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Appendix A More Empirical Evidence Based on PM2.5

To further support our theoretical results, in this section we present the empirical evidence based
on world cross-sectional data with PM2.5 serving as the proxy of pollution instead of PM10. As a
preview, our theoretical results are still supported by the empirical evidence. Figure A.1 shows
the negative relationship between pollution and economic growth rate from 2013 to 2015. The

pattern is similar to Figure 2 in the main text.
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Figure A.1: The Negative Relationship between Pollution and Growth in the World (PM2.5)

To illustrate the existence of two BGPs, in Table A.1 we use K-means algorithm to
conduct cluster analyses based on the growth rate of real GDP per capita (“growth rate” in the
second column) and on logged values for PM2.5 weighted by population (“pollution” in the third
column). The same 149 countries with complete data are endogenously divided into two groups
in 1990 (Panel A of Table A.1) and in 2016 (Panel B of Table A.1). In Panel A, Group 1 consists
of 75 countries and Group 2 consists of 74 countries. The average growth rate is higher and
pollution is lower in Group 1 than in Groups 2. In Panel B, Group 1 consists of 73 countries and

Group 2 consists of 76 countries. Again, the average growth rate is higher and pollution is lower



in Group 1 than in Group 2. Thus, in 1990 and in 2016, Group 1 is on the desirable BGP whereas

Group 2 is on the inferior BGP.

Table A.1: Cluster Analyses for two Groups of Countries Based on PM2.5

Growth rate Pollution

Panel A: Cluster analysis in 1990

Group 1 1.78% -0.01
(75 countries) [0.03% 3.52%] [-0.13 0.11]
Group 2 0.64% 1.40
(74 countries) [-1.50% 2.78%] [1.27 1.52]

Panel B: Cluster analysis in 2016

Group 1 1.82% -0.20
(73 countries) [1.19% 2.46%] [-0.31 -0.09]
Group 2 1.12% 1.19
(76 countries) [0.33% 1.90%] [1.07 1.32]

Notes. Each cell reports the group mean and 95% confidence interval in the bracket.

To illustrate the stability of the two BGPs, we carefully keep track of the transitions of
each country between groups from 1990 to 2016 based on Table A.1 and construct the associated
Markov transition matrix in Table A.2. We find that 97.33% of the countries that were on the
desirable BGP in 1990 remain on the desirable BGP in 2016, but 2.67% of the countries that were
on the desirable BGP in 1990 transition to the inferior BGP in 2016. However, no country
transitions from the inferior BGP to the desirable BGP from 1990 to 2016. Therefore, the

transition dynamic properties of the two BGPs are stable.



Table A.2: Markov Transition Matrix for Countries Based on PM2.5 from 1990 to 2016

Desirable BGP  Inferior BGP
Desirable BGP 0.9733 0.0267
Inferior BGP 0 1
Notes. (1) Table A.2 is calculated based on the transitions of the same 149 countries between

Groups in Table A.1.

(2) The Markov transition matrix shows the probability that a country transitions from one BGP to
another. For example, the table cell indexed (1,1) says the probability that a country remains on the
desirable BGP from 1990 to 2016 is 97.33%, and the table cell indexed (2,1) says the probability

that a country transitions from the inferior BGP to the desirable BGP is 0.

From Figure A.1, Table A.1 and A.2, we find that if we use PM2.5 to serve as another

proxy for pollution, our theoretical results are robustly consistent with the empirical evidence .

Appendix B Proof of Proposition 1 (The PE and NPE Regimes)

Proof. Inequality (8) is the condition under which the representative agent does not invest in

private education. Substituting equations (1b), (2b), and (9b) into inequality (8) gives

= pt(l1—A)
T ()

(B.1)

where ®(k;,z;) = lfg‘( lji;) is the agent’s propensity to save with zero private education

expenditures. Because the longevity function satisfies ¢ (k;,z) € (9 ,9), it can be shown that

D(k;,z/) € <%, %) Three cases may arise. First, if % < %, which says that the
right-hand side of (B.1) is even smaller than the lower bound of E(k,,z,), inequality (B.1) never

holds. The representative agent always invests in private education (e, > 0) for any combinations

. NT(I_A) [ . . . .
of z; and k;. Second, if ZBI—a)(1=7) > T which says that the right-hand side of (B.1) is even

larger than the upper bound of ®(k;,z), inequality (B.1) always holds. The representative agent

never invests in private education (¢; = 0) for any combinations of z; and ;. Third, if



2 pr(1-4) 9
9 S ZB-a)(1-7) = T+p°

depending on the combination of z; and k; exogenous to her. The boundary dictating the agent’s

the representative agent may or may not invest in private education

decision is defined by

= pt(l—A)
D(k, = . B.2
%) = B0 a1 -
Because %}ézr) < 0 and %Z’IZ’) < 0, we have %IZ,’Z[) < 0and %IZ’Z’) < 0. Totally

differentiating (B.2) and rearranging gives

-0 <0,

dly %) oz,
dZ[ n aa(kfvzt )/8k,

implying that the boundary (B.2) is downward sloping in the (z,k;) space. With this
downward-sloping boundary, the (z;,k;) space is divided into the PE and NPE regimes. For the
combinations of z; and k; lying to the bottom left of the downward-sloping boundary (B.2) and
satisfying ®(k;,z;) > %, the agent invests in private education (e; > 0), thus giving rise
to the PE regime. For the combinations of z; and k; lying to the upper right of the
downward-sloping boundary (B.2) and satisfying (B.1), the agent does not invest in private
education (e; = 0), thus giving rise to the NPE regime.

Because the third case is interesting as it shows that the agent’s decision on private

education expenditures are endogenously determined by the stock of pollution z; and the ratio of

physical-to-human capital k;, we summarize the third case in Proposition 1.

Appendix C Proof of Proposition 2 (Slope of the kk Locus)

In this section, we prove the slopes of the kk loci under the PE and NPE regimes. Intuitively, the
slopes of the kk loci reflects how the pollution stock affects the ratio of physical-to-human capital
through health. We mathematically show that the slopes of the kk loci depend on the capital
accumulation differential caused by pollution. We will first prove the slope of the kk locus under

the PE regime and then under the NPE regime.



