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1 The core idea of Gaglianone and Issler (2021)

The following text draws heavily from Gaglianone and Issler (2021), which superseded previous

versions. Indeed, we provide below a self-contained summary of the ideas in that paper.

For a more complete understanding of the techniques used there, please refer to the original

manuscript. The setup is pretty standard and obeys the stationary-ergodic environment with

finite first and second moments.

Gaglianone and Issler follow the setup in Patton and Timmermann (2007), where each

individual i = 1, 2, · · · , N chooses the optimal point forecast fh
i,t so that the conditional

expected loss function (Li) is minimized:

fh
i,t = argmin

fi

E
[
Li(yt; fi) |Fi,t−h

]
. (1)

Here, fi ∈ R represents all possible point-forecast choices for forecaster i.

As in Morris and Shin (2002), the conditioning information set Fi,t−h varies across fore-

casters (heterogeneous information) and it is based on both public and private information.

The econometrician has no knowledge of the individual risk function used by forecaster i

(loss-function heterogeneity), and the assumptions made by the agent on the conditional data

generating process (DGP) of yt used by her/him to compute E [Li(yt; fi) |Fi,t−h ] and therefore

to forecast yt.

Assuming that the optimizing agent i employs the location-scale model with one covari-

ate alone, different across i, forecaster’s i model of the conditional quantile function of yt,

Qyt (τ |Fi,t−h ) reads as:

Qyt (τ |Fi,t−h ) = αh
0,i (τ) + αh

1,i (τ)xi,t−h, for all τ ∈ [0, 1] , (2)

where xi,t−h is the covariate used by agent i in the location-scale model, τ ∈ [0, 1] is a quantile

of the conditional distribution of yt, and αh
0,i (τ) and αh

1,i (τ) are parameters that vary across
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quantiles (τ), agents (i), and forecast horizons (h), but do not vary across time to preserve

stationarity. To simplify notation, we drop the dependence of αh
0,i (τ) and αh

1,i (τ) on h in what

follows.

They stress that equation (2) is an extreme case that works against common information,

since each agent employs a different covariate xi,t−h in their respective location-scale model

(heterogeneity in information). Despite that, these covariates xi,t−h are likely to be correlated.

They follow Stock and Watson (2002) in assuming that:

yt = β′
FFt−h + β′

wwt−h + ξt,

xt−h = ΛFt−h + et−h, (3)

where xt−h = (x1,t−h, x2,t−h, · · · , xN,t−h)
′ stacks all the covariates xi,t−h used by the agents to

forecast yt; Ft−h stacks a reduced number of r (r ≪ N) latent factors capturing the common

components of these covariates and generating their cross-correlation; wt−h stacks additional

regressors used to forecast yt, e.g., its lags; the Λ matrix and the vector β′
F store factor

loadings; the vector β′
w stores the loadings of the additional regressors; and ξt and et−h are

errors terms which are allowed to be both serially correlated and (weakly) cross-sectionally

correlated.

An important result from Patton and Timmermann (2007, Proposition 3, case b) regarding

an optimal point forecast fh
i,t is that it is associated with a given quantile level of Qyt (τ |Fi,t−h ),

labelled here as τ ∗i , which may differ across agents, as follows:

fh
i,t = Qyt (τ

∗
i |Fi,t−h ) = F−1

i,t|t−h (τ ∗i ) . (4)

In words, the optimal point forecast fh
i,t of agent i is a specific conditional quantile of yt

(i.e., associated with quantile level τ ∗i ∈ [0, 1]), where Fi,t|t−h (·) is the conditional cumulative

distribution function of yt. Intuitively, one can think of specialization in forecasting: one agent

is always pessimistic about future prospects of yt, while another one is optimistic, and a third

one is neutral, and so forth.

