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1. Maximum likelihood (ML) estimator

We estimate all models by using the ML method. The ML estimates of parameters are given by:

Θ̂ = argmax
Θ

LL(Y1, . . . , YT ,Θ) = argmax
Θ

T∑
t=1

ln f(Yt|Ft−1,Θ) (S.1)

where LL is the log-likelihood function and Ft−1 = σ(Y1, . . . , Yt−1, X1,Ω1).

In the following, the gradient vector Gt(Θ) and the Hessian matrix Ht(Θ) of LL are defined. The

T × S matrix of contributions to the gradient G(Y1, . . . , YT ,Θ) is defined by its elements:

Gt,i(Θ) = −∂ ln f(Yt|Ft−1; Θ)

∂Θi
(S.2)

for period t = 1, . . . , T , and parameter i = 1, . . . , S. The t-th row of G(Y1, . . . , YT ,Θ) is denoted by

using Gt(Θ), which is the score vector for the t-th observation. Under the ML assumptions of the next

section, the maximization problem of Equation (S.1) is equivalent to:

1

T

T∑
t=1

Gt(Θ̂)′ =
1

T

T∑
t=1


Gt,1(Θ̂)

...

Gt,S(Θ̂)

 =
1

T

T∑
t=1


−∂ ln f(Yt|Ft−1;Θ̂)

∂Θ1

...

−∂ ln f(Yt|Ft−1;Θ̂)
∂ΘS

 = 0S×1 (S.3)

According to the mean-value expansion about the true values of parameters Θ0:

1

T

T∑
t=1

Gt(Θ̂)′ =
1

T

T∑
t=1

Gt(Θ0)
′ +

1

T

[
T∑
t=1

Ht(Θ̄)

]
(Θ̂−Θ0) (S.4)
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where each row of the S × S Hessian matrix:

Ht(Θ) = −∂2 ln f(Yt|Ft−1; Θ)

∂Θ∂Θ′ (S.5)

is evaluated at S different mean values Θ̄ of Equation (S.4). Each Θ̄ is located between Θ0 and Θ̂:

||Θ̄−Θ0|| ≤ ||Θ̂−Θ0||, where || · || is the Euclidean norm. From Equations (S.3) and (S.4):

√
T (Θ̂−Θ0) =

[
− 1

T

T∑
t=1

Ht(Θ̄)

]−1 [
1√
T

T∑
t=1

Gt(Θ0)
′

]
(S.6)

The asymptotic covariance matrix of parameters Θ̂ is estimated by using the inverse information

matrix: {(1/T )
∑T

t=1[Gt(Θ̂)′Gt(Θ̂)]}−1. We prove the consistency and asymptotic normality of the ML

parameter estimates, and the consistency of inverse information matrix-based estimator of standard

errors of parameters in the remainder of the Supplementary Material.

2. Assumptions

(A1) Θ̃ is the parameter set, for which Θ ∈ Θ̃ ⊂ IRS , and Θ̃ is compact.

(A2) Asymptotically, f(Yt|Ft−1; Θ0) = p0(Yt|Ft−1; Θ0) for Θ0 from the parameter set Θ̃ ⊂ IRS , where

p0 is the true conditional density, and Θ0 represents the true values of Θ.

(A3) Asymptotically, f(Yt|Ft−1; Θ0) for Θ0 is a dynamically complete density [Wooldridge (1994)].

(A4) λi,t for i = 1, . . . ,N are uniformly bounded, i.e. ∃ λmax ∈ IR+ such that |λi,t| ≤ λmax < ∞ for

i = 1, . . . ,N and for all t and Θ ∈ Θ̃.

(A5) Yt is strictly stationary for T → ∞ and ergodic on IRN for all Θ ∈ Θ̃.

(A6) ln f(·|Ft−1; Θ) : IRN × Θ̃ → IR is a real-valued function.

(A7) For each Θ ∈ Θ̃, ln f(·|Ft−1; Θ) is a Borel measurable function on IRN .

(A8) For each Yt ∈ IRN , ln f(Yt|Ft−1; ·) is a continuous function on Θ̃.

(A9) ∃ function b(·) : IRN → IR such that | ln f(Yt|Ft−1; Θ)| ≤ b(Yt) for all Θ, and E[b(Yt)] < ∞.

(A10)
∫
IRN f(Yt|Ft−1; Θ)dYt = 1 for all Θ.
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(A11) Θ0 is a unique solution to:

max
Θ∈Θ̃

plimT→∞T−1
T∑
t=1

E[ln f(yt|Ft−1,Θ)] (S.7)

(A12) Each element of Ht(Θ) is strictly stationary for T → ∞ and ergodic.

(A13) For each element of Ht(Θ), Hi,j,t(Θ) : IRN × Θ̃ → IR is a real-valued function.

(A14) For each Θ ∈ Θ̃, each element of Ht(Θ) is a Borel measurable function on IRN .

(A15) For each Yt ∈ IRN , each element of Ht(Θ) is a continuous function on Θ̃.

(A16) ∃ function b(·) : IRN → IR such that, for all elements of Ht(Θ), |Hi,j,t(Θ)| ≤ b[Hi,j,t(Θ)] for all

Θ, and E{b[Hi,j,t(Θ)]} < ∞.

(A17) E[Gt(Θ0)Gt(Θ0)
′] < ∞ for T → ∞.

(A18) (1/
√
T )
∑T

t=1E[Gt(Θ0)
′] → 0S×1 for T → ∞.

(A19) (1/
√
T )
∑T

t=1Gt(Θ0)
′ →d N(0, B0) for T → ∞, where:

B0 = lim
T→∞

Var

[
1√
T

T∑
t=1

Gt(Θ0)
′

]
(S.8)

(A20) Θ0 is an interior point within Θ̃ ⊂ IRS .

