







(TrJPE)
2 −4DeJPE > 0

1+DeJPE +TrJPE > 0

1+DeJPE −TrJPE > 0

DeJPE > 1

or







(TrJPE)
2 −4DeJPE > 0

1+DeJPE +TrJPE < 0

1+DeJPE −TrJPE < 0

DeJPE <−1

.
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Substituting (D.4), (D.5), (D.6), and (D.3) into the above inequalities gives







Ψ
∗
PE >−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α

Ψ
∗
PE <

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)

or







Ψ
∗
PE >−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE >

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE >

1−α(1−β )−Λ
∗
PE

1−α

Ψ
∗
PE >

(1−θ) [α(1−β )+Λ
∗
PE ]+1

θ(1−α)

.

Based on the value for TrJPE , three possible cases emerge:

When 0 < TrJPE < 2, the condition for instability is

Ψ
∗
PE >

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
. (D.12)

When −2 < TrJPE < 0, the condition for instability is

Ψ
∗
PE >

1−α(1−β )−Λ
∗
PE

1−α
. (D.13)

When TrJPE <−2, the condition for instability is

−
[α(1−β )+Λ

∗
PE − (1−θ)]2

4θ(1−α)
<Ψ

∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)
or

1−α(1−β )−Λ
∗
PE

1−α
<Ψ

∗
PE .

(iv) The Condition for Dampened Cycles. When the BGP features dampened cycles, the

absolute value for the product of the two complex eigenvalues is smaller than 1, which requires







(TrJPE)
2 −4DeJPE < 0

1+DeJPE +TrJPE > 0

1+DeJPE −TrJPE > 0

−1 < DeJPE < 1

.

12



Note that (TrJPE)
2 −4DeJPE < 0 implies DeJPE > 0, and we can make use of this fact to

simplify the last inequality as 0 < DeJPE < 1. Substituting in (D.4), (D.5), (D.6), and (D.3) gives







Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α

Ψ
∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)
< Ψ

∗
PE <

(1−θ) [α(1−β )+Λ
∗
PE ]

θ(1−α)

.

It can be verified that the expression −
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) <
(1−θ)[α(1−β )+Λ

∗
PE ]

θ(1−α) is always true.

Based on the value for TrJPE , we get the following cases:

When 0 < TrJPE < 2 or −2 < TrJPE < 0, the condition for dampened cycles is

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)
< Ψ

∗
PE <−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)
. (D.14)

However, dampened cycles cannot emerge when TrJPE <−2 because the above four inequalities

cannot hold simultaneously.

(v) The Condition for Outward Cycles. When the BGP features outward cycles, the

absolute value for the product of the two complex eigenvalues is greater than 1, which requires







(TrJPE)
2 −4DeJPE < 0

1+DeJPE +TrJPE > 0

1+DeJPE −TrJPE > 0

DeJPE > 1 or DeJPE <−1

.

Again, (TrJPE)
2 −4DeJPE < 0 implies that it is only possible that DeJPE > 1, and thus the

13



possibility of DeJPE <−1 can be ruled out. Substituting in (D.4), (D.5), (D.6), and (D.3) gives







Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)

Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α

Ψ
∗
PE <

(2−θ) [1+α(1−β )+Λ
∗
PE ]

θ(1−α)

Ψ
∗
PE <

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)

.

The following cases can emerge based on the value for TrJPE :

When 0 < TrJPE < 2 and −2 < TrJPE < 0, the condition for outward cycles is

Ψ
∗
PE <

(1−θ) [α(1−β )+Λ
∗
PE ]−1

θ(1−α)
. (D.15)

When TrJPE <−2, the condition for outward cycles is

Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE − (1−θ)]2

4θ(1−α)
. (D.16)

Summary of the Transition Dynamic Properties under the PE Regime

Based on the above five sub-cases (i)-(v) establishing the conditions for stability, saddle

stability, instability, dampened cycles, and outward cycles, the transition dynamic properties

around the BGP under the PE regime can be summarized as follows. This summary constitutes

the structure of the mathematical exposition for Proposition 3.

(1) When −α(1−β )− (1−θ)< Λ
∗
PE < 2−α(1−β )− (1−θ), the parameters satisfy

(1−θ)[α(1−β )+Λ
∗
PE ]−1

θ(1−α) <−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) <
1−α(1−β )−Λ

∗
PE

1−α <
(2−θ)[1+α(1−β )+Λ

∗
PE ]

θ(1−α) .

The BGP exhibits locally outward cycles if Ψ
∗
PE <

(1−θ)[α(1−β )+Λ
∗
PE ]−1

θ(1−α) , dampened cycles

if
(1−θ)[α(1−β )+Λ

∗
PE ]−1

θ(1−α) < Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE−(1−θ)]2

4θ(1−α) , stability if

−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) < Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α , saddle stability if

1−α(1−β )−Λ
∗
PE

1−α < Ψ
∗
PE <

(2−θ)[1+α(1−β )+Λ
∗
PE ]

θ(1−α) , and instability if
(2−θ)[1+α(1−β )+Λ

∗
PE ]

θ(1−α) < Ψ
∗
PE .

14



(2) When −2−α(1−β )− (1−θ)< Λ
∗
PE <−α(1−β )− (1−θ), the parameters satisfy

(1−θ)[α(1−β )+Λ
∗
PE ]−1

θ(1−α) <−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) <
(2−θ)[1+α(1−β )+Λ

∗
PE ]

θ(1−α) <
1−α(1−β )−Λ

∗
PE

1−α .