The key to the result in (4) is that each point forecast lies in the domain of the conditional

cumulative distribution, so that the conditional probability of yt ≤ fh
i,t could be computed and

Fi,t|t−h (·) inverted. Given (2) and (4), we obtain:

fh
i,t = Qyt (τ

∗
i |Fi,t−h ) = α0,i (τ

∗
i ) + α1,i (τ

∗
i )xi,t−h. (5)

Notice that this establishes an affine relationship between the covariate in the location-scale

model and the optimal individual forecast. However, for every respondent, we can go one step

further to relate the latter with the conditional mean of yt, E (yt |Fi,t−h ) ≡ Ei,t−h(yt), given

all the information available to agent i – public and private. This could be accomplished by
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using an important result in Koenker (2005), which relates the conditional quantile function

with the conditional mean Ei,t−h(yt), as follows:

E (yt |Fi,t−h ) ≡ Ei,t−h(yt) =

∫ 1

0

Qyt (τ |Fi,t−h ) dτ =

∫ 1

0

[α0,i (τ) + α1,i (τ)xi,t−h] dτ

=

∫ 1

0

α0,i (τ) dτ + xi,t−h

∫ 1

0

α1,i (τ) dτ = α0,i + α1,ixi,t−h, (6)

where α0,i =
∫ 1

0
α0,i (τ) dτ and α1,i =

∫ 1

0
α1,i (τ) dτ . Combining (5) and (6), we arrive at:

fh
i,t =

(
α0,i (τ

∗
i )−

α1,i (τ
∗
i )α0,i

α1,i

)
+

α1,i (τ
∗
i )

α1,i

Ei,t−h(yt), (7)

which establishes an affine relationship between the optimal individual forecast fh
i,t and the

individual conditional expectation Ei,t−h(yt) of agent i.

They turn to the components of the individual information sets used by every agent. The

information set Fi,t−h is partitioned here into two orthogonal components. The first is Ft−h,

which comprises public information available to all agents. The second is Fpriv
i,t−h, which includes

idiosyncratic or private information available to each agent exclusively. Formally, Gaglianone

and Issler impose that Ft−h ∪ Fpriv
i,t−h = Fi,t−h and that Ft−h ∩ Fpriv

i,t−h = ∅.
Next, they present an important result, widely used in the Nowcasting literature (e.g.,

Bańbura, Giannone, and Reichlin, 2011): the orthogonal-component decomposition1 of the

information set Fi,t−h.

Lemma 1 (Gaglianone and Issler (2021)) Let (Ω,F , P ) be a probability space, where Fi,t−h ⊆
F is a sub σ-algebra of F . Assume that Ft−h and Fpriv

i,t−h are orthogonal, closed and non-empty

subspaces that form a partition of Fi,t−h, Ft−h ∪ Fpriv
i,t−h = Fi,t−h and Ft−h ∩ Fpriv

i,t−h = ∅, where
Ft−h only contains public (common) information, including a constant term, and Fpriv

i,t−h only

contains private idiosyncratic information available exclusively to agent i. Assume that yt

is in the Hilbert space of square-integrable real random variables. Then, one can decompose

E (yt | Fi,t−h) as follows:

(i) E (yt | Fi,t−h) = E (yt | Ft−h) + E
(
yt | Fpriv

i,t−h

)
,

where the second term E
(
yt | Fpriv

i,t−h

)
is orthogonal to the information used in the first, i.e.,

(ii) E
(
E
(
yt | Fpriv

i,t−h

)
| Ft−h

)
= 0.

1A simple example of this decomposition relates to the linear regression model with Gaussian errors:
y = Xβ+ε, where the OLS estimator decomposes y as: y = E

(
y | X ∪X⊥) = E (y | X)+E

(
y | X⊥) = Xβ̂+ ε̂

= X (X ′X)
−1

X ′y︸ ︷︷ ︸
E(y|X)

+
[
I −X (X ′X)

−1
X ′
]
y︸ ︷︷ ︸

E(y|X⊥)

, the first term being a projection of y onto the space of X and the

second being a projection of y onto the orthogonal space of X, labelled here as X⊥. Note that X must contain
a constant term to impose a zero mean for ε̂.
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Combining (7) and result (i) of Lemma 1, we arrive at:

fh
i,t =

(
α0,i (τ

∗
i )−

α1,i (τ
∗
i )α0,i

α1,i

)
+

α1,i (τ
∗
i )