(A21) For each Yt, ln f(Yt|Ft−1; ·) is twice continuously differentiable on all interior points of Θ̃.

(A22) ∂[
∫
IRN f(Yt|Ft−1; Θ)dYt]/∂Θ =

∫
IRN [∂f(Yt|Ft−1; Θ)/∂Θ]dYt.

(A23) ∂[
∫
IRN Gt(Θ)′f(Yt|Ft−1; Θ)dYt]/∂Θ =

∫
IRN [∂Gt(Θ)′f(Yt|Ft−1; Θ)/∂Θ]dYt.

(A24) The following matrix is positive definite:

A0 = lim
T→∞

1

T

T∑
t=1

E[Ht(Θ0)] = lim
T→∞

1

T

T∑
t=1

Var[Gt(Θ0)
′] (S.9)
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3. Properties of the score functions

3.1. Boundedness of the score functions and their derivatives

The results of this section are true for all t and Θ ∈ Θ̃. In this section, we prove the existence of all

unconditional moments of ui,t and ei,t for i = 1, . . . ,N , and their derivatives.

(i) From Equation (20) of the paper, ut as a function of the structural form errors is:

ut = [(ν − 2)ν]1/2DΩt ×
ϵ̃t

ν − 2 + ϵ̃′tϵ̃t
(S.10)

where ϵ̃t ∼ t[0, IN × (ν−2)/ν, ν] with ν > 2 is an i.i.d. multivariate t-distribution with zero mean

and identity covariance matrix. Since Ωt is a diagonal matrix, the i-th element of ut is:

ui,t = [(ν − 2)ν]1/2Di,i exp(λi,t)×
ϵ̃i,t

ν − 2 +
∑N

j=1 ϵ̃
2
j,t

(S.11)

First, exp(λi,t) < ∞ due to assumption (A4). Second, for the last multiplier of Equation (S.11):

ϵ̃i,t

ν − 2 +
∑N

j=1 ϵ̃
2
j,t

→p 0 if |ϵ̃i,t| → ∞ (S.12)

for i = 1, . . . ,N . In addition, since Equation (S.12) is a continuous function of ϵ̃i,t, Equation

(S.12) is a bounded function of ϵ̃i,t. Hence, all unconditional moments of ut exist.

(ii) From Equation (16) of the paper, ei,t as a function of the reduced form errors is:

ei,t =
∂ ln fi(Yi,t|Ft−1,Θ)

∂λi,t
=

(ν + 1)v2i,t
ν exp(2λi,t) + v2i,t

− 1 (S.13)

for i = 1, . . . ,N . We also write ei,t as a function of the structural form errors:

ei,t =

{
(ν + 1)(ν − 2)

ν
×

(Di,1ϵ̃1,t + . . .+Di,N ϵ̃N ,t)
2

ν + (Di,1ϵ̃1,t + . . .+Di,N ϵ̃N ,t)2

}
− 1 (S.14)

where ϵ̃t ∼ t[0, IN × (ν−2)/ν, ν] with ν > 2 is an i.i.d. multivariate t-distribution with zero mean

and identity covariance matrix. The multiplier

(Di,1ϵ̃1,t + . . .+Di,N ϵ̃N ,t)
2

ν + (Di,1ϵ̃1,t + . . .+Di,N ϵ̃N ,t)2
∈ (0, 1) (S.15)
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Thus, ei,t is a bounded function of ϵ̃i,t, and all unconditional moments of ei,t exist.

(iii) For i = 1, . . . ,N , g(ei,t) ≡ αiei,t−1+α∗
i sgn(−ϵi,t−1)(ei,t−1+1), due to the boundedness of the sgn

function, g(ei,t) is a bounded function of ϵ̃i,t, and all unconditional moments of g(ei,t) exist.

(iv) By using similar arguments, under assumption (A4), we also have that ∂ut/∂(CXt−1), ∂ut/∂λi,t,

∂ei,t/∂(CXt−1), ∂ei,t/∂λi,t, ∂g(ei,t)/∂(CXt−1), and ∂g(ei,t)/∂λi,t are bounded functions of ϵ̃i,t for

i = 1, . . . ,N . Hence, all moments and covariances of ui,t, ei,t, g(ei,t), and their derivatives exist.

3.2. The score functions are white noise

The results in this section hold asymptotically at the true values of parameters Θ0. We study the

consequences of assumption (A3) on the score functions:

(i) ut is a martingale difference sequence (MDS) due to the following arguments. First, due to (A3)

Gt(Θ0)
′ is a MDS:

Et−1

[
∂ ln f(Yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln f(Yt|Ft−1,Θ)

∂[CXt−1]′

]
× ∂[CXt−1]

∂Θ′ = 01×S (S.16)

where Et−1 indicates expectations that are conditional on Ft−1. Since ∂[CXt−1]/∂Θ
′ ̸= 0N×S ,

Et−1

[
∂ ln f(Yt|Ft−1,Θ)

∂CXt−1

]
= Et−1

(
ν +N

ν
Σ−1
t × ut

)
=

ν +N
ν

Σ−1
t Et−1(ut) = 0N×1 (S.17)

Since [(ν +N )/ν]Σ−1
t ̸= 0N×N , we conclude that Et−1(ut) = 0N×1, i.e. ut is a MDS.