Proof. Under the PE regime, taking natural logs on both sides, totally differentiating

equation (13a), and rearranging gives the slope of the kk locus in the (z;,k;) space:

% _ ]ﬁ Eq)zHaZr _ :B (EQHl,Zr +E7L;,Z;) _ lﬁ lI]t,PE
dzi|pp  a (1—a+ap)— (Es, x —BEq, k) wl—a+af—Ape

g

()

(C.1)

The denominator of equation (C.1) is positive because 1 — a+ «¢f > 0 and A, pg < 0 by (17). The
numerator is the capital accumulation differential of pollution under the PE regime in (16). As is
evident in equation (C.1), the slope of the kk locus depends on the sign of the capital accumulation
differential W; pr. The kk locus slopes up if the capital accumulation differential is positive
(¥;,pe > 0), and slopes down if the capital accumulation differential is negative (‘¥; pg < 0).
Under the NPE regime, taking natural logs on both sides, totally differentiating equation

(13b), and rearranging gives the slope of the kk locus in the (z;,k;) space:

dks — ke E5t+1~,2r —BEj.z, _ ki W, nPE 2)
dZt NPE “ l_a—'—aB_EaHhkt & l_a—i_aB_At,NPE/. .

(+)

The denominator of equation (C.2) is positive because 1 — ¢+ o > 0 and A; ype < 0 by (17).
The numerator is the capital accumulation differential of pollution under the NPE regime in (16).
Again, the slope of the kk locus depends on the sign of the capital accumulation differential
W, npe. The kk locus slopes up if the capital accumulation differential is positive (‘¥; ypg > 0),
and slopes down if the capital accumulation differential is negative (¥; npg < 0).

To summarize, we have proved Proposition 2 that under regime i (i = PE, NPE), the slope
of the kk locus in the (z,k;) space depends on the sign of the capital accumulation differential

caused by pollution, which can be positive or negative.

Appendix D Proof of Proposition 3 (Dynamic Properties around the BGP)

The mathematical exposition of Proposition 3 is given as follows:



Proposition. (Dynamic Properties around the BGP) For i = PE and NPE, the capital
accumulation differential ¥} evaluated on the BGP is given in (16), and the own effect of the
capital ratio A; evaluated on the BGP is given in (17). The transition dynamic properties around
the BGP can be described in the following three cases.

(1) When —o (1 —B) — (1 —0) < Af <O, the parameters satisfy

(1-6)[a(1-B)+A7] 1 -  [a(-B)rAr-(1-0)]’ o lalp)A (2-0)[1+a(1-B)+A!]
0(1-a) 40(1-a) -« 0(1-a) :

The BGP exhibits locally outward cycles if ¥; < (1_9)[0;((11__@)+Aﬂ_1, dampened cycles if
(1-0)[a(1-B)+A7] -1 <y [a(1-B)+A; —(1-6)]’

o(l—a) i < 20(0-a) , stability if
x (1 2
—[““‘i);(?:a§1 O <y < ZUBIN e stabllltyzf
1—a(1-B)=A; . _ (2-8)[1+a(l- ﬁ)+/\*] —0)[1+a(1-B)+A]] .
— 1 <Y< a(—q) , and instability lf o—a) < V¥’

(2) When —2—a(l—B)—(1—-0) < AF < —oa(l —B)— (1 —0), the parameters satisfy

(1-0)[a(1-B)+A7] -1 [a(1-B)+A; —(1-0)]"  (2-6)[14+a(1-B)+A;] _ 1-a(1—B)—A:
o(1—a) <= 30(1—a) < o(i—a) < —a

The BGP exhibits locally outward cycles if ¥; < Ufe)[a(liﬁ)ﬂ\ﬂil, dampened cycles if

0(1-a)
(1-0)[a(1-B)+A7] -1 . a(1-B)+A:—(1-6)] o
[e(l—a) ] 2<‘Pl~ < _l 10(1=q) ] , stability if
1-B)+AF—(1-6 2-0)[14+a(1—B)+A¥ e
_ ot li)(;:ll—ag J <¥r< (-0) ;Ellx( a)B)+ ] , saddle stability if
(279)[1;?51(;)13”/\?] <W¥r < —(i g) and instability lf—1 a(1=P)=A; <7

(3) When A} < =2 —o(1 —B)— (1—0), the parameters satisfy
[a-p)ta;-(1-0)’ L Co0[1+a(-p)+A] _ 1-a(1-p)-A

40(1—a) 0(1-a) -«
(1 2
The BGP features outward cycles if V7 < — [a(l_ﬁ)JrAi (1-6) , saddle stability if
i 46(1—a)
(2_9)[19_:?21_)[3”[\?] <W¥r< %, and is unstable if
[a(1-B)+Ar—(1-6)]’ . C-0)[l+a(1-B)+AT]  1-a(1-B)-A: .
- 10(1—a) <W¥ < o(1—a) or — =g — <%}

As Proposition 3 applies to both the PE and NPE regimes, next we first prove Proposition

3 under the PE regime, and then under the NPE regime.



The Dynamic Properties under the PE Regime

Proof. When the zz locus intersects the kk locus under the PE regime, the local dynamics are

dictated by (12a) and (14). Totally differentiating (12a) and (14) around the BGP gives

AP - . D(kpg, 2 . va—of—
dhr = (000 @)+t - AP [~ B+ Ayl DT et
[Q(kpg,2pp) A (2pE)]
Aliﬁ - ‘P* (bk* ) 7 & —
A 1000 - @) ue(i - o) TP,y yea gy
2pe [Q(kpg,zpp) A (2pg)]
dan = (1= @) ko)~ + (1 0)dz,

where the BGP values kp; and zp are substituted in the partial derivatives, the capital
accumulation differential is Wpp = Egy o B (EQPE,ZPE +E APEJPE), and the own effect of the
capital ratio is App = Egy, k3, — BEa;, ks, - Because kpy and zp satisfy (13a) and (15), the

above two equations can be simplified to

* * k*
dki 1 = [o(1 — B) + Apg] dk; —l—‘PPEZ*ﬂdzt,
PE

dzrs = 0(1 — a)]iPE dk; + (1 — 0)dz.

*

PE

The associated Jacobian matrix is

k*
a(1—B)+Ap; Wip—=E
JpE = 2 e | (D.1)
9(1—a)k:l 1-6
PE

The trace and determinant of the Jacobian matrix are

Tripp = [a(1 — B) +Abg] + (1 —6) <2, (D.2)

DeJpg = (1—6)[o(1—B)+ Apg] — 0(1 — ) ¥pp. (D.3)

Because (1 —B) < 1,1 -6 < 1, and A} < 0, inequality (D.2) always holds, implying the



summation of the eigenvalues is smaller than 2. In (D.3), DeJpg is the product of the eigenvalues.
Define the characteristic polynomial p(v) = v2 — (TrJpg)v + DeJpg, where v is the
eigenvalue. The sign of (TerE)2 —4DeJpg determines whether the eigenvalues have imaginary

parts. From (D.2) and (D.3), we have

(Tripe)* —4Delpr = {[a(1 = B) + App] + (1 - 0)}” —4(1 - 0) [a(1 = B) + Apg] +46(1 — o) Wpg

=[o(1 = B)+Abp — (1— 0)>+40(1 — )W (D.4)

And the following two expressions are useful to determine the eigenvalues relative to 1 and —1:

p(1) = 1 = Tripg +Dedps = 0[1 — (1 — B) — Apg] — 0(1 — o) ¥, D.5)

p(—1) =1+ TrJpg +Delpr = (2— 0) [+ (1 — B) + Abg] — 0(1 — ) Why. (D.6)

Next, we make use of Equations (D.2)—(D.6) to characterize the transition dynamics
around the BGP under the PE regime. But before we proceed, we first specify the following
relationships that will turn out to be useful in the characterization of transition dynamics.