The BGP exhibits locally outward cycles if Ψ
∗
PE <

(1−θ)[α(1−β )+Λ
∗
PE ]−1

θ(1−α) , dampened cycles

if
(1−θ)[α(1−β )+Λ

∗
PE ]−1

θ(1−α) < Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE−(1−θ)]2

4θ(1−α) , stability if

−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) < Ψ
∗
PE <

(2−θ)[1+α(1−β )+Λ
∗
PE ]

θ(1−α) , saddle stability if

(2−θ)[1+α(1−β )+Λ
∗
PE ]

θ(1−α) < Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α , and instability if
1−α(1−β )−Λ

∗
PE

1−α < Ψ
∗
PE .

(3) When Λ
∗
PE <−2−α(1−β )− (1−θ), the parameters satisfy

−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) <
(2−θ)[1+α(1−β )+Λ

∗
PE ]

θ(1−α) <
1−α(1−β )−Λ

∗
PE

1−α .

The BGP features outward cycles if Ψ
∗
PE <−

[α(1−β )+Λ
∗
PE−(1−θ)]2

4θ(1−α) , saddle stability if

(2−θ)[1+α(1−β )+Λ
∗
PE ]

θ(1−α) < Ψ
∗
PE <

1−α(1−β )−Λ
∗
PE

1−α , and is unstable if

−
[α(1−β )+Λ

∗
PE−(1−θ)]2

4θ(1−α) < Ψ
∗
PE <

(2−θ)[1+α(1−β )+Λ
∗
PE ]

θ(1−α) or
1−α(1−β )−Λ

∗
PE

1−α < Ψ
∗
PE .

The Dynamic Properties under the NPE Regime

Proposition 3 carries over to the NPE regime after the capital accumulation differential evaluated

on the BGP Ψ
∗
PE is replaced by Ψ

∗
NPE = E

Φ
∗
NPE ,z

∗
NPE

−βEλ ∗
NPE ,z

∗
NPE

and the own effect of the

capital ratio evaluated on the BGP is updated to Λ
∗
NPE = E

Φ
∗
NPE ,k

∗
NPE

. When the zz locus intersects

with the kk locus under the NPE regime, the local dynamics are dictated by (12b) and (14).

Totally differentiating (12b) and (14), substituting in (13b) and (15) evaluated on the BGP, and

simplifying gives

dkt+1 = [α(1−β )+Λ
∗
NPE ]dkt +Ψ

∗
NPE

k∗NPE

z∗NPE

dzt ,

dzt+1 = θ(1−α)
z∗NPE

k∗NPE

dkt +(1−θ)dzt .

The associated Jacobian matrix is

JNPE =







α(1−β )+Λ
∗
NPE Ψ

∗
NPE

k∗NPE

z∗NPE

θ(1−α)
z∗NPE

k∗NPE

1−θ






. (D.17)
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The trace and determinant of the Jacobian matrix are

TrJNPE = [α(1−β )+Λ
∗
NPE ]+ (1−θ)< 2, (D.18)

DeJNPE = (1−θ) [α(1−β )+Λ
∗
NPE ]−θ(1−α)Ψ∗

NPE . (D.19)

Define the characteristic polynomial p(v) = v2 − (TrJNPE)v+DeJNPE , where v represents the

eigenvalue. Whether the eigenvalues have imaginary parts depends on

(TrJNPE)
2 −4DeJNPE = [α(1−β )+Λ

∗
NPE − (1−θ)]2 +4θ(1−α)Ψ∗

NPE . (D.20)

And the following two terms determine the eigenvalues relative to 1 and −1:

p(1) = 1−TrJNPE +DeJNPE = θ [1−α(1−β )−Λ
∗
NPE ]−θ(1−α)Ψ∗

NPE , (D.21)

p(−1) = 1+TrJNPE +DeJNPE = (2−θ) [1+α(1−β )+Λ
∗
NPE ]−θ(1−α)Ψ∗

NPE . (D.22)

Thus far, we can use Equations (D.18)−(D.22) to characterize the transition dynamics

around the BGP under the NPE regime. A careful comparison of Equations (D.2)−(D.6) and

(D.18)−(D.22) reveals that Ψ
∗
i and Λ

∗
i (i = PE,NPE) apply to both the PE and NPE regimes.

Therefore, we have proved Proposition 3.

Appendix E Proof of Proposition 4 (Pairwise Relationships Among the BGP Variables)

Proof. For simplicity of the expressions, define

Γ
∗
i =







(α +EΩ∗
PE ,k

∗
PE
)EΦ∗

PE ,z
∗
PE
+(1−α −EΦ∗

PE ,k
∗
PE
)(EΩ∗

PE ,z
∗
PE
+Eλ ∗

PE ,z
∗
PE
), i = PE

αE
Φ
∗
NPE ,z

∗
NPE

+(1−α −E
Φ
∗
NPE ,k

∗
NPE

)Eλ ∗
NPE ,z

∗
NPE

. i = NPE

The newly-defined term Γ
∗
i < 0 for regime i = PE,NPE because EΦ∗

PE ,k
∗
PE

= EΩ∗
PE ,k

∗
PE

< 0,

EΦ∗
PE ,z

∗
PE

= EΩ∗
PE ,z

∗
PE

< 0, E
Φ
∗
NPE ,z

∗
NPE

< 0, and Eλ ∗
NPE ,z

∗
NPE

< 0.