(ii) ei,t for i = 1, . . . ,N are MDSs due to the following arguments. Due to (A3), Gt(Θ0)
′ is a MDS:

Et−1

[
∂ ln fi(Yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln fi(Yt|Ft−1,Θ)

∂λi,t

]
× ∂λi,t

∂Θ′ = 01×S (S.18)

Since (∂λi,t/∂Θ
′) ̸= 01×S ,

Et−1

[
∂ ln fi(Yt|Ft−1,Θ)

∂λi,t

]
= Et−1(ei,t) = 0 (S.19)

Thus, ei,t for i = 1, . . . ,N are MDSs.

(iii) For i = 1, . . . ,N , g(ei,t) ≡ αiei,t−1 + α∗
i sgn(−ϵi,t−1)(ei,t−1 + 1) is MDS.
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(iv) Due to the law of iterated expectations, E(ut) = 0N×1, E(ei,t) = 0, and E[g(ei,t)] = 0.

(v) ut is MDS and the second moments of ut exist, hence ut is white noise vector [White (2001)].

(vi) For i = 1, . . . ,N , ei,t is MDS and Var(ei,t) < ∞, hence ei,t is white noise [White (2001)].

(vii) For i = 1, . . . ,N , g(ei,t) ≡ αiei,t−1 + α∗
i sgn(−ϵi,t−1)(ei,t−1 + 1) is MDS and Var[g(ei,t)] < ∞,

hence g(ei,t) is white noise [White (2001)].

3.3. The score functions are stationary and ergodic

We show that ut and ei,t for i = 1, . . . ,N are stationary and ergodic for all t and Θ ∈ Θ̃.

(i) Scaled score function ut is a continuous function of (ϵ̃1, . . . , ϵ̃t). Under (A4), ut is an F-measurable

function of (ϵ̃1, . . . , ϵ̃t) [White (2001)].

(ii) Scaled score function ut is strictly stationary and ergodic, because ut is an F-measurable function

of (ϵ̃1, . . . , ϵ̃t), and ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

(iii) Score function ei,t is i.i.d., because ei,t is a continuous function of ϵ̃t, and ϵ̃t is i.i.d. [White (2001)].

(iv) Score function ei,t is an F-measurable function of ϵ̃t, because ei,t is a continuous function of the

F-measurable ϵ̃t error term [White (2001)].

(v) Score function ei,t is strictly stationary and ergodic, because ei,t is an F-measurable function of

ϵ̃t, and ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

(vi) For i = 1, . . . ,N , g(ei,t) ≡ αiei,t−1 + α∗
i sgn(−ϵi,t−1)(ei,t−1 + 1) is strictly stationary and ergodic,

because g(ei,t) is an F-measurable transformation of ϵ̃t [White (2001, Theorem 3.35)].

4. Propositions and proofs

The following Propositions 1(a) and 1(b) use arguments from proofs of the work of Harvey (2013).

Proposition 1(a): If the maximum modulus of the eigenvalues of A < 1, and BD−1 is non-zero, then

Xt, asymptotically and at the true values of parameters Θ0, is covariance stationary.

Proof: For filter Xt = AXt−1+But, scaled score function ut is white noise, asymptotically and at the

true values of parameters Θ0, with zero mean and a well-defined covariance matrix for ν > 2. If

the maximum modulus of the eigenvalues of A is less than one and BD−1 is non-zero, then Xt is

covariance stationary, asymptotically and at the true values of parameters Θ0. QED
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Proposition 1(b): For i = 1, . . . ,N , if |βi| < 1, and αi or α
∗
i is non-zero, then λi,t, asymptotically and

at the true values of parameters Θ0, is covariance stationary.

Proof: For filter λi,t = ωi + βiλi,t−1 + g(ei,t), the updating terms g(ei,t) for i = 1, . . . ,N are white

noise, asymptotically and at the true values of parameters Θ0, with zero mean and finite variance.

If |βi| < 1 and αi or α
∗
i is non-zero, then λi,t is covariance stationary, asymptotically and at the

true values of parameters Θ0. QED

The following Propositions 2(a) and 2(b) adopt conditions from the works of Elton (1990), Alsmeyer

(2003), and Gerencsér et al. (2008).

Proposition 2(a): Xt converges almost surely (a.s.) to a unique strictly stationary and ergodic vector

sequence for all Θ ∈ Θ̃, when the following conditions hold: (i) Define Xt = ∂Xt/∂X
′
t−1 (N ×N ).

Suppose that E(ln+ ||X1||2) < ∞, where ln+(x) = 0 if 0 ≤ x ≤ 1 and ln+(x) = ln(x) if x > 1,

and ||W||2 is the spectral norm. (ii) E(ln+ ||BD−1u1||2 < ∞. (iii) The Lyapunov exponent is:

Invµ = supΘ∈Θ̃

{
infn≥1

1

n
E

[
ln

∣∣∣∣∣
∣∣∣∣∣

n∏
t=1

Xt

∣∣∣∣∣
∣∣∣∣∣
2

]}
< 0 (S.20)

(iv) BD−1ut is strictly stationary and ergodic. (v) Xt is strictly stationary and ergodic.