(1) When 0 < TrJpg <2 <= —o(1 —B)—(1—0) < App <0, it must be true that

=) (+)

A\
A\

-~

(1-0)[@(1=B) + Ape] —1 _ [a(1=B)+App—(1-0)" T—a(1-B)—Apy

0(1—a) 40(1 — ) -«
(1-8)[a(1—p)+Ap]+1 _(2-6)[1+a(l—p)+Ap]
0(1—a) 6(1—a) '

(2) When —2 < Trlpe < 0 <= —2—a(1—B) — (1 - 0) < Aby < —a(1—p)—(1-9),



it must be true that

)

(1-8)[a(1-p)+App]—1 _ [06(1—[3)+A?>E—(1—9)]2<(2—9)[1+06(1—l3)+A?E]
0(1—a) 40(1 — ) 0(1—a)
(+)

A

(1-0)[a(1=B)+Apg] +1 _1-0(1-B)—Apg
0(1—a) l-«o '

(3) When TrJpg < =2 <= App < —2—o(1—B) — (1 —0), it must be true that

(=)

A

[o(1—B) +App —(1-0)] L 2-0)1+a(l-p)+Aps] _ (1-6)[a(1—p)+Apg] 1
40(1 — ) (1 —a) 0(1—a)
(+)

A

(1-0)[e(1—B) +Apg] +1 _1-0(1—B)— Ay
0(1—a) -« '

Next, we characterize the transition dynamics in the following five sub-cases numbering
from (i) to (v).
(i) The Condition for Stability. When the transition dynamics exhibit stability, the two

real eigenvalues fall in the range (—1, 1), which requires

p

(TrJpg)? —4Delpg > 0
1+ DeJpg +TrJpg >0

14+ DelJpg —TrJpg >0

—1 < DeJpg < 1

\



Then the following four inequalities hold simultaneously:

/

_ * —_ N 2
BN (O,
. _2=-0)[1+a(l—p)+Apg]
g < 6(1—0? )
‘P;E < l—a(ll—_[jx)—APE
(1—9)[06(1—ﬁ)+/\* ]—1 . (1—9)[0&(1—[3)+A* ]—l—l
\ 0(1—a) T <MW < 0(1—a) =

When 0 < TrJpg < 2, the stability condition is

(1= B) + Ap — (1 - O)] 1= a(l—B)—Apy

— <Wrp < D.8
46(1— o) PE l—o D.8)
When —2 < TrJpg < 0, the stability condition is
a(l— Asy—(1—0)]? 2-0)[1+a(l— A%

40(1— ) 0(l—a)

When TrJpg < —2, because the four inequalities listed in (D.7) cannot hold
simultaneously, it is not possible for the BGP to become stable.

(ii) The Condition for Saddle Stability. When the transition dynamics exhibit saddle
stability, one real eigenvalue falls within (—1, 1), while the other falls outside (—1, 1), which

requires

( 4

(TrJpg)* —4Delpg > 0 (TrJpg)* —4Delpg > 0
1+ DeJpg +TrJpg >0 1+ DeJpg +TrJpr <0
or
1 + DeJpg — TrJpg <0 1 +DeJpg — TrJpg >0
| Trpe >0 | Tripe <0

10



Substituting (D.4), (D.5), and (D.6) into the above inequalities gives

(

. (a1 =B+ Ay —(1-6) (e [a(1=B)+App—(1-6))
Pre >~ 2001 — o) Wrp >~ 2001 — o)
g, o 2= Z{f(_l ;)B) +Abg] s (2-6)]1 Zﬁ(_l ;)B) +Apg]
\P;(’E> l—a(ll—_IB;C)—A}';E ‘P}SE< l—a(ll—_@—A};E
TrJpg >0 TrJpg <0

Reorganizing the above inequalities based on the value for TrJpg gives the following

cases:

When 0 < TrJpg < 2, the condition for saddle stability is

1—a(l1-B)— A
l—o

(2-0)[1+a(1-B)+ Aj]

\P*
< Fre S 0(l—a)

(D.10)

When TrJpg is negative, which can be further divided into two ranges, —2 < TrJpg < 0

and TrJpg < —2 , the condition for saddle stability is

(2-0)[1 +a(l—B)+Apgl
(1 —a)

1= a(l—B)—Apy

<Wpg < -

(D.11)

(iii) The Condition for Instability. When the transition dynamics exhibit instability, the

two real eigenvalues lie outside (—1, 1), which requires

.
(TrJpg)* —4Delpg > 0 (TrJpg)* —4Delpg > 0
1 +DeJpg +TrJpg >0 1+ DeJpg +TrJpg <0

or
1+DedJpg —TrJpg >0 14+ Dedpp —TrJpe <0
\DerE > 1 \DerE < —1

11



Substituting (D.4), (D.5), (D.6), and (D.3) into the above inequalities gives

( 4

. [a(1—B)+Ape—(1-6)]° \ [a(1—B)+Aps— (1 6))°
Wer >~ 1001 — ) Wee >~ 1001 - )
g < GO ety GOl prti
v, < 1—a(11—_/l)—A;E W, 1—a(11—_i)—/\;;E
\\P;(’E - (1_0)[(121(1__[326;_/\7%]_1 \‘P}SE - (1_9)[0521(1__[3())6;_/\7%]"’_1

Based on the value for TrJpg, three possible cases emerge:

When 0 < TrJpg < 2, the condition for instability is

2-6)[1+a(l—p)+Apg]

Yo > D.12

PE 0(1—a) (D.12)
When —2 < TrJpg < 0, the condition for instability is
1—o(l—pB)—Ax

Wi > (1=P)=App. (D.13)

11—«
When TrJpr < —2, the condition for instability is

(@B A — (1O .

2-6)[1+a(l—B)+Aps]  1-a(l—p)—Ap
40(1— )

0(1—a) -«

<Wpg.