From equations (19a) and (19b) under the PE regime, and from equations (20a) and (20b)
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under the NPE regime, we derive the following partials that apply to regime i (i = PE,NPE):

∂k∗i
∂g∗i

g∗i
k∗i

=
g∗i
β

Ψ
∗
i

Γ∗
i

and
∂ z∗i
∂g∗i

g∗i
z∗i

=
g∗i
β

1−α +αβ −Λ
∗
i

Γ∗
i

< 0, (E.1)

where Ψ
∗
i is the capital accumulation differential evaluated on the BGP given in (16), and Λ

∗
i < 0

is the own effect of the capital ratio evaluated on the BGP given in (17). By (E.1), the relationship

between the economic growth rate g∗i and the pollution stock z∗i is negative, while the relationship

between g∗i and k∗i depends on the sign of Ψ
∗
i . Therefore, we have proved Proposition 4.

Appendix F Proof of Proposition 5 (The Policy Effects on the BGP Variables)

Proof. The expression of Θi (i = PE,NPE) is given in (21). Using equations (19a)-(19c) under

the PE regime, and using equations (20a)-(20c) under the NPE regime, we derive the policy

effects of τ on k∗i , z∗i , and g∗i in the form of elasticities under regime i (i = PE,NPE):

dk∗i
dτ

τ

k∗i
=

Ψ
∗
i +β + 1

1−τ (τ −Θi)

(1−α)Ψ∗
i −

(
1−α +αβ −Λ∗

i

) , (F.1a)

dz∗i
dτ

τ

z∗i
=

β + 1−α
1−τ (1−Θi)−Λ

∗
i

(1−α)Ψ∗
i −

(
1−α +αβ −Λ∗

i

) < 0, (F.1b)

dg∗i
dτ

τ

g∗i
=

(1−α)
(

dk∗i
dτ

τ
k∗i

)

−
(

dz∗i
dτ

τ
z∗i

)

−1
(

∂ z∗i
∂g∗i

g∗i
z∗i

)

− (1−α)
(

∂k∗i
∂g∗i

g∗i
k∗i

) . (F.1c)

Because we focus on the BGP that exhibits locally dampened cycles or local stability, the

denominators of (F.1a) and (F.1b) are negative by the mathematical exposition of Proposition 3 in

Appendix D, and thus (1−α)Ψ∗
i − (1−α +αβ −Λ

∗
i )< 0. In (F.1a), the sign of

dk∗i
dτ

τ
k∗i

depends

on the numerator Ψ
∗
i +β + 1

1−τ (τ −Θi). In (F.1b), it is always true that
dz∗i
dτ

τ
z∗i
< 0 because

β + 1−α
1−τ (1−Θi)−Λ

∗
i > 0. In (F.1c), we can see that the sign of

dg∗i
dτ

τ
g∗i

depends on the relationship

between z∗i and g∗i and the relationship between k∗i and g∗i given in (E.1), and on the effects of τ

on k∗i and z∗i given in (F.1a) and (F.1b).
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Similarly, the policy effects of ∆ on k∗i , z∗i , and g∗i are

dk∗i
d∆

∆

k∗i
=

Ψ
∗
i +

∆

1−∆
(Θi −β )

(1−α)Ψ∗
i −

(
1−α +αβ −Λ∗

i

) , (F.2a)

dz∗i
d∆

∆

z∗i
=

(1−α +αβ −Λ
∗
i )+(1−α) ∆

1−∆
(Θi −β )

(1−α)Ψ∗
i −

(
1−α +αβ −Λ∗

i

) , (F.2b)

dg∗i
d∆

∆

g∗i
=

(1−α)
(

dk∗i
d∆

∆

k∗i

)

−
(

dz∗i
d∆

∆

z∗i

)

−1
(

∂ z∗i
∂g∗i

g∗i
z∗i

)

− (1−α)
(

∂k∗i
∂g∗i

g∗i
k∗i

) . (F.2c)

Again, (1−α)Ψ∗
i − (1−α +αβ −Λ

∗
i )< 0. In (F.2a), the sign of

dk∗i
d∆

∆

k∗i
depends on the

numerator Ψ
∗
i +

∆

1−∆
(Θi −β ). In (F.2b), the sign of

dz∗i
d∆

∆

z∗i
depends on the regime. When i = PE,

ΘPE −β > 0, the numerator (1−α +αβ −Λ
∗
PE)+(1−α) ∆

1−∆
(ΘPE −β )> 0, and thus

dz∗PE

d∆

∆

z∗PE
< 0. In contrast, when i = NPE, the numerator becomes

(1−α +αβ −Λ
∗
NPE)− (1−α) ∆

1−∆
β , and thus

dz∗NPE

d∆

∆

z∗NPE
≶ 0 if ∆ ≶

1−α+αβ−Λ
∗
NPE

1−α+β−Λ∗
NPE

. In (F.2c), the

sign of
dg∗i
d∆

∆

g∗i
depends on

∂ z∗i
∂g∗i

g∗i
z∗i

and
∂k∗i
∂g∗i

g∗i
k∗i

given in (E.1), and on
dk∗i
d∆

∆

k∗i
and

dz∗i
d∆

∆

z∗i
given in (F.2a)

and (F.2b).

Appendix G Proof of Proposition 6 (A Necessary Condition for the Emergence of Two Stable

BGPs)

Proof. To prove the necessary condition for two stable BGPs, we first establish two mathematical

facts. First, evaluated on a stable BGP, the slope of the kk locus must be smaller than that of the zz

locus. This fact applies to both regimes. For regime i (i = PE,NPE), by (C.1) and (C.2), the slope

of the kk locus evaluated on the BGP is

dkt

dzt

∣
∣
∣
∣
i,BGP

=
k∗i
z∗i

Ψ
∗
i

1−α +αβ −Λ∗
i

.
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By (15), the slope of the zz locus evaluated on the BGP is

dkt

dzt

∣
∣
∣
∣
i,BGP

=
k∗i
z∗i

1

1−α
> 0.