Proof: (i) and (ii) hold due to the results of Section 3.1 of this Supplementary Material. (iii) is a

maintained assumption. (iv) is due to the properties of the scaled score function ut. (v) is due

to the following arguments: Xt is an F-measurable function of (ϵ̃1, . . . , ϵ̃t). Variable Xt is strictly

stationary and ergodic, because ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

Due to the results of Elton (1990), Alsmeyer (2003), and Gerencsér et al. (2008), Xt converges

a.s. to a unique strictly stationary and ergodic vector sequence for all Θ ∈ Θ̃. QED

Proposition 2(b): λi,t for i = 1, . . . ,N converge a.s. to unique strictly stationary and ergodic sequences

for all Θ ∈ Θ̃, if: (i) Define Λi,t = ∂λi,t/∂λi,t−1 for i = 1, . . . ,N . Suppose that E(ln+ |Λi,1|) < ∞

for i = 1, . . . ,N . (ii) E(ln+ |g(ei,1)| < ∞ for i = 1, . . . ,N . (iii) For i = 1, . . . ,N , the Lyapunov

exponents are:

Invλ,i = supΘ∈Θ̃

{
infn≥1

1

n
E

[
ln

∣∣∣∣∣
n∏

t=1

Λi,t

∣∣∣∣∣
]}

< 0 (S.21)
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(iv) g(ei,t) for i = 1, . . . ,N is strictly stationary and ergodic. (v) Λi,t for i = 1, . . . ,N is strictly

stationary and ergodic.

Proof: (i) and (ii) hold due to the results of Section 3.1 of this Supplementary Material. (iii) is a

maintained assumption. (iv) is due to the properties of the score functions ei,t for i = 1, . . . ,N .

(v) is due to the following arguments: Λi,t for i = 1, . . . ,N are F-measurable functions of

(ϵ̃1, . . . , ϵ̃t−1). Variables Λi,t for i = 1, . . . ,N are strictly stationary and ergodic, because ϵ̃t is

strictly stationary and ergodic [White (2001, Theorem 3.35)]. Due to the results of Elton (1990),

Alsmeyer (2003), and Gerencsér et al. (2008), λi,t for i = 1, . . . ,N converge a.s. to unique strictly

stationary and ergodic sequences for all Θ ∈ Θ̃. QED

Proposition 3: If assumptions (A1), (A5), (A6), (A7), (A8), and (A9) hold, then ln f(Yt|Ft−1; Θ) for

all Θ ∈ Θ̃ satisfies the uniform weak law of large numbers (UWLLN) [Wooldridge (1994)].

Proof: For (A5), we use Propositions 2(a-b) and White (2001, Theorem 3.35): In the heteroskedastic

t-QVAR model, Xt and λi,t, for i = 1, . . . ,N , are transformed to Yt, using an F-measurable

function. Therefore, Yt is strictly stationary and ergodic for T → ∞. (A1), (A6), (A7), (A8), and

(A9) hold for the heteroskedastic score-driven t-QVAR model. Due to the result of Wooldridge

(1994, Theorem 4.1), ln f(Yt|Ft−1; Θ) for all Θ ∈ Θ̃ satisfies the UWLLN. QED

Proposition 4: If the following assumptions hold: (A1), (A2), (A7), (A8), (A10), (A11), and log-

density ln f(Yt|Ft−1; Θ) satisfies the UWLLN, then Θ̂ is weakly consistent, i.e. Θ̂ →p Θ0.

Proof: (A2) and (A11) are maintained assumptions. (A1), (A7), (A8), and (A10) hold for the het-

eroskedastic score-driven t-QVAR model. The assumption ‘ln f(Yt|Ft−1; Θ) satisfies the UWLLN’

holds due to Proposition 3. Due to the results of Wooldridge (1994), Θ̂ →p Θ0. QED

Proposition 5: If the following assumptions hold: (A1), (A12), (A13), (A14), (A15), and (A16), then

Ht(Θ) for all Θ ∈ Θ̃ satisfies the UWLLN.

Proof: For (A12), we use the following result for the heteroskedastic score-driven t-QVAR model:

Ht(Θ) converges a.s. to a unique strictly stationary and ergodic sequence for all Θ ∈ Θ̃ for T → ∞,

which is proven in Proposition 11. (A1), (A13), (A14), and (A15) hold the heteroskedastic
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score-driven t-QVAR model. (A16) is maintained. Due to the results of Wooldridge (1994,

Theorem 4.1), Ht(Θ) for all Θ ∈ Θ̃ satisfies the UWLLN. QED

Proposition 6: If the following assumptions hold: (A17), (A18), and (A19), then Gt(Θ0) satisfies the

central limit theorem (CLT) with asymptotic variance B0.

Proof: For (A17), we use the following result: E[Ht(Θ0)] = Var[Gt(Θ0)
′)] = E[Gt(Θ0)

′Gt(Θ0)] < ∞,

where the equalities hold due to (A22) [Wooldridge (1994, p. 2674)] and (A23) [Wooldridge

(1994, p. 2675)], respectively. Inequality E[Gt(Θ0)
′Gt(Θ0)] < ∞ is shown in Proposition 9,

which implies E[Gt(Θ0)Gt(Θ0)
′] < ∞, because the terms of the sum defined by Gt(Θ0)Gt(Θ0)

′

are in the diagonal of Gt(Θ0)
′Gt(Θ0). For (A18), we use the following result: E[Gt(Θ0)

′] = 0S×1,

which holds under (A22) [Wooldridge (1994, p. 2674)]. For (A19) we, use White (2001, Theorem

5.16): (i) Gt(Θ0)
′ is a MDS, which holds under (A3) [Wooldridge (1994, p. 2677)]. Therefore,

Gt(Θ0) is an adapted mixingale [White (2001, Definition 5.15, p. 125)]. (ii) Gt(Θ)′ converges

a.s. to a unique strictly stationary and ergodic sequence for all Θ ∈ Θ̃ for T → ∞, which is

proven in Proposition 10. (i) and (ii) provide (A18). Due to the results of Wooldridge (1994,

Definition 4.3), Gt(Θ0) satisfies the CLT with asymptotic variance B0. QED

Proposition 7: If the following assumptions hold: (A1), (A2), (A3), (A7), (A8), (A10), (A11), (A20),