(iv) The Condition for Dampened Cycles. When the BGP features dampened cycles, the

absolute value for the product of the two complex eigenvalues is smaller than 1, which requires

(

(TI’JPE)Z —4DeJpg <0
1+ DeJpg +TrJpg >0

1+ DelJpg —TrJpg >0

—1 < Delpg <1
\

12



Note that (TerE)2 —4DeJpg < 0 implies DeJpg > 0, and we can make use of this fact to

simplify the last inequality as 0 < DeJpg < 1. Substituting in (D.4), (D.5), (D.6), and (D.3) gives

(@0 =B) +Ap—(1-0)F
PE 40(1 — )
L 1-a(l-B)—Ap

Fhe < -«

g~ 2=0)[1+a(l—B)+Apg]
PE 0(1—a)

(1-0)[a(1 ~B) +Ap] ~ 1 _ . (1=6)[(1 =)+ Aj]
\ 0(1—a) PE 0(1— o)
It can be verified that the expression — le(1=p igﬁfa_)(l_eﬂz < (1_9)[3((]1__5)) KN always true.

Based on the value for TrJpg, we get the following cases:

When 0 < TrJpg <2 or —2 < TrJpg < 0, the condition for dampened cycles is

(1-0)[a(1—B)+Apl—1 . [@(1—B)+Ap—(1— )]
o0 <Y< I ‘

(D.14)

However, dampened cycles cannot emerge when TrJpg < —2 because the above four inequalities
cannot hold simultaneously.
(v) The Condition for Outward Cycles. When the BGP features outward cycles, the

absolute value for the product of the two complex eigenvalues is greater than 1, which requires

/

(TVJPE)Z —4DeJpr <0
1+ DeJpg +TrJpg >0

14 DeJpg —TrJpg >0

DeJpr >1 or Delpr < —1

\

Again, (TerE)2 —4DeJpg < 0 implies that it is only possible that DeJpg > 1, and thus the

13



possibility of DeJpg < —1 can be ruled out. Substituting in (D.4), (D.5), (D.6), and (D.3) gives

J— * — J— 2
‘P;E<_[0‘(1 ﬁlz(/l\zjza)(l 6)]
v < 1—06(11—_[2—/\;‘5
g o (2=0)[1+a(l—B)+Ap]

PE 0(1— o)
g (1=0)[a(1=B)+App] — 1
| PE 0(1— o)

The following cases can emerge based on the value for Tr/pg:

When 0 < TrJpg < 2 and —2 < TrJpg < 0, the condition for outward cycles is

(1-6)[a(1-B)+App]—1

Pr D.15
PE < 60(1—a) (B-15)
When TrJpr < —2, the condition for outward cycles is
a(l1—B)+ A5, —(1—0))?

40(1 — )

Summary of the Transition Dynamic Properties under the PE Regime

Based on the above five sub-cases (i)-(v) establishing the conditions for stability, saddle
stability, instability, dampened cycles, and outward cycles, the transition dynamic properties
around the BGP under the PE regime can be summarized as follows. This summary constitutes
the structure of the mathematical exposition for Proposition 3.

(1) When —at(1 - ) —(1—-0) <App <2—0o(1—p)—(1—0), the parameters satisfy

(1-6)la(1—B)+Ape]-1 _la(1=p)+Ap—(1-0)] < 12e=p)—App - (2=0)[1+a(1—B)+Aj]
6(1-a) 46(1-a) [ 6(1-a) :
The BGP exhibits locally outward cycles if Wy, < (lfe)mél(f g:)rA; Gl , dampened cycles
* * 2
if WO PIetie L o gy, < 0UPier (2O giability if
* 2 *
el Pt O <y, < AR qaddile stability if

(2-6)[1+a(1-B)+Ap]

220)1Hal1=P)FApe] and instability if 81— <Wpg.

0(l-a)

1*‘1(11:@*/\;5 < lP}ka < (

14



(2) When —2—oa(1—-)—(1—-0) <App < —a(1—pB)— (1 —0), the parameters satisty
(1-6)[a(1-B)+App] -1 [@(1-B)+App—(1-6)] < @2=0)i+a(1=p)+Ap]  1-a(1-p)—App

o(1—a) <= 40(1-a) o(l—a) —a

The BGP exhibits locally outward cycles if ¥}, < (1—9)[aé1(1—_ﬁ g;)rA; g1 , dampened cycles
if =0l él(;ﬂj“"ﬂ* < Wiy < [P rebbe (U0 ity if
— [a(l_ﬁiga%;)(l_e)] <Wip < (2_9)[1;8(j;5)+/\f’5], saddle stability if
COML AP hie] < gy, < OUZBIERE: and instability if XURAE < g,

(3)When App < —2—oa(1—-B)—(1— ) the parameters satisfy
)+A

_la(1=B)+Ap—(1-6)] < 2=0)[1ra(—f)+App]  1=a(l-p)—App
46(1—a) (-« —a

* 2
The BGP features outward cycles if W5, < — @ (17134)1;8}25;)(170)] , saddle stability if

(2= 9)[1;8(1(15”/\”5} <Wrg %, and is unstable if
[a(1-B)+A; —(1—9)} (2—0)[1+o(1-B)+Apg] 1—o(1-B)—A; %
- 4001 ~a) <Whe < o—a) Or —a = <pg

The Dynamic Properties under the NPE Regime

Proposition 3 carries over to the NPE regime after the capital accumulation differential evaluated

on the BGP W5, is replaced by Wy pp = Eg- and the own effect of the

— E * *
NPEINPE ﬁ ANPEZNPE

capital ratio evaluated on the BGP is updated to Ay pp = =Eg: .k . When the zz locus intersects
KNPE

with the kk locus under the NPE regime, the local dynamics are dictated by (12b) and (14).
Totally differentiating (12b) and (14), substituting in (13b) and (15) evaluated on the BGP, and

simplifying gives

* * k*
dki1 = [0(1 = B) + Aypgldk +Wypp = = dz,
iNPE

dzi1 = 6(1— )Ii’j”Edk,Jr (1—8)dz.
NPE

The associated Jacobian matrix is

* * ky
a(l—B)+Aype \PNPEZNﬂ
InrPE = 2 NPE |, (D.17)
0(1— o) NPE 1-6



The trace and determinant of the Jacobian matrix are

Trinpe = [a(l—ﬁ)—f—A}kva]—}-(l—e) < 2, (D.18)

Dedypg = (1—0)[a(1 = B) + Aypg] — 0(1 — @) Wi pg. (D.19)

Define the characteristic polynomial p(v) = v> — (TrJypg)v+ DeJypg, where v represents the
eigenvalue. Whether the eigenvalues have imaginary parts depends on

(TrJNpE)2 —4DeJype = [0t(1 = B) + Axpr — (1 — 6)]2 +46(1 — a)Pypg- (D.20)
And the following two terms determine the eigenvalues relative to 1 and —1:

p(—l) = l—l—TI’JNpE + DeJypr = (2— 9) [1 —|—OC(1 —B) +A1>’;7PE] — 9(1 — Ot)lP;kva. (D22)

Thus far, we can use Equations (D.18)—(D.22) to characterize the transition dynamics
around the BGP under the NPE regime. A careful comparison of Equations (D.2)—(D.6) and
(D.18)—(D.22) reveals that W} and A} (i = PE,NPE) apply to both the PE and NPE regimes.