By the mathematical exposition of Proposition 3 shown in Appendix D, a locally stable BGP

implies that the following must be true:

Ψ
∗
i <

1−α +αβ −Λ
∗
i

1−α
,

which after rearrangement leads to

k∗i
z∗i

Ψ
∗
i

1−α +αβ −Λ∗
i

<
k∗i
z∗i

1

1−α
.

We can see that the left-hand side is the slope of the kk locus, the right-hand side is the slope of

the zz locus, and both are evaluated on the BGP. Thus, we have proved the first mathematical fact.

Second, the two kk loci are continuous when the regime switches from PE to NPE, which

implies that the kk loci are everywhere continuous. Denote the switching point as (zo,ko), which

lies on the boundary separating the PE and NPE regimes defined in Proposition 1. Suppose the

kk locus under the PE regime intersects the boundary at point (zo,ko). If the kk locus under the

NPE regime also intersects the boundary at point (zo,ko), we can conclude that there is no

discontinuity of the kk loci when the regime switches. Thus, the basic idea is that we know

(zo,ko) satisfies (13a) and (B.2), and we show that solving (13b) and (B.2) still yields (zo,ko). To

achieve this goal, we show that (13a) after manipulation is identical to (13b) in form. Recall that

under the PE regime, the agent’s propensity to save is Φ(kt ,zt) =
1

1+χβ+[1/φ(kt ,zt )]
and the

propensity to invest in private education is Ω(kt ,zt) =
χβ

1+χβ+[1/φ(kt ,zt )]
. Under the NPE regime, the

propensity to save is Φ(kt ,zt) =
1

1+[1/φ(kt ,zt )]
. When evaluated at (zo,ko), both Φ(ko,zo) and
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Ω(ko,zo) can be expressed in terms of Φ(ko,zo):

Φ(ko,zo) =
1

χβ +[1/Φ(ko,zo)]
and Ω(ko,zo) =

χβ

χβ +[1/Φ(ko,zo)]
. (G.1)

As (zo,ko) lies on the boundary, substituting (B.2) into (G.1) to eliminate Φ(ko,zo) gives

Φ(ko,zo) =
1

χβ

µτ(1−∆)

(1− τ)(1−α)+µτ(1−∆)
and Ω(ko,zo) =

µτ(1−∆)

(1− τ)(1−α)+µτ(1−∆)
.

(G.2)

Substituting (zo,ko) and (G.2) into (13a) gives the kk locus under the PE regime evaluated on the

switching point:

(ko)1−α+αβ =
A1−β

B

[µτ(1−∆)]1−β

χβ

1

λ (zo)β
. (G.3)

Using (B.2), (G.3) becomes:

(ko)1−α+αβ =
A1−β

B

(1−α)(1− τ)

[µτ(1−∆)]β
Φ(ko,zo)

λ (zo)β
, (G.4)

which is identical to (13b) in form. So solving the kk locus under the NPE regime (13b) and the

boundary (B.2) for zt and kt still yields (zo,ko). We conclude that (zo,ko) also satisfies the kk locus

under the NPE regime (13b) and the boundary (B.2), and there is no discontinuity on the kk loci

when the regime switches at (zo,ko). Therefore, we have proved the second mathematical fact.

The combination of the above two established mathematical facts implies that for two

stable BGPs to arise, the kk locus must intersect the zz locus from below. Thus, on the intersection

of the kk and zz loci, i.e., the BGP, the slope of the kk locus is larger than that of the zz locus. We

have

k∗i
z∗i

Ψ
∗
i

1−α +αβ −Λ∗
i

>
k∗i
z∗i

1

1−α
,

which after rearrangement leads to
1−α+αβ−Λ

∗
i

1−α < Ψ
∗
i , implying that the BGP can be locally

saddle or unstable.
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Appendix H Proof of Proposition 7 (Ranking of BGPs)

Proof. To prove that one BGP is preferred over the other when multiple BGPs emerge, we need to

compare the economic growth rate and intergenerational welfare improvement associated with

each BGP. Substituting the BGP capital ratio k∗PE and pollution stock z∗PE into either (10a) or

(11a) and taking natural logs gives the economic growth rate on the BGP under the PE regime:

g∗PE = ln

{

[(1− τ)(1−α)+µτ(1−∆)]
ρ

∆τθ

Φ(k∗PE ,z
∗
PE)

z∗PE

}

. (H.1)

Similarly, the economic growth rate on the BGP under the NPE regime is

g∗NPE = ln

[

(1− τ)(1−α)
ρ

∆τθ

Φ(k∗NPE ,z
∗
NPE)

z∗NPE

]

. (H.2)

The first part of Proposition 7 says that under the same regime, policymakers prefer the

BGP with a lower stock of pollution because the BGP also features a higher economic growth rate

and higher intergenerational welfare improvement. To prove this fact, we check the PE regime

and the idea also carries over to the NPE regime. Because the zz locus slopes up, a lower stock of

pollution must be associated with a lower ratio of physical-to-human capital. Consider two BGPs

under the PE regime, (z∗PE,low,k
∗
PE,low) and (z∗PE,high,k

∗
PE,high), where the subscripts low and high

denote lower and higher values for the pollution stock and the capital ratio. It must be true that

0 < z∗PE,low < z∗PE,high and 0 < k∗PE,low < k∗PE,high. By assumption,
∂Φ(kt ,zt)

∂ zt
< 0 and

∂Φ(kt ,zt)
∂kt

< 0.