(A21), (A22), (A23), (A24), ln f(Yt|Ft−1; Θ) satisfies the UWLLN, Ht(Θ) satisfies the UWLLN,

and Gt(Θ0) satisfies the CLT with asymptotic variance:

B0 = lim
T→∞

Var

[
1√
T

T∑
t=1

Gt(Θ0)
′

]
, (S.22)

then

√
T (Θ̂−Θ0) →d NS

(
0S×1, A

−1
0 B0A

−1
0

)
= NS

(
0S×1, A

−1
0

)
as T → ∞ (S.23)

The equality in Equation (S.23) is due to (A3), which provides: (i) Gt(Θ0)
′ is a MDS [Wooldridge

(1994, p. 2677)], (ii) Gt(Θ0)
′ is serially uncorrelated [Wooldridge (1994, pp. 2676-2677)], and

(iii) A0 = B0 [Wooldridge (1994, p. 2676)]. The equality in Equation (S.33) is due to (iii).

Proof: (A2), (A3), (A11), (A20), and (A24) are maintained assumptions. (A1), (A7), (A8), (A10),
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(A21), (A22), and (A23) hold for the score-driven ABCD representations of this paper. The

assumption ‘ln f(Yt|Ft−1; Θ) satisfies the UWLLN’ holds due to Proposition 3. The assumption

‘Ht(Θ) satisfies the UWLLN’ holds due to Proposition 5. The assumption ‘Gt(Θ0) satisfies the

CLT asymptotic variance B0’ holds due to Proposition 6. Due to the results of Wooldridge (1994,

Theorem 5.2), Equation (S.23) holds. QED

The following Propositions 8 and 9 use arguments from proofs of the work of Harvey (2013).

Proposition 8: For the heteroskedastic score-driven t-QVAR model, asymptotically at the true values

of parameters Θ0, the expected value of the gradient is time-invariant if Parts 1 and 2 hold. Part 1:

The maximum modulus of the eigenvalues of E(Xt) < 1, where Xt ≡
[
A+BD−1∂ut/∂X

′
t−1

]
.

Part 2: |E(Λi,t)| < 1 for i = 1, . . . ,N , where Λi,t ≡ {βi + [αi + α∗
i sgn(−ϵi,t−1)]∂ei,t−1/∂λi,t−1}.

Proof: Part 1. We focus on the derivatives of Xt, with respect to an element of A, which is denoted

Ai,j , and which is in Gt(Θ0)
′ and Ht(Θ0). The partial derivative of Xt, with respect to Ai,j , is:

∂Xt

∂Ai,j
=

[
A+BD−1 ∂ut

∂X ′
t−1

]
︸ ︷︷ ︸

Xt

∂Xt−1

∂Ai,j
+Wi,jXt−1 (S.24)

where element (i, j) of matrix Wi,j (N ×N ) takes the value one and the remaining elements are

zeros. We have similar first-order dynamic equations if we consider the partial derivative of Xt,

with respect to the elements of BD−1. The expectation of the latter equation is:

E

(
∂Xt

∂Ai,j

)
= E (Xt)E

(
∂Xt−1

∂Ai,j

)
+Cov

(
Xt,

∂Xt−1

∂Ai,j

)
+Wi,jE(Xt−1) (S.25)

Under the asymptotic covariance stationarity of Xt, at the true values of parameters Θ0, the

expectations on the right side of Equation (S.25) are finite due to the results of Section 3.1 of

this Supplementary Material. The covariances on the right side of Equation (S.25) are finite if

the variances of the random variables within those covariances are finite, which hold under the

same conditions. Due to these arguments, E (∂Xt/∂Ai,j) < ∞ if the maximum modulus of the

eigenvalues of E (Xt) is less than one, asymptotically at Θ0.

Part 2. We focus on the derivative of λi,t, with respect to αi for i = 1, . . . ,N , which is in Gt(Θ0)
′

10



and Ht(Θ0). The partial derivative of λi,t, with respect to αi, is:

∂λi,t

∂αi
=

{
βi + [αi + α∗

i sgn(−ϵi,t−1)]
∂ei,t−1

∂λi,t−1

}
∂λi,t−1

∂αi
+ ei,t−1 = Λi,t

∂λi,t−1

∂αi
+ ei,t−1 (S.26)

We have similar first-order dynamic equations if we consider the partial derivative of λi,t, with

respect to ωi, βi and α∗
i . The expectation of the latter equation, that is conditional on Ft−2, is:

E

(
∂λi,t

∂αi
|Ft−2

)
= E (Λi,t|Ft−2)

∂λi,t−1

∂αi
+ E (ei,t−1|Ft−2) (S.27)

where ∂λi,t−1/∂αi is outside the conditional expectation, because it is determined by Ft−2. We

consider the unconditional expectation of Equation (S.27), and we start with the term

E

[
E (Λi,t|Ft−2)

∂λi,t−1

∂αi

]
= E (Λi,t)E

(
∂λi,t−1

∂αi

)
+Cov

[
E (Λi,t|Ft−2) ,

∂λi,t−1

∂αi

]
(S.28)

We show the boundedness of all terms in the latter equation. First, E (Λi,t) < ∞, due to the

boundedness of the sgn function and the boundedness of ei,t−1/∂λi,t−1. Second,

E

(
∂λi,t−1

∂αi

)
= E

(
∂
∑∞

j=0 β
j
i g(ut−j−2)

∂αi

)
< ∞ (S.29)

where the first equation is under the covariance stationarity of λi,t (asymptotically and at the true

values of parameters Θ0), and finiteness is due to the results of Section 3.1 of this Supplementary