Therefore, we have proved Proposition 3.

Appendix E Proof of Proposition 4 (Pairwise Relationships Among the BGP Variables)

Proof. For simplicity of the expressions, define

(OC + EQ;Evk;E )Eq);E?Z;E + (1 -0 E(I);Dk;SE) (EQ;E?Z;E + EM?EZFE)’ i=PE

I =
aEalthEvzfvPE +(1-a- EETVPE#}T/PE )EA’;\‘/PDZ;KVPE ’ i=NPE
k . . o
The newly-defined term I'; < O for regime i = PE,NPE because Eq:, k:. = Eqy 5, <0,
E(IJ}SE,Z’;,E = EQ;E,Z;E <0, EEI*VPE@PE < 0, and Elﬁmz}‘vps < 0.

From equations (19a) and (19b) under the PE regime, and from equations (20a) and (20b)
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under the NPE regime, we derive the following partials that apply to regime i (i = PE,NPE):

okigr gV 9z gl gll-a+af—Al

dgtky P Iy dgizr B r;

[}

<0, (E.1)

where W7 is the capital accumulation differential evaluated on the BGP given in (16), and A7 <0
is the own effect of the capital ratio evaluated on the BGP given in (17). By (E.1), the relationship
between the economic growth rate g; and the pollution stock z is negative, while the relationship

between g7 and &k depends on the sign of ¥';. Therefore, we have proved Proposition 4.

Appendix F  Proof of Proposition 5 (The Policy Effects on the BGP Variables)

Proof. The expression of ®; (i = PE,NPE) is given in (21). Using equations (19a)-(19c) under
the PE regime, and using equations (20a)-(20c) under the NPE regime, we derive the policy

effects of T on k7, z7, and g7 in the form of elasticities under regime i (i = PE,NPE):

di v WiHB+i=(1-6) (Ela)

dt ki (1—o)¥ — (1—a+af—A})’ ‘

dit__ Pri(-G)-A (F.1b)

drzi (1-o)¥ —(1—a+af—A;) 7 '
dk; dz}

agp = _ (=0 () = (%) ! o

< () -0-a ()
Because we focus on the BGP that exhibits locally dampened cycles or local stability, the
denominators of (F.1a) and (F.1b) are negative by the mathematical exposition of Proposition 3 in
Appendix D, and thus (1 — a)¥; — (1 —a+ o —A}) <O0. In (F.1a), the sign of %k—? depends
on the numerator ¥ + 8 + ﬁ (T— ;). In (F.1b), it is always true that %% < 0 because
B+ %(1 —®;) — A > 0. In (F.Ic), we can see that the sign of %é depends on the relationship

between z; and g and the relationship between k! and g; given in (E.1), and on the effects of T

on k; and z; given in (F.1a) and (F.1b).
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Similarly, the policy effects of A on k7, z7, and g are

d_k;ké_ ‘P?‘f‘ﬁ(@i_ﬁ) (F.2a)

dA ki (1-a)¥; - (1-a+af—Af)’ |

di A (1_a+a[j’—A;‘)+(1—a)ﬁ(®i_ﬁ) (F.2b)

dAzf (1—a>‘P;f—(1—a+“ﬁ—A?‘) | |

@A— dA K} dA zj (F.2¢)

dAg (g i) |
‘i (agﬁ)_(l_“)(agi‘g)

Again, (1—o)¥/—(1—a+af —Af) <0.In(F. 2a) the sign of 44 dA i 2 depends on the
numerator ¥} + =% A (®; — B). In (E.2b), the sign of 44 d Az = 2 depends on the regime. When i = PE,

Opg — B > 0, the numerator (1 —a+aff —Apg) + (1 —a)%(GPE—ﬁ) > 0, and thus

dﬁZE e = NPE, the numerator becomes
(1—o+aP —Aypp) — (1 —a) 125 A[s and thus “9FE -2 < 0if A W In (F.2¢), the

sign of d‘i A* depends on g g and Je s ii given in (E.1), and on ikA 5 and & d—A—* given in (F.2a)

and (F.2b).

Appendix G Proof of Proposition 6 (A Necessary Condition for the Emergence of Two Stable
BGPs)

Proof. To prove the necessary condition for two stable BGPs, we first establish two mathematical
facts. First, evaluated on a stable BGP, the slope of the kk locus must be smaller than that of the zz
locus. This fact applies to both regimes. For regime i (i = PE,NPE), by (C.1) and (C.2), the slope

of the kk locus evaluated on the BGP is

1

i |ipep 3 1—ataf—A;

1

| K W
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By (15), the slope of the zz locus evaluated on the BGP is

dk kroo1
_t = —;— > 0.
dzi|ipep 41—

By the mathematical exposition of Proposition 3 shown in Appendix D, a locally stable BGP

implies that the following must be true:

l—a+oaf —Af
-«

¥ < :

which after rearrangement leads to

kr P ki
F1l-a+af—AF zZFl-a

We can see that the left-hand side is the slope of the kk locus, the right-hand side is the slope of
the zz locus, and both are evaluated on the BGP. Thus, we have proved the first mathematical fact.
Second, the two kk loci are continuous when the regime switches from PE to NPE, which
implies that the kk loci are everywhere continuous. Denote the switching point as (z%,k?), which
lies on the boundary separating the PE and NPE regimes defined in Proposition 1. Suppose the
kk locus under the PE regime intersects the boundary at point (z,k°). If the kk locus under the
NPE regime also intersects the boundary at point (z,k°), we can conclude that there is no
discontinuity of the kk loci when the regime switches. Thus, the basic idea is that we know
(z°,k°) satisfies (13a) and (B.2), and we show that solving (13b) and (B.2) still yields (z°,k°). To
achieve this goal, we show that (13a) after manipulation is identical to (13b) in form. Recall that

under the PE regime, the agent’s propensity to save is ®(k;,z;) ! ] and the

- 1+x B+[1/0 (ks )

_ 2B .
= T Under the NPE regime, the

. When evaluated at (z?,k°), both ®(k°,z°) and

propensity to invest in private education is Q(k;,z;)

propensity to save is ®(k;,z;) = m
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Q(k°,z°) can be expressed in terms of ®(k°,z°):