Therefore,
Φ(k∗PE,low,z

∗
PE,low)

z∗
PE,low

>
Φ(k∗PE,high,z

∗
PE,high)

z∗
PE,high

, and by equation (H.1), we get g∗PE,low > g∗PE,high.

Also by assumption,
∂φ(kt ,zt)

∂ zt
< 0 and

∂φ(kt ,zt)
∂kt

< 0. Thus,

φ(k∗PE,low,z
∗
PE,low)> φ(k∗PE,high,z

∗
PE,high). By (22), we have

[
1+(1+χ)φ(k∗PE,low,z

∗
PE,low)

]
g∗PE,low >

[

1+(1+χ)φ(k∗PE,high,z
∗
PE,high)

]

g∗PE,high,

W ∗
PE,low >W ∗

PE,high,
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implying that under the PE regime, a lower stock of pollution is associated with a higher BGP

economic growth rate and higher intergenerational welfare improvement, whereas a higher stock

of pollution is associated with a lower BGP economic growth rate and lower intergenerational

welfare improvement. This conclusion also applies to the NPE regime.

The second part of Proposition of 7 says that policymakers prefer the BGP under the PE

regime over the BGP under the NPE regime. The reason is that the BGP under the PE regime

features a lower stock of pollution, a higher economic growth rate, and higher intergenerational

welfare improvement. From equations (H.1) and (H.2), it is difficult to directly compare the

economic growth rates g∗PE and g∗NPE . But we know z∗PE < zo < z∗NPE and k∗PE < ko < k∗NPE

because both the pollution stock and the capital ratio lie on the monotonically upward-sloping zz

locus. Besides, (z∗PE ,k
∗
PE) lies to the lower left of the boundary, (z∗NPE ,k

∗
NPE) lies to the upper

right of the boundary, and (zo,ko) lies on the boundary separating the PE and NPE regimes.

Therefore, we can rely on (zo,ko) on the boundary as a baseline to indirectly compare the two

economic growth rates. Recall equation (G.2) gives the propensity to save under the PE regime

evaluated at the switching point, Φ(ko,zo) = 1
χβ

µτ(1−∆)
(1−τ)(1−α)+µτ(1−∆) . Because

∂Φ(kt ,zt)
∂ zt

< 0 and

∂Φ(kt ,zt)
∂kt

< 0, k∗PE < ko and z∗PE < zo, we have
Φ(k∗PE ,z

∗
PE)

z∗PE
> Φ(ko,zo)

zo . By equations (H.1) and (G.2),

the economic growth rate on the BGP under the PE regime satisfies

g∗PE = ln

{

[(1− τ)(1−α)+µτ(1−∆)]
ρ

∆τθ

Φ(k∗PE ,z
∗
PE)

z∗PE

}

> ln

{

[(1− τ)(1−α)+µτ(1−∆)]
ρ

∆τθ

Φ(ko,zo)

zo

}

= ln

[
ρµ(1−∆)

χβ∆θ

1

zo

]

. (H.3)

Similarly, recall equation (B.2) gives the propensity to save under the NPE regime evaluated at

the switching point, Φ(ko,zo) = µτ(1−∆)
χβ (1−α)(1−τ) . Because

∂Φ(kt ,zt)
∂ zt

< 0 and
∂Φ(kt ,zt)

∂kt
< 0, zo < z∗NPE

and ko < k∗NPE , we have
Φ(k∗NPE ,z

∗
NPE)

z∗NPE
< Φ(ko,zo)

zo . By equations (H.2) and (B.2), the economic

22



growth rate on the BGP under the NPE regime satisfies

g∗NPE = ln

[

(1− τ)(1−α)
ρ

∆τθ

Φ(k∗NPE ,z
∗
NPE)

z∗NPE

]

< ln

[

(1− τ)(1−α)
ρ

∆τθ

Φ(ko,zo)

zo

]

= ln

[
ρµ(1−∆)

χβ∆θ

1

zo

]

. (H.4)

Comparing equations (H.3) and (H.4) yields g∗PE > ln
[

ρµ(1−∆)
χβ∆θ

1
zo

]

> g∗NPE . Thus, the BGP

economic growth rate is higher under the PE regime than under the NPE regime. At last, it can be

easily verified that

[1+(1+χ)φ(k∗PE ,z
∗
PE)]g

∗
PE > [1+(1+χ)φ(k∗NPE ,z

∗
NPE)]g

∗
NPE ,

W ∗
PE >W ∗

NPE .

Therefore, the BGP intergenerational welfare improvement is also higher under the PE regime

than under the NPE regime.

Appendix I The Difference in the Slopes of the kk Loci When the Regime Switches

Because we have proved in Appendix G that the kk loci are continuous at the switching point

(zo,ko), we compare the slope of the kk locus under the PE regime (C.1) and the slope of the kk

locus under the NPE regime (C.2), both of which are evaluated at (zo,ko).