Material. Third, the covariance term in Equation (S.28) is bounded if the variance of both random

variables within the covariance is finite. With respect to E (Λi,t|Ft−2),

Var[E (Λi,t|Ft−2)] = E[E2 (Λi,t|Ft−2)]− E2[E (Λi,t|Ft−2)] (S.30)

= E[E2 (Λi,t|Ft−2)]− E2(Λi,t) ≤ E[E
(
Λ2
i,t|Ft−2

)
]− E2(Λi,t) = E

(
Λ2
i,t

)
− E2(Λi,t) < ∞

where the first inequality is due to Jensen’s inequality, and the second inequality is due to the

results of Section 3.1 of this Supplementary Material. With respect to ∂λi,t−1/∂αi,

Var

(
∂λi,t−1

∂αi

)
= Var

[
∂
∑∞

j=0 β
j
i g(ut−j−2)

∂αi

]
< ∞ (S.31)
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which is due to the boundedness of the sgn function and the results of Section 3.1 of this Sup-

plementary Material. Therefore, the unconditional expectation of Equation (S.27) is

E

[
E

(
∂λi,t

∂αi
|Ft−2

)]
= E

[
E (Λi,t|Ft−2)

∂λi,t−1

∂αi

]
+ E [E (ei,t−1|Ft−2)] (S.32)

which is equivalent to

E

(
∂λi,t

∂αi

)
= E (Λi,t)E

(
∂λi,t−1

∂αi

)
+Cov

[
E (Λi,t|Ft−2) ,

∂λi,t−1

∂αi

]
+ E (ei,t−1) (S.33)

Due to the previous arguments, E (∂λi,t/∂αi) < ∞ if |E (Λi,t) | < 1, asymptotically at Θ0.

Due to the proofs of Parts 1 and 2, the expected value of the gradient it time-invariant. QED

Proposition 9: For the heteroskedastic score-driven t-QVAR model, asymptotically at the true values

of parameters Θ0, the expected value of the Hessian matrix is time-invariant if the following Parts

1 and 2 hold. Part 1: The maximum modulus of the eigenvalues of E(Xt ⊗Xt), where ⊗ denotes

the Kronecker product, is less than one. Part 2: |E(Λ2
i,t)| < 1 for i = 1, . . . ,N . It is enough to

consider these two parts because the information matrix with respect to the parameters of Xt

and λi,t for i = 1, . . . ,N is block diagonal.

Proof: Part 1. We focus on the derivatives of Xt, with respect to elements of A, which are denoted

Ai,j and Ak,l, and which contribute to Ht(Θ0):

∂Xt

∂Ai,j

∂X ′
t

∂Ak,l
= Xt

∂Xt−1

∂Ai,j

∂X ′
t−1

∂Ak,l
X ′
t + Xt

∂Xt−1

∂Ai,j
X ′

t−1W
′
k,l (S.34)

+Wi,jXt−1
∂X ′

t−1

∂Ak,l
X ′
t +Wi,jXt−1X

′
t−1W

′
k,l

vec

(
∂Xt

∂Ai,j

∂X ′
t

∂Ak,l

)
= (Xt ⊗Xt)vec

(
∂Xt−1

∂Ai,j

∂X ′
t−1

∂Ak,l

)
+Wk,lXtvec

(
∂Xt−1

∂Ai,j
X ′

t−1

)
(S.35)

+XtWi,jvec

(
Xt−1

∂X ′
t−1

∂Ak,l

)
+Wk,lWi,jvec

(
Xt−1X

′
t−1

)
The expectation of the latter equation is:

E

[
vec

(
∂Xt

∂Ai,j

∂X ′
t

∂Ak,l

)]
= E(Xt ⊗Xt)E

[
vec

(
∂Xt−1

∂Ai,j

∂X ′
t−1

∂Ak,l

)]
(S.36)
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+Wk,lE(Xt)E

[
vec

(
∂Xt−1

∂Ai,j
X ′

t−1

)]

+E(Xt)Wi,jE

[
vec

(
Xt−1

∂X ′
t−1

∂Ak,l

)]
+Wk,lWi,jE[vec

(
Xt−1X

′
t−1

)
] + Cov∗

For the unconditional expectation of the first three terms on the right side of Equation (S.36),

covariances appear in the same way as explained for Equation (S.25). We summarize those

covariance terms by using the notation Cov∗. The expectations and the covariances on the right

side of Equation (S.36) are finite due to the asymptotic covariance stationarity ofXt at Θ0 and the

results of Section 3.1 of this Supplementary Material. Hence, E {vec [(∂Xt/∂Ai,j)(∂X
′
t/∂Ak,l)]}

is time-invariant if the maximum modulus of eigenvalues of E(Xt ⊗Xt) is less than one.

Part 2. We focus on the following derivative for i = 1, . . . ,N , which contributes to Ht(Θ0):

(
∂λi,t

∂αi

)2

= Λ2
i,t

(
∂λi,t−1

∂αi

)2

+ 2Λi,t
∂λi,t−1

∂αi
ei,t−1 + e2i,t−1 (S.37)

We have similar first-order dynamic equations if we consider the partial derivatives of λi,t, with

respect to other combinations of ωi, βi, αi, and α∗
i . The expectation of the latter equation, that

is conditional on Ft−2, is:

E

[(
∂λi,t

∂αi

)2

|Ft−2

]
= E(Λ2

i,t|Ft−2)

(
∂λi,t−1

∂αi

)2

(S.38)

+2E(Λi,tei,t−1|Ft−2)
∂λi,t−1

∂αi
+ E(e2i,t−1|Ft−2)

where ∂λi,t−1/∂αi and (∂λi,t−1/∂αi)
2 are outside the conditional expectation, because they are

determined by Ft−2. We consider the unconditional expectation of Equation (S.38):