1 xB
Dk, %) = _ and Q(k°,2°) = > (G.1)
W =3B+ VEIES) W) =B+ VEIES)
As (z°,k°) lies on the boundary, substituting (B.2) into (G.1) to eliminate ®(k°,z°) gives
1 ut(l—A) ut(l—A)
q) kO, oy — d Q kO’ %) = .
K = B0 ui=n ™ WD) = e uci—a)

(G.2)

Substituting (z,k°) and (G.2) into (13a) gives the kk locus under the PE regime evaluated on the

switching point:
arap APt -a) P 1
B B AP

(k%) (G.3)

Using (B.2), (G.3) becomes:

AP (1 — o) (1—1) B(k°,2%)
B [ut(1-A)F A(z0)F

(k())lfowr(xﬁ _ (G.4)
which is identical to (13b) in form. So solving the kk locus under the NPE regime (13b) and the
boundary (B.2) for z; and k; still yields (z°,k°). We conclude that (z?,k?) also satisfies the kk locus
under the NPE regime (13b) and the boundary (B.2), and there is no discontinuity on the kk loci
when the regime switches at (z°,k?). Therefore, we have proved the second mathematical fact.
The combination of the above two established mathematical facts implies that for two

stable BGPs to arise, the kk locus must intersect the zz locus from below. Thus, on the intersection
of the kk and zz loci, i.e., the BGP, the slope of the kk locus is larger than that of the zz locus. We

have
k} b >>kj 1
Z1l-a+af—AF " ZFl—o

l—o+af—Af

which after rearrangement leads to —q < ¥}, implying that the BGP can be locally

saddle or unstable.
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Appendix H Proof of Proposition 7 (Ranking of BGPs)

Proof. To prove that one BGP is preferred over the other when multiple BGPs emerge, we need to
compare the economic growth rate and intergenerational welfare improvement associated with
each BGP. Substituting the BGP capital ratio kp; and pollution stock zp into either (10a) or

(11a) and taking natural logs gives the economic growth rate on the BGP under the PE regime:

@ k* £
g;'sE=1n{[<1—r><1—a>+m<1—A>1 2 (ggj”E)}. 1)

Similarly, the economic growth rate on the BGP under the NPE regime is

N D(kipp,z
gvpe =1In {(1 —7)(1— a)Aie ( NZPE NPE)} (H.2)
NPE

The first part of Proposition 7 says that under the same regime, policymakers prefer the
BGP with a lower stock of pollution because the BGP also features a higher economic growth rate
and higher intergenerational welfare improvement. To prove this fact, we check the PE regime
and the idea also carries over to the NPE regime. Because the zz locus slopes up, a lower stock of
pollution must be associated with a lower ratio of physical-to-human capital. Consider two BGPs
under the PE regime, (2pg 15 Kpg jow) A0 (Zpg pighs Kpg pign)» Where the subscripts low and high

denote lower and higher values for the pollution stock and the capital ratio. It must be true that

P (kt 7Zt) 8<I>(k, 7Zt)

* * * * .
0 < 2pg tow < 2pE pign AN O < kpg 1., < kpp - By assumption, —57=== < 0 and <0.
P(kp 2 ) P(kpp high2PE high) .
Therefore, —LLlowPElow” high"PEhigh” and by equation (H.1), we get > -
2PE low ZPE high yeq (H.1) get gpg Jow 8r PE high

Also by assumption, w < 0and a(p(k“z’) < 0. Thus,

O KPE 10w ZPE jow) > P KpE pigh» ZPE pign)- BY (22), we have

[1 + (1 + X)‘p(k}:E’lgw?Z;’E,low)} g;’E,low > [1 + (1 + X)(p(k;’E,high?Z;E,high) g}k’E,high’

* *
WeE tow > WpE highs
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implying that under the PE regime, a lower stock of pollution is associated with a higher BGP
economic growth rate and higher intergenerational welfare improvement, whereas a higher stock
of pollution is associated with a lower BGP economic growth rate and lower intergenerational
welfare improvement. This conclusion also applies to the NPE regime.

The second part of Proposition of 7 says that policymakers prefer the BGP under the PE
regime over the BGP under the NPE regime. The reason is that the BGP under the PE regime
features a lower stock of pollution, a higher economic growth rate, and higher intergenerational
welfare improvement. From equations (H.1) and (H.2), it is difficult to directly compare the
economic growth rates gpp and gy pp. But we know 2, < z° < zjpp and kpp < k° < kjpg
because both the pollution stock and the capital ratio lie on the monotonically upward-sloping zz
locus. Besides, (zp,kpg) lies to the lower left of the boundary, (zypg. kypg) lies to the upper
right of the boundary, and (z°,k°) lies on the boundary separating the PE and NPE regimes.
Therefore, we can rely on (z°,k°) on the boundary as a baseline to indirectly compare the two

economic growth rates. Recall equation (G.2) gives the propensity to save under the PE regime

adD(kt »Zt)

evaluated at the switching point, ®(k°,z°) = urll—a) Because < 0and

xﬁ (I=7)(1—a)+ur(1-A)"
3 (k[,Zf)

o <0, kpp <k?and zpp < z% we have (k’Z’g;PE) > (D(Z(,’ 2, By equations (H.1) and (G.2),

the economic growth rate on the BGP under the PE regime satisfies

P P(kpg,zpE)
AT0  zpg
p <I>(k",z")} n [pu(l—A) 1].

>ln{[(1—1)(1—a)+uf(1—A)]% -

ghe =1n{[<1 01— o) + (1 - A)]

xBAO 0 (H.3)

Similarly, recall equation (B.2) gives the propensity to save under the NPE regime evaluated at

) pr(1-4) 9P (ks ,21) < 0 and 3<I>(kl,z,)

the switching point, ®(k°, z° ZB =) (1=7)" Because —o <0,2° < Zypg

and k < kypp, we have q)(kf‘gfp’;” ) < o z‘; 9, By equations (H.2) and (B.2), the economic
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growth rate on the BGP under the NPE regime satisfies

. ak* ,Z*
gNPEzln {(1—1’)(1—06) Yy (NPE NPE):|

AT0 INpPE
Bk, 2° 1-A) 1
<In {(1—r)(1—a)A%%} —In [%z_‘?]' (H.4)

Comparing equations (H.3) and (H.4) yields g5z > In [p ;E%IXBA) Zi,,] > gnpg- Thus, the BGP
economic growth rate is higher under the PE regime than under the NPE regime. At last, it can be

easily verified that

[1+(1+x)0(kpg,zpe)l gpe > [1+ (1 + )0 (kypgs 2vpe)] 8N PES

Wpe > Wypk-

Therefore, the BGP intergenerational welfare improvement is also higher under the PE regime

than under the NPE regime.