Under the PE regime, the propensity to save is Φ(kt ,zt) =
φ(kt ,zt)

(1+χβ )φ(kt ,zt)+1
. The elasticities

of the propensity to save with respect to the pollution stock and with respect to the capital ratio

can be rewritten as expressions consisting of longevity and the elasticities of longevity with

respect to the pollution stock and the capital ratio:

EΦ(kt ,zt),zt
=

∂Φ(kt ,zt)

∂ zt

zt

Φ(kt ,zt)
=

∂φ(kt ,zt)
∂ zt

zt

φ(kt ,zt)

(1+χβ )φ(kt ,zt)+1
=

Eφ(kt ,zt),zt

(1+χβ )φ(kt ,zt)+1
< 0, (I.1a)

EΦ(kt ,zt),kt
=

∂Φ(kt ,zt)

∂kt

kt

Φ(kt ,zt)
=

∂φ(kt ,zt)
∂kt

kt

φ(kt ,zt)

(1+χβ )φ(kt ,zt)+1
=

Eφ(kt ,zt),kt

(1+χβ )φ(kt ,zt)+1
< 0. (I.1b)
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Under the NPE regime, in contrast, the propensity to save is Φ(kt ,zt) =
φ(kt ,zt)

φ(kt ,zt)+1
. The

elasticities of the propensity to save with respect to the pollution stock and with respect to the

capital ratio are

E
Φ(kt ,zt),zt

=
∂Φ(kt ,zt)

∂ zt

zt

Φ(kt ,zt)
=

∂φ(kt ,zt)
∂ zt

zt

φ(kt ,zt)

φ(kt ,zt)+1
=

Eφ(kt ,zt),zt

φ(kt ,zt)+1
< 0, (I.2a)

E
Φ(kt ,zt),kt

=
∂Φ(kt ,zt)

∂kt

kt

Φ(kt ,zt)
=

∂φ(kt ,zt)
∂kt

kt

φ(kt ,zt)

φ(kt ,zt)+1
=

Eφ(kt ,zt),kt

φ(kt ,zt)+1
< 0. (I.2b)

Comparing (I.1a) and (I.2a) evaluated on (zo,ko) yields 0 >
Eφ(ko,zo),zo

(1+χβ )φ(ko,zo)+1
>

Eφ(ko,zo),zo

φ(ko,zo)+1
,

and comparing (I.1b) and (I.2b) evaluated on (zo,ko) yields 0 >
Eφ(ko,zo),ko

(1+χβ )φ(ko,zo)+1
>

Eφ(ko,zo),ko

φ(ko,zo)+1
.

Thus, we have

0 > EΦ(ko,zo),zo > E
Φ(ko,zo),zo , (I.3a)

0 > EΦ(ko,zo),ko > E
Φ(ko,zo),ko . (I.3b)

The capital accumulation differentials caused by pollution (16) and the own effects of the

capital ratio (17) under the PE and NPE regimes when evaluated on (zo,ko) are as follows:

Ψ
o
PE = EΦ(ko,zo),zo −β

(
EΩ(ko,zo),zo +Eλ (ko,zo),zo

)
,

Λ
o
PE = EΦ(ko,zo),ko −βEΩ(ko,zo),ko ,

Ψ
o
NPE = E

Φ(ko,zo),zo −βEλ (ko,zo),zo ,

Λ
o
NPE = E

Φ(ko,zo),ko .

By (I.3a) and EΩ(ko,zo),zo < 0,

Ψ
o
PE −Ψ

o
NPE =

(

EΦ(ko,zo),zo −E
Φ(ko,zo),zo

)

−βEΩ(ko,zo),zo > 0. Then evaluated on (zo,ko), there

are three possible cases for the relative slopes of the kk loci when the regime switches: (1)

Ψ
o
PE > Ψ

o
NPE > 0; (2) Ψ

o
PE > 0 > Ψ

o
NPE ; (3) 0 > Ψ

o
PE > Ψ

o
NPE .

By (I.3b) and EΩ(ko,zo),ko < 0,
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Λ
o
PE −Λ

o
NPE =

(

EΦ(ko,zo),ko −E
Φ(ko,zo),ko

)

−βEΩ(ko,zo),ko > 0. It implies

(1−α +αβ )−Λ
o
NPE > (1−α +αβ )−Λ

o
PE > 0,

1

(1−α +αβ )−Λ
o
PE

>
1

(1−α +αβ )−Λ
o
NPE

> 0. (I.4)

Subtracting equation (C.2) from (C.1) yields the difference in the slopes of the kk loci

when the regime switches at (zo,ko):

dkt

dzt

∣
∣
∣
∣
PE

−
dkt

dzt

∣
∣
∣
∣
NPE

=
ko

zo

Ψ
o
PE

(1−α +αβ )−Λ
o
PE

−
ko

zo

Ψ
o
NPE

(1−α +αβ )−Λ
o
NPE

. (I.5)

By (I.5) and (I.4), when (1) Ψ
o
PE > Ψ

o
NPE > 0 and (2) Ψ

o
PE > 0 > Ψ

o
NPE , i.e., the kk locus slopes

up under the PE regime by (C.1), the slope of the kk locus under the PE regime is larger than that

of the kk locus under the NPE regime at the switching point (zo,ko). But when (3)

0 > Ψ
o
PE > Ψ

o
NPE , i.e., the kk locus slopes down under the PE regime by (C.1), the relative slopes

of the kk loci when the regime switches cannot be determined.

Appendix J An Alternative Model: Robustness Check

In this section, we establish an alternative model that isolates mechanisms that could possibly blur

our results, thus allowing for robustness check of the results derived from the basic model. The

alternative model simplifies the basic model in two major ways. First, the alternative model does

not involve parents’ utility derived from their children’s human capital. Thus, the agent does not

invest in private education and the accumulation of human capital is supported by public

education expenditures only. Second, both physical and human capital fully depreciate within one

period. The assumption of different types of capital depreciating at the same rate is not essential

to the results and is widely employed by the literature for simplicity (see, for example, Mankiw et

al., 1992; Goenka and Liu, 2020). Full depreciation of physical and human capital is a special

case where both types of capital depreciate at the same rate, which makes the analysis as simple
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as possible. More importantly, full depreciation of physical and human capital implies no capital

can be directly left from one period to the next, thus serving as another advantage of the

alternative model to confirm the robustness of our results. Because parents cannot leave heritage

to their children in the form of either physical or human capital, the alternative model stays away

from the heritage issue. Based on the above two points, the prominent feature of the alternative

model is to completely shut down altruism, a mechanism that turns out to be important in

affecting the capital ratio (Chakraborty and Das, 2019). As is explained in the Section “Related

Literature”, altruistic parents favor heritage left for their children in the form of physical capital

rather than in the form of human capital in the event of uncertain mortality, thus prompting

parents to invest more in physical capital than in human capital. Therefore, the alternative model

isolates the effect of altruism on the capital ratio from the health effects of pollution on the capital

ratio, and focuses on the capital accumulation differential caused by pollution through health.