E

[(
∂λi,t

∂αi

)2
]
= E(Λ2

i,t)E

[(
∂λi,t−1

∂αi

)2
]
+Cov

[
E(Λ2

i,t|Ft−2),

(
∂λi,t−1

∂αi

)2
]

(S.39)

+2E(Λi,tei,t−1)E

(
∂λi,t−1

∂αi

)
+ 2Cov

[
E(Λi,tei,t−1|Ft−2),

∂λi,t−1

∂αi

]
+ E(e2i,t−1)

The expectations on the right side of Equation (S.39) are finite due to the results of Section 3.1

of this Supplementary Material. The covariances on the right side of Equation (S.39) are finite
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if the variances of the random variables within those covariances are finite. In the following we

show the finiteness of those variances:

Var
[
E(Λ2

i,t|Ft−2)
]
= E

[
E2(Λ2

i,t|Ft−2)
]
− E2

[
E(Λ2

i,t|Ft−2)
]

(S.40)

= E
[
E2(Λ2

i,t|Ft−2)
]
− E2(Λ2

i,t) ≤ E
[
E(Λ4

i,t|Ft−2)
]
− E2(Λ2

i,t)

= E(Λ4
i,t)− E2(Λ2

i,t) < ∞

Var

[(
∂λi,t−1

∂αi

)2
]
< ∞ (S.41)

Var [E(Λi,tei,t−1|Ft−2)] = E
[
E2(Λi,tei,t−1|Ft−2)

]
− E2 [E(Λi,tei,t−1|Ft−2)] (S.42)

= E
[
E2(Λi,tei,t−1|Ft−2)

]
− E2(Λi,tei,t−1) ≤ E

[
E(Λ2

i,te
2
i,t−1|Ft−2)

]
− E2(Λi,tei,t−1)

= E(Λ2
i,te

2
i,t−1)− E2(Λi,tei,t−1) < ∞

Var

(
∂λi,t−1

∂αi

)
< ∞ (S.43)

where ≤ in Equations (S.40) and (S.42) is due to Jensen’s inequality. Equations (S.40) to (S.43)

are finite due to the results of Section 3.1 of this Supplementary Material. Hence, asymptotically

at Θ0, E
[
(∂λi,t/∂αi)

2
]
in Equation (S.39) is time-invariant if |E(Λ2

i,t)| < 1 for i = 1, . . . ,N .

Due to the proofs of Parts 1 and 2, the expected value of the Hessian is time-invariant. QED

The following Propositions 10 and 11 adopt conditions from the works of Elton (1990), Alsmeyer

(2003), and Gerencsér et al. (2008).

Proposition 10: Vector Gt(Θ)′ converges a.s. to a unique strictly stationary and ergodic sequence for

all Θ ∈ Θ̃, when the conditions of the following Parts 1 and 2 hold.

Part 1. We repeat the dynamic equation, which contributes to the gradient:

∂Xt

∂Ai,j
= Xt

∂Xt−1

∂Ai,j
+Wi,jXt−1 (S.44)
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The conditions of Part 1 are the following: (i) Define

X (1)
t =

∂(∂Xt/∂Ai,j)

∂(∂Xt−1/∂Ai,j)′
(S.45)

Suppose that E(ln+ ||X (1)
1 ||2) < ∞. (ii) E(ln+ ||X1||2) < ∞. (iii) The Lyapunov exponent is:

supΘ∈Θ̃

{
infn≥1

1

n
E

[
ln

∣∣∣∣∣
∣∣∣∣∣

n∏
t=1

X (1)
t

∣∣∣∣∣
∣∣∣∣∣
2

]}
< 0 (S.46)

(iv) Xt is strictly stationary and ergodic. (v) X (1)
t is strictly stationary and ergodic.

Part 2. We repeat the dynamic equation, which contributes to the gradient:

∂λi,t

∂αi
= Λi,t

∂λi,t−1

∂αi
+ ei,t−1 (S.47)

for i = 1, . . . ,N . The conditions of Part 2 are the following: (i) Define the variable Λ
(1)
i,t =

∂(∂λi,t/∂αi)/∂(∂λi,t−1/∂αi). Suppose that E(ln+ |Λ(1)
i,1 |) < ∞ for i = 1, . . . ,N . (ii) E(ln+ |ei,1|) <

∞ for i = 1, . . . ,N . (iii) For i = 1, . . . ,N , the Lyapunov exponents are:

supΘ∈Θ̃

{
infn≥1E

[
ln

∣∣∣∣∣
n∏

t=1

Λ
(1)
i,t

∣∣∣∣∣
]}

< 0 (S.48)

(iv) ei,t for i = 1, . . . ,N are strictly stationary and ergodic. (v) Λ
(1)
i,t for i = 1, . . . ,N are strictly

stationary and ergodic.