Appendix I The Difference in the Slopes of the kk Loci When the Regime Switches

Because we have proved in Appendix G that the kk loci are continuous at the switching point
(z°,k?), we compare the slope of the kk locus under the PE regime (C.1) and the slope of the kk
locus under the NPE regime (C.2), both of which are evaluated at (z?, k).

Under the PE regime, the propensity to save is ®(k;,z;) = % The elasticities
of the propensity to save with respect to the pollution stock and with respect to the capital ratio

can be rewritten as expressions consisting of longevity and the elasticities of longevity with

respect to the pollution stock and the capital ratio:

a¢(k},Z;) 1
E = aq)(kt,Zl) i = 94 ¢.(kzt7Zl) = E¢(k;,zt)72r <0 (I 13)
Plha)a dzy  Plkiz)  (1+xB)o(kez)+1  (1+xB)¢(kiz)+1 7
a¢'(kt7zl) k[
0P k E
Eatyas, = (keyzt) ke ok oa) 0 (ke\21) <0. b

ok, P(ky,z)  (L+xB)O(ki,ze)+1 (14+xB)o(ki,z) +1
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Under the NPE regime, in contrast, the propensity to save is ®(k;,z;) = ¢((pk(,k;5t4)rl . The

elasticities of the propensity to save with respect to the pollution stock and with respect to the
capital ratio are

99 (ki) _ z Ey

00(ki,z:) 9z Olkiz) kr21) 2
I _ _ _ o) DR <0, I.2a
q)(kz,Zr),Zz aZt (I)(k[’zt> ¢(kl7zl) + 1 ¢(kt7ZI) + 1 ( )
__ 3¢(kt7Zt) ky
oD (k k ok E
o ( t,Zt) t . ki P(kiz) ¢ (krszt) ke <0 (I.2b)

Ee _ _ — = .
(ke zr) ki ak[ (I)(k[,Zz> ¢(k[,Z[) +1 ¢(kt,Zt) +1

Comparing (I.1a) and (I.2a) evaluated on (z°,k°) yields 0 > U +f/(§()k;7(112§1) 7> ff,iﬁoz’zoo;f}l,
and comparing (I.1b) and (I.2b) evaluated on (z°,k?) yields 0 > a jg%g;g% = > s‘(”,fff;o))f] )

Thus, we have

0> E(I)(k07zo)7zo > EE(k(’,z"),z"’ (I3a)

O > E(p(k07zo)7k0 > EE(k",Z”),kO' (I3b)

The capital accumulation differentials caused by pollution (16) and the own effects of the

capital ratio (17) under the PE and NPE regimes when evaluated on (z°,k°) are as follows:

\P?)E = ECI)(k",Z()),ZO - ﬁ (EQ(k(),Z‘)),ZU +El(ku7zo)7zo) y
Apg = Eg (ko 20) o — BEq(ko z0) ko
NPE = Eg(ro 10y 20 = BEA (ko 20) 20

o — p—
NPE — E@(k()’Zo)’ko .

By (I.3a) and Eq 4o 0y 0 <0,
W — Vg = (Eq,(ko’Zu)’ZU — Eg (ko 101 z“) — BEq ko ),z > 0. Then evaluated on (z°,k?), there

are three possible cases for the relative slopes of the kk loci when the regime switches: (1)
Yor > Ypr >0, (2) Yo > 0> Ypp: 3) 0> Yo > Ypr-

By (I.3b) and Eq 1o ) ko <0,
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A;)_-, _A;?VPE = <Ecp(ko7zo)7k0 _Ea(ko,zo),k") — BEQ(k",Z”),k” > 0 It 1mphes

(1—a+af)=Ajpg > (1 -+ af) = Aps >0,
1 1

(ot op) Ay (I—atap) Mg (1.4)

Subtracting equation (C.2) from (C.1) yields the difference in the slopes of the kk loci

when the regime switches at (z°,k°):

dki|  dk Ok Yor L Y (L5)
dzi |pgp  dz|ypg 2 (1-a+ap) —App 2 (l—o+af)—App .

By (L.5) and (1.4), when (1) Yo, > W{pr > 0 and (2) Yo > 0 > W55, i.€., the kk locus slopes
up under the PE regime by (C.1), the slope of the kk locus under the PE regime is larger than that
of the kk locus under the NPE regime at the switching point (z°,k%). But when (3)

0> Yo > W4 pg, i.€., the kk locus slopes down under the PE regime by (C.1), the relative slopes

of the kk loci when the regime switches cannot be determined.

Appendix J An Alternative Model: Robustness Check

In this section, we establish an alternative model that isolates mechanisms that could possibly blur
our results, thus allowing for robustness check of the results derived from the basic model. The
alternative model simplifies the basic model in two major ways. First, the alternative model does
not involve parents’ utility derived from their children’s human capital. Thus, the agent does not
invest in private education and the accumulation of human capital is supported by public
education expenditures only. Second, both physical and human capital fully depreciate within one
period. The assumption of different types of capital depreciating at the same rate is not essential
to the results and is widely employed by the literature for simplicity (see, for example, Mankiw et
al., 1992; Goenka and Liu, 2020). Full depreciation of physical and human capital is a special

case where both types of capital depreciate at the same rate, which makes the analysis as simple
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as possible. More importantly, full depreciation of physical and human capital implies no capital
can be directly left from one period to the next, thus serving as another advantage of the
alternative model to confirm the robustness of our results. Because parents cannot leave heritage
to their children in the form of either physical or human capital, the alternative model stays away
from the heritage issue. Based on the above two points, the prominent feature of the alternative
model is to completely shut down altruism, a mechanism that turns out to be important in
affecting the capital ratio (Chakraborty and Das, 2019). As is explained in the Section “Related
Literature”, altruistic parents favor heritage left for their children in the form of physical capital
rather than in the form of human capital in the event of uncertain mortality, thus prompting
parents to invest more in physical capital than in human capital. Therefore, the alternative model
isolates the effect of altruism on the capital ratio from the health effects of pollution on the capital
ratio, and focuses on the capital accumulation differential caused by pollution through health.
Thus, our model deviates from (Chakraborty and Das, 2019). We show that our primary results
survive the alternative model.