Thus, our model deviates from (Chakraborty and Das, 2019). We show that our primary results

survive the alternative model.

Because altruism is assumed away, the altruism parameter in equation (5) is χ = 0 and the

lifetime utility of the representative agent born at the beginning of period t −1 becomes

Ut−1 = lnct +φt+1 lndt+1. (J.1)

As the representative agent does not derive utility from her child’s human capital, her private

education expenditures are zero et = 0. The adulthood budget constraint becomes

wt = ct + st . (J.2)

The elderhood budget constraint remains the same. The representative agent maximizes (J.1)

subject to (J.2) and (6b) by choosing adulthood consumption ct , elderhood consumption dt+1, and
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savings st . Solving the agent’s utility maximization problem yields the savings function:

st = Φt+1wt , (J.3)

where Φt+1 =
φt+1

φt+1+1
is the propensity to save when et = 0.

Because the absence of altruism leads the representative agent not to invest in private

education and human capital fully depreciates within one period, private education expenditures

et = 0 and the representative agent’s human capital Ht does not directly come into the formation

of her child’s human capital Ht+1. As a result, the evolution of human capital (4) becomes

Ht+1 = B(λt µmt). (J.4)

A comparison of the human capital evolution in the main text and the above reveals that (J.4) is a

special case of (4) when et = 0 and β = 1.

In the equilibrium, Kt+1 = st because physical capital also fully depreciates within one

period. Substituting (1b) into (J.3), (2b) into (J.4), and applying kt = Kt/Ht yields the non-linear

difference equations describing the evolution of physical and human capital:

Kt+1

Kt

= Φ(kt ,zt)(1−α)(1− τ)Akα−1
t , (J.5)

Ht+1

Ht

= Bλ (zt)µ(1−∆)τAkα
t , (J.6)

where the propensity to save Φt+1 = Φ(kt ,zt) is written as a function of kt and zt , because

φt+1 = φ(kt ,zt).

From equations (J.5) and (J.6), the ratio of physical-to-human capital evolves according to

kt+1 =
(1−α)(1− τ)

Bµτ(1−∆)

Φ(kt ,zt)

λ (zt)
. (J.7)

The evolution of the pollution stock remains the same according to (14) in the main text. To
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proceed, we define the capital accumulation differential caused by pollution in the alternative

model:

Ψt = E
Φt+1,zt

−Eλt ,zt
,

where E
Φt+1,zt

= ∂Φ(kt ,zt)
∂ zt

zt

Φ(kt ,zt)
< 0 is the elasticity of the propensity to save with respect to the

pollution stock, which captures the physical capital effect of pollution, and Eλt ,zt
= λ ′(zt)

λ (zt)
zt < 0 is

the elasticity of education expenditures effectiveness with respect to the pollution stock, which

captures the human capital effect of pollution. Evaluated on the BGP, the capital accumulation

differential is Ψ
∗
= E

Φ
∗
,z∗ −Eλ ∗,z∗ .

We also define the own effect of the capital ratio in the alternative model:

Λt = E
Φt+1,kt

,

where E
Φt+1,kt

= ∂Φ(kt ,zt)
∂kt

kt

Φ(kt ,zt)
< 0 is the elasticity of the propensity to save with respect to the

capital ratio, which captures how capital ratio affects itself. Evaluated on the BGP, the own effect

of the capital ratio is Λ
∗
= E

Φ
∗
,k∗ .

From (J.7) and (14), we write the Jacobian matrix as

J =






Λ
∗

Ψ
∗ k∗

z∗

θ(1−α)
z∗

k∗
1−θ




 . (J.8)

From (J.8), the trace and determinant of the Jacobian matrix are

TrJ = Λ
∗
+(1−θ)< 1,

DeJ = (1−θ)Λ
∗
−θ(1−α)Ψ

∗
.

To characterize the transition dynamics, we define the characteristic polynomial

p(v) = v2 − (TrJ)v+DeJ, where v is the eigenvalue. The following equation determines whether

28



the eigenvalues have imaginary parts:

(TrJ)2 −4DeJ =
[

Λ
∗
− (1−θ)

]2

+4θ(1−α)Ψ
∗
.

And the following two equations determine the eigenvalues relative to 1 and −1:

p(1) = 1+DeJ−TrJ = θ(1−Λ
∗
)−θ(1−α)Ψ

∗
,

p(−1) = 1+DeJ+TrJ = (2−θ)(1+Λ
∗
)−θ(1−α)Ψ

∗
.

Based on the above equations, we apply the method in Appendix D and get the results regarding

the transition dynamics in three possible cases.

First, when 0 < TrJ < 1 ⇐⇒−(1−θ)< Λ
∗
< 0, the following relationships must hold:

(1−θ)Λ
∗
−1

θ(1−α)
<−

[

Λ
∗
− (1−θ)

]2

4θ(1−α)
<

1−Λ
∗

1−α
<

(2−θ)
(

Λ
∗
+1

)

θ(1−α)
.