Proof: Proof of the conditions of Part 1: (i) and (ii) hold due to the results of Section 3.1 of this

Supplementary Material. (iii) is a maintained assumption. (iv) is due to the following arguments:

Xt−1 is an F-measurable function of (ϵ̃1, . . . , ϵ̃t−1). Xt−1 is strictly stationary and ergodic, because

ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)]. (v) is due to the following

arguments: X (1)
t is an F-measurable function of (ϵ̃1, . . . , ϵ̃t). X (1)

t is strictly stationary and

ergodic, because ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

Proof of the conditions of Part 2: (i) and (ii) hold due to the results of Section 3.1 of this Sup-

plementary Material. (iii) is a maintained assumption. (iv) is due to the properties of the score

functions ei,t−1 for i = 1, . . . ,N . (v) is due to the following arguments: Λ
(1)
i,t for i = 1, . . . ,N are
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F-measurable functions of (ϵ̃1, . . . , ϵ̃t−1). Λ
(1)
i,t for i = 1, . . . ,N are strictly stationary and ergodic,

because ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

Due to the results of Elton (1990), Alsmeyer (2003), and Gerencsér et al. (2008), vector Gt(Θ)′

converges a.s. to a unique strictly stationary and ergodic sequence for all Θ ∈ Θ̃. QED

Proposition 11: Matrix Ht(Θ) converges a.s. to a unique strictly stationary and ergodic sequence for

all Θ ∈ Θ̃, when the conditions of the following Parts 1 and 2 hold.

Part 1. We repeat the dynamic equation, which contributes to the Hessian:

vec

(
∂Xt

∂Ai,j

∂X ′
t

∂Ak,l

)
= (Xt ⊗Xt)vec

(
∂Xt−1

∂Ai,j

∂X ′
t−1

∂Ak,l

)
+Wk,lXtvec

(
∂Xt−1

∂Ai,j
X ′

t−1

)
(S.49)

+XtWi,jvec

(
Xt−1

∂X ′
t−1

∂Ak,l

)
+Wk,lWi,jvec

(
Xt−1X

′
t−1

)
= (Xt ⊗Xt)vec

(
∂Xt−1

∂Ai,j

∂X ′
t−1

∂Ak,l

)
+X∗

t−1

where X∗
t−1 is defined in the last equality of Equation (S.49).

The conditions of Part 1 are the following: (i) Define

X (2)
t =

∂[(∂Xt/∂Ai,j)× (∂Xt/∂Ai,j)]

∂[(∂Xt−1/∂Ai,j)× (∂Xt−1/∂Ai,j)]′
(S.50)

Suppose that E(ln+ ||X (2)
1 ||2) < ∞. (ii) E(ln+ ||X∗

1 ||2) < ∞. (iii) The Lyapunov exponent is:

supΘ∈Θ̃

{
infn≥1E

[
ln

∣∣∣∣∣
∣∣∣∣∣

n∏
t=1

X (2)
t

∣∣∣∣∣
∣∣∣∣∣
2

]}
< 0 (S.51)

(iv) X∗
t is strictly stationary and ergodic. (v) X (2)

t is strictly stationary and ergodic.

Part 2. We repeat the dynamic equation, which contributes to the gradient:

(
∂λi,t

∂αi

)2

= Λ2
i,t

(
∂λi,t−1

∂αi

)2

+ 2Λi,t
∂λi,t−1

∂αi
ei,t−1 + e2i,t−1 (S.52)

= Λ2
i,t

(
∂λi,t−1

∂αi

)2

+ Λ∗
i,t−1
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for i = 1, . . . ,N , where Λ∗
i,t−1 is defined in Equation (S.52).

The conditions of Part 2 are the following: (i) Define

Λ
(2)
i,t =

∂[(∂λi,t/∂αi)× (∂λi,t/∂αi)]

∂[(∂λi,t−1/∂αi)× (∂λi,t−1/∂αi)]
(S.53)

Suppose that E(ln+ |Λ(2)
i,1 |) < ∞ for i = 1, . . . ,N . (ii) E(ln+ |Λ∗

i,1|) < ∞ for i = 1, . . . ,N . (iii)

For i = 1, . . . ,N , the Lyapunov exponents are:

supΘ∈Θ̃

{
infn≥1E

[
ln

∣∣∣∣∣
n∏

t=1

Λ
(2)
i,t

∣∣∣∣∣
]}

< 0 (S.54)

(iv) Λ∗
i,t for i = 1, . . . ,N are strictly stationary and ergodic. (v) Λ

(2)
i,t for i = 1, . . . ,N are strictly

stationary and ergodic.

Proof: Proof of the conditions of Part 1. (i) and (ii) hold due to the results of Section 3.1 of this

Supplementary Material. (iii) is a maintained assumption. (iv) is due to the following arguments:

X∗
t−1 is an F-measurable function of (ϵ̃1, . . . , ϵ̃t−1). Xt−1 is strictly stationary and ergodic, because

ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)]. (v) is due to the following

arguments: X (2)
t is an F-measurable function of (ϵ̃1, . . . , ϵ̃t). X (2)

t is strictly stationary and

ergodic, because ϵ̃t is strictly stationary and ergodic [White (2001, Theorem 3.35)].

Proof of the conditions of Part 2. (i) and (ii) hold due to the results of Section 3.1 of this Sup-

plementary Material. (iii) is a maintained assumption. (iv) is due to the following arguments:

Λ∗
i,t−1 for i = 1, . . . ,N are F-measurable functions of (ϵ̃1, . . . , ϵ̃t−1). Λ∗

i,t−1 for i = 1, . . . ,N are

strictly stationary and ergodic, because ϵ̃t is strictly stationary and ergodic (White 2001, Theorem

3.35). (v) is due to the following arguments: Λ
(2)
i,t for i = 1, . . . ,N are F-measurable functions

of (ϵ̃1, . . . , ϵ̃t−1). Λ
(2)
i,t for i = 1, . . . ,N are strictly stationary and ergodic, because ϵ̃t is strictly

stationary and ergodic [White (2001, Theorem 3.35)].

Due to the results of Elton (1990), Alsmeyer (2003), and Gerencsér et al. (2008), matrix Ht(Θ)

converges a.s. to a unique strictly stationary and ergodic sequence for all Θ ∈ Θ̃. QED
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