Because altruism is assumed away, the altruism parameter in equation (5) is ¥ = 0 and the

lifetime utility of the representative agent born at the beginning of period r — 1 becomes

Ui—1 =Inc; + ¢ry1Indy 1. J.1)

As the representative agent does not derive utility from her child’s human capital, her private

education expenditures are zero e¢; = 0. The adulthood budget constraint becomes

Wy =C,+S,. (J2)

The elderhood budget constraint remains the same. The representative agent maximizes (J.1)

subject to (J.2) and (6b) by choosing adulthood consumption c¢;, elderhood consumption d;, |, and
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savings s;. Solving the agent’s utility maximization problem yields the savings function:

NS 6tJrlwty (J.3)

Ot 1
Gr1+1

Because the absence of altruism leads the representative agent not to invest in private

where E,H =

is the propensity to save when e; = 0.

education and human capital fully depreciates within one period, private education expenditures
e; = 0 and the representative agent’s human capital H; does not directly come into the formation

of her child’s human capital H;, . As a result, the evolution of human capital (4) becomes

H; 1 = B(Aumy). J.4)

A comparison of the human capital evolution in the main text and the above reveals that (J.4) is a
special case of (4) when ¢, =0 and 8 = 1.

In the equilibrium, K, | = s; because physical capital also fully depreciates within one
period. Substituting (1b) into (J.3), (2b) into (J.4), and applying k, = Ki/H, yields the non-linear

difference equations describing the evolution of physical and human capital:

K1

< = P (k;,z) (1 — o) (1 —1)ALS !, (1.5)
Hgl = BA(z) (1 — A)TAKY, (1.6)
1

where the propensity to save 6t+1 = a(kt,z,) is written as a function of k; and z;, because

Or1 = ‘P(kt,Zz)-

From equations (J.5) and (J.6), the ratio of physical-to-human capital evolves according to

(1 — (X)(] —T) 5(16;,1;).

T B 26 o

The evolution of the pollution stock remains the same according to (14) in the main text. To
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proceed, we define the capital accumulation differential caused by pollution in the alternative

model:
lPt - E6t+lvzt o E)t,[,zfa
where Eg — 9%Ua) _z < 0 is the elasticity of the propensity to save with respect to the
Dry1,% oz D(k;yz) Y Y

pollution stock, which captures the physical capital effect of pollution, and Ej . = /}1/((2)) 7 <01s

the elasticity of education expenditures effectiveness with respect to the pollution stock, which
captures the human capital effect of pollution. Evaluated on the BGP, the capital accumulation
differential is ¥ = EE*,z* —Ep .

We also define the own effect of the capital ratio in the alternative model:

At - EEI-H ki

86(kt 711) ky

where E5z+1,kt = o D)

< 0 is the elasticity of the propensity to save with respect to the
capital ratio, which captures how capital ratio affects itself. Evaluated on the BGP, the own effect
of the capital ratiois A = E5*7 o

From (J.7) and (14), we write the Jacobian matrix as

—x —*k*
A Eg

J= Nt (.8)
6(1—a) 1-6

From (J.8), the trace and determinant of the Jacobian matrix are

Tri=A+(1-0)<1,

—k

DeJ =(1—0)A —6(1 —a)¥".

To characterize the transition dynamics, we define the characteristic polynomial

p(v) =v? — (TrJ)v+Del, where v is the eigenvalue. The following equation determines whether
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the eigenvalues have imaginary parts:
— 2 =k
(TrJ)? — 4DeJ = [A (- 9)} 140(1— )T

And the following two equations determine the eigenvalues relative to 1 and —1:

*

p(1)=14DeJ—Tri=60(1—A")—6(1— )",

p(=1)=14DeJ+TrJ=(2—0)(1+A")—0(1 —a)¥".
Based on the above equations, we apply the method in Appendix D and get the results regarding
the transition dynamics in three possible cases.
First, when 0 < TrJ < 1 <= —(1—0) < A" < 0, the following relationships must hold:

(1-6)A" —1 <_[K*—(1—9)]2< 1-A" § (2- 9)( +1>

(1 —a) 40(1 — a) -« (1 —a)
The transition dynamics around the BGP exhibit outward cycles if ¥ < % dampened
——k 2
cycles if (lg)—a) <¥ < —[/\4;((1;3))] stability if — % [y T-o» saddle stability

(2-6)(A"+1)

(2—6) (A" +1 —
0(1-a) ( ) v

if 1A " < , and instability if ~—5 75— <

Second, when —2 < TrJ <0 <= —2—(1—0) < A" < —(1— ), the following
relationships must hold:

(1—0& —1 [K*—(1—e)]2 c-o)(A+1) | x

0i—a) = 40(l-a) = 6(l-a -«

(1-6)A"

The transition dynamics around the BGP exhibit outward cycles if ¥ < ﬁ dampened
—k 2

cycles if (1(93_:\@1 <¥ < —% stability if — % <¥ < %, saddle

stability if % < ¥ < 1= and instability if 12 < ¥
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Third, when TrJ < —2 <= A" < —2— (1 — ), the following relationships must hold:

— 2 —*
[A —(1—9)} 2-6) (A +1) L
— < < :
40(1 — ) 0(1—a) l-—a
— [K*—(I—G)]z
The transition dynamics around the BGP exhibit outward cycles if ¥ < ~Je(i—a) saddle
—% . Nz 2 . _ —
stability if “n &) < @ < I and instability if Aok < @ < BP0
1A _ gt
e <¥.

From the above results, we see that in the alternative model, the capital accumulation
differential caused by pollution P still drives the transition dynamics around the BGP. But due to
the absence of altruism, the agent never invests in private education and only one regime exists.
As aresult, two stable BGPs lying under two regimes cannot emerge simultaneously as depicted
in Figure 7. Besides, as a simplified version of the basic model, the above results also can be
verified by setting B = 1 and y = 0 under the NPE regime in the basic model.

Evaluated on the BGP, the following partials reflecting the relationships among the BGP

variables are derived, which are similar to those in the basic model:

ok gt W
0" g* L 1—-A"

ag* 7+ =8 f*

where T = aEg: .+ (1— = Eg . )Ep- - <0.
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The effects of T on k*, z*, and g* are

i v ¥+

Tk (- ¥~ (1-1)
AR & el S
T (—a) - (1-R7)

The effects of A on k*, z*, and g* are

k" A ¥ AL
Ak (1-a)@ — (1-1")

A

Az (1@ - (1-R")
dk* A dz* A
dg*A_(l_O‘)(dA_*>_<dzA?
) d

k
dA g (g;g_*)_u_a

To conclude, the alternative model completely shuts down altruism by dropping the
agent’s utility derived from her child’s human capital and by assuming full depreciation of both
physical and human capital. The alternative model simplifies the basic model under the NPE
regime by setting ¥ = 0 and 8 = 1. The results derived from the alternative model show that the

capital accumulation differential caused by pollution through health still is the key driving force.
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