α1,i

Et−h(yt) +
α1,i (τ

∗
i )

α1,i

E
(
yt | Fpriv

i,t−h

)
. (8)

Thus, the optimal forecasts fh
i,t takes the encompassing general form:

fh
i,t = kh

i + βh
i Et−h(yt) + εhi,t, (9)

where a full mapping from (8) to (9) is straightforward to obtain using the definitions below:

kh
i ≡ α0,i (τ

∗
i )−

α1,i (τ
∗
i )α0,i

α1,i

, (10)

βh
i ≡ α1,i (τ

∗
i )

α1,i

, (11)

εhi,t ≡ α1,i (τ
∗
i )

α1,i

E
(
yt | Fpriv

i,t−h

)
, (12)

in which kh
i and βh

i are, respectively, intercept and slope bias-correction terms, and εhi,t is the

idiosyncratic component of individual expectations.

Equation (9) delivers an affine factor model, with a single factor related to the common

information set used by all forecasters in the survey, Et−h (yt) ≡ E (yt | Ft−h). Of course, the

individual response to common information is heterogeneous, since the affine model has an

intercept and a slope that vary across i. Note that heterogeneity in expectations appears only

in the last term εhi,t ≡
α1,i(τ∗i )

α1,i
E
(
yt | Fpriv

i,t−h

)
of the orthogonal decomposition. Since εhi,t and

Et−h(yt) are orthogonal in (9), identification is easily achieved and, given a consistent estimate

of Et−h(yt), we can estimate kh
i , β

h
i , and εhi,t using least-square methods.

Next, Proposition 2 summarizes the core idea discussed above and provides a formal treat-

ment on this subject.

Proposition 2 (Gaglianone and Issler (2021)) Under assumptions A1-A5 in Gaglianone

and Issler (2021): (i) the optimal forecast is an affine function of the conditional mean of yt,

using public (common) information, that is:

fh
i,t = kh

i + βh
i Et−h(yt) + εhi,t,

(ii) in the absence of scale effects on the location-scale model of yt, then βh
i = 1, for all i, and

fh
i,t = kh

i + Et−h(yt) + εhi,t.
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1.1 Identification and GMM estimation

The basic approach to identify and estimate Et−h(yt) employs the generalized method of mo-

ments (GMM), relying on T asymptotics, which fits current surveys of expectations. However,

the fact that Et−h(yt) is a latent variable is a drawback, since the moments used in GMM es-

timation must be a function of observables and parameters alone. However, one can use the

decomposition:

yt = Et−h(yt)− ηht , (13)

where, vis-a-vis public information, ηht is an unforecastable martingale-difference component,

i.e., Et−h(η
h
t ) = 0.

Combining (9) and (13) leads to:

fh
i,t = kh

i + βh
i (yt + ηht ) + εhi,t (14)

= kh
i + βh

i yt + vhi,t, (15)

where

vhi,t ≡ βh
i η

h
t + εhi,t

is a composite error term. Notice that, by construction, Et−h

(
ηht
)
= 0, so Et−h

(
vhi,t
)
= 0 if

Et−h(ε
h
i,t) = 0. However, using the definition of εhi,t:

εhi,t ≡
α1,i (τ

∗
i )

α1,i

E
(
yt | Fpriv

i,t−h

)
,

and the result (ii) from Lemma 1, it follows that εhi,t is orthogonal to public information. Then:

Et−h(ε
h
i,t) = E

(
εhi,t | Ft−h

)
=

α1,i (τ
∗
i )

α1,i

E
(
E
(
yt | Fpriv

i,t−h

)
| Ft−h

)
= 0, implying that

Et−h

(
vhi,t
)

= 0, E(εhi,t) = 0, and finally that E
(
vhi,t
)
= 0. (16)

Equation (16) validates the use of public information dated t − h as natural instruments

in a GMM setup. Starting with (15) and (16), and using the law of iterated expectations and

valid observable instruments zt−s, where s ≥ h, we obtain:

E
[(
fh
i,t − kh

i − βh
i yt
)
⊗ zt−s

]
= 0, (17)

which is valid for all i = 1, ..., N , t = 1, ..., T , and h = 1, ..., H. The system (17) has 2NH

parameters and (at least) 2NH moment conditions, provided that dim(zt−s) > 2, which is

critical for over-identification. Despite that, one problem remains: if N → ∞, the amount of

parameters in (17) diverges, which goes against consistency.