The transition dynamics around the BGP exhibit outward cycles if Ψ
∗
< (1−θ)Λ

∗
−1

θ(1−α) , dampened

cycles if
(1−θ)Λ

∗
−1

θ(1−α) < Ψ
∗
<−

[Λ∗
−(1−θ)]

2

4θ(1−α) , stability if −
[Λ∗

−(1−θ)]
2

4θ(1−α) < Ψ
∗
< 1−Λ

∗

1−α , saddle stability

if 1−Λ
∗

1−α < Ψ
∗
<

(2−θ)(Λ
∗
+1)

θ(1−α) , and instability if
(2−θ)(Λ

∗
+1)

θ(1−α) < Ψ
∗
.

Second, when −2 < TrJ < 0 ⇐⇒−2− (1−θ)< Λ
∗
<−(1−θ), the following

relationships must hold:

(1−θ)Λ
∗
−1

θ(1−α)
<−

[

Λ
∗
− (1−θ)

]2

4θ(1−α)
<

(2−θ)
(

Λ
∗
+1

)

θ(1−α)
<

1−Λ
∗

1−α
.

The transition dynamics around the BGP exhibit outward cycles if Ψ
∗
< (1−θ)Λ

∗
−1

θ(1−α) , dampened

cycles if
(1−θ)Λ

∗
−1

θ(1−α) < Ψ
∗
<−

[Λ∗
−(1−θ)]

2

4θ(1−α) , stability if −
[Λ∗

−(1−θ)]
2

4θ(1−α) < Ψ
∗
<

(2−θ)(Λ
∗
+1)

θ(1−α) , saddle

stability if
(2−θ)(Λ

∗
+1)

θ(1−α) < Ψ
∗
< 1−Λ

∗

1−α , and instability if 1−Λ
∗

1−α < Ψ
∗
.
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Third, when TrJ <−2 ⇐⇒ Λ
∗
<−2− (1−θ), the following relationships must hold:

−

[

Λ
∗
− (1−θ)

]2

4θ(1−α)
<

(2−θ)
(

Λ
∗
+1

)

θ(1−α)
<

1−Λ
∗

1−α
.

The transition dynamics around the BGP exhibit outward cycles if Ψ
∗
<−

[Λ∗
−(1−θ)]

2

4θ(1−α) , saddle

stability if
(2−θ)(Λ

∗
+1)

θ(1−α) < Ψ
∗
< 1−Λ

∗

1−α , and instability if −
[Λ∗

−(1−θ)]
2

4θ(1−α) < Ψ
∗
<

(2−θ)(Λ
∗
+1)

θ(1−α) or

1−Λ
∗

1−α < Ψ
∗
.

From the above results, we see that in the alternative model, the capital accumulation

differential caused by pollution Ψ
∗

still drives the transition dynamics around the BGP. But due to

the absence of altruism, the agent never invests in private education and only one regime exists.

As a result, two stable BGPs lying under two regimes cannot emerge simultaneously as depicted

in Figure 7. Besides, as a simplified version of the basic model, the above results also can be

verified by setting β = 1 and χ = 0 under the NPE regime in the basic model.

Evaluated on the BGP, the following partials reflecting the relationships among the BGP

variables are derived, which are similar to those in the basic model:

∂k∗

∂g∗
g∗

k∗
= g∗

Ψ
∗

Γ
∗ ,

∂ z∗

∂g∗
g∗

z∗
= g∗

1−Λ
∗

Γ
∗ < 0,

where Γ
∗
= αE

Φ
∗
,z∗ +(1−α −E

Φ
∗
,k∗)Eλ ∗,z∗ < 0.
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The effects of τ on k∗, z∗, and g∗ are

dk∗

dτ

τ

k∗
=

Ψ
∗
+ 1

1−τ

(1−α)Ψ
∗
−
(

1−Λ
∗
) ,

dz∗

dτ

τ

z∗
=

1+ 1−α
1−τ −E

Φ
∗
,k∗

(1−α)Ψ
∗
−
(

1−Λ
∗
) ,

dg∗

dτ

τ

g∗
=

(1−α)
(

dk∗

dτ
τ
k∗

)

−
(

dz∗

dτ
τ
z∗

)

−1
(

∂ z∗

∂g∗
g∗

z∗

)

− (1−α)
(

∂k∗

∂g∗
g∗

k∗

) .

The effects of ∆ on k∗, z∗, and g∗ are

dk∗

d∆

∆

k∗
=

Ψ
∗
− ∆

1−∆

(1−α)Ψ
∗
−
(

1−Λ
∗
) ,

dz∗

d∆

∆

z∗
=

(

1−E
Φ
∗
,k∗

)

− (1−α) ∆

1−∆

(1−α)Ψ
∗
−
(

1−Λ
∗
) ,

dg∗

d∆

∆

g∗
=

(1−α)
(

dk∗

d∆

∆

k∗

)

−
(

dz∗

d∆

∆

z∗

)

−1
(

∂ z∗

∂g∗
g∗

z∗

)

− (1−α)
(

∂k∗

∂g∗
g∗

k∗

) .

To conclude, the alternative model completely shuts down altruism by dropping the

agent’s utility derived from her child’s human capital and by assuming full depreciation of both

physical and human capital. The alternative model simplifies the basic model under the NPE

regime by setting χ = 0 and β = 1. The results derived from the alternative model show that the

capital accumulation differential caused by pollution through health still is the key driving force.
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