To eliminate the curse of dimensionality problem, we take the cross-sectional averages of
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terms fh
i,t − kh

i − βh
i yt, leading to the following moment restrictions:

E
[(

fh
·,t − kh − βhyt

)
⊗ zt−s

]
= 0, (18)

t = 1, ..., T , and h = 1, ..., H, where fh
·,t = 1

N

N∑
i=1

fh
i,t, kh = 1

N

N∑
i=1

kh
i and βh = 1

N

N∑
i=1

βh
i ,

represent cross-sectional averages for each h.

it is straightforward to show identification in a GMM context. For every instrument in

zt−s, say, zj,t−s, j = 1, 2, · · · , k, where k > 2, we can solve:

Et−h

[(
fh
·,t − kh − βhyt

)
⊗ zt−s

]
= 0,

to obtain:

0
k×1

= Et−h





(
fh
·,t − kh − βhyt

)
× z1,t−s(

fh
·,t − kh − βhyt

)
× z2,t−s

...(
fh
·,t − kh − βhyt

)
× zk,t−s



 =





(
fh
·,t − kh − βhEt−h (yt)

)
× z1,t−s(

fh
·,t − kh − βhEt−h (yt)

)
× z2,t−s

...(
fh
·,t − kh − βhEt−h (yt)

)
× zk,t−s



 ,

(19)

since the average forecast, fh
·,t, and all the instruments zj,t−s, j = 1, 2, · · · , k, are measurable

regarding information in Ft−h. If we divide every equation in the system (19) by its respective

instrument, and then solve Et−h (yt), we obtain the same result for all of them:

Et−h (yt) =
fh
·,t − kh

βh
=

1

N

N∑
i=1

fh
i,t − kh

βh
,

which shows identification after assuming standard conditions in the literature. We now discuss

consistent GMM estimation based on (18).

Proposition 3 (Gaglianone and Issler (2021)) Under assumptions A1-A9 in Gaglianone

and Issler (2021), the Extended BCAF (Bias Corrected Average Forecast) 1
N

N∑
i=1

fh
i,t−k̂h

β̂h
, based

on T -consistent GMM estimates θ̂h =

[
k̂h; β̂h

]′
, obeys plim

T→∞

(
1
N

N∑
i=1

fh
i,t−k̂h

β̂h

)
= Et−h (yt), where

we let T → ∞, with N fixed. Convergence to Et−h (yt) also happens when we let first T → ∞

and then let N → ∞, that is, plim
(T,N→∞)seq

(
1
N

N∑
i=1

fh
i,t−k̂h

β̂h

)
= Et−h (yt), where (T,N → ∞)seq

denotes the sequential asymptotic approach of Phillips and Moon (1999).
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Based on this result, a T -consistent estimate of Et−h (yt) is given by:

Êt−h (yt) =
1

N

N∑
i=1

fh
i,t − k̂h

β̂h

.

2 A Robust (HAC) estimation for the variance of Êt−h (yt)

This is one of the original contributions of this paper. As shown above we can count on

consistent GMM estimation based on (18). In our paper, we explain at some length how

to obtain a robust heteroskedasticity and autocorrelation consistent (HAC) estimator for the

variance of Êt−h (yt). Here, we summarize that discussion. Our strategy was to first show

how to get an estimate of the long-run variance of the population moments used in GMM

estimation. Based on that, we apply the Delta Method to get a robust HAC estimator for the

variance of Êt−h (yt).

The population moment condition is given by:

0 = E
[
ht

(
θ
h

0 ,Wt

)]
= E

[(
f
h

·,t − k
h − β

h
yt

)
⊗ zt−s

]
(20)

for each horizon h = 1, 2, · · · , H,where θ
h

0 = (kh
0 ,β

h
0) is the true parameter value and Wt stacks

observables
(
f
h

·,t, yt

)′
. We use the well-known result regarding long-run variances (LRV):

1√
T

T∑
i=1

ht

(
θ
h

0 ,Wt

)
d→ N [0,LRV] = N

[
0, Sh

]
.

The sample mean counterpart of (20) is:

1

T

T∑
t=1

ht

(
θ̂h,Wt

)
=

1

T

T∑
t=1

ht

(
k̂
h
, β̂

h
,Wt

)
.

The sample counterpart HAC covariance estimator of Sh is:

Ŝh = Γ̂0(θ̂
h) +

l∑
j=1

κ(j, l)

[
Γ̂j(θ̂

h) + Γ̂′
j(θ̂

h)

]
,

where Γ̂j(θ̂
h

) = T−1
∑T

t=j+1 ht(θ̂
h)h′

t−j(θ̂
h) is the j-th sample autocorrelation of ht (·), where

κ(j, l) is the kernel function weight and l is the bandwidth parameter. Using the asymptotic

results for the LRV, we obtain the HAC estimate for variance-covariance matrix of θ̂h =[
k̂h, β̂h

]′
:

√
T

(
θ̂
h

− θ
h

0

)
d→ N [0, V1] ,
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where:

V1 =

[
∂ht(θ

h)

∂θh

′ (
Sh
)−1 ∂ht(θ

h)

∂θh

]−1

. (21)

Note that,

Êt−h (yt) = f(k̂h, β̂h) =
1

N

N∑
i=1

fh
i,t − k̂h

β̂h

,

is a continuous function of θ̂h =

[
k̂h, β̂h

]′
. The Delta method can be applied to find the

asymptotic variance of Êt−h (yt). Indeed, we have:

√
T (Êt−h (yt)− Et−h (yt))

d→ N [0, V ] , or,

Êt−h (yt)
asy∼ N

[
Et−h (yt) ,

V

T

]
,

with V = D(f(θh))′V1D(f(θh)), where D(f(θh)) is the Jacobian of f(θh) and V1 is defined as

in equation (21).

Our final goal now is to get an estimate of V . This implies constructing directly

D(f(θ̂h))′V̂ D(f(θ̂h)), computing the Jacobian and then evaluating the whole expression using

θ̂h =

[
k̂h; β̂h

]′
as follows:

V̂ =

 − 1

β̂h

1
N

N∑
i=1

−fh
i,t+k̂h(
β̂h

)2

∂ht(θ̂
h)

∂θ̂h

′ (
Ŝh
)−1 ∂ht(θ̂

h)

∂θ̂h

−1


− 1

β̂h

1
N

N∑
i=1

−fh
i,t+k̂h(
β̂h

)2

 .

Once we obtain V̂ , we can test credibility of central banks using asymptotic confidence

intervals for Êt−h (yt). A Central Bank is credible if the fixed Inflation Target π∗
t obeys:

π∗
t ∈

Êt−h (yt)− 1.96×

(
V̂

T

)1/2

, Êt−h (yt) + 1.96×

(
V̂

T

)1/2
 ,

i.e., a central bank is credible if the 95% confidence interval around Êt−h (yt) (expected beliefs)

contains the target.

We now turn to how to construct a credibility index for central banks. The cumulative

distribution of Êt−h (yt), defined as F (xt) = Φ (xt), where Φ (·) is the CDF of a Normal

distribution. In our case, we employ the N
(
Et−h (yt) ,

V̂
T

)
distribution and use it to construct

a credibility index (CIt). It will inherit all the advantages of our measure of credibility. Our
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proposed credibility index (CIt) is as follows:

CIt = 1−

∣∣∣F (Êt−h (yt)
)
− F (π∗

t )
∣∣∣

1/2
, −∞ < π∗

t < ∞.

A plot of the Normal density with the credibility index shows how it works in practice.

Targets equal to Êt−h (yt) generate full credibility, i.e., CIt = 1.0. The further away π∗
t is from

Êt−h (yt) – no matter to which side of the density – the smaller the credibility index will be.

In the limit – whatever the side – we will have CIt = 0.
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