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1 Borrowing Constraints

From entrepreneurs first order conditions we have
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Therefore, in the steady state
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holds. From unconstrained households’s first order conditions with respect to borrowing we

get the following.
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which translates into the following equation in the steady state
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Combining Equations 1* and 2* yields
P X + ApCT.
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Given a positive inflation and positive growth (or a negative growth with deflation), for the
borrowing constraint to bind (A, > 0), the necessary and sufficient condition is
Bu > 7.

Next, from constrained borrowers first order condition with respect to borrowing we have
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where p is the budget constraint Lagrangian multiplier and A.; is the borrowing constraint
Lagrangian multiplier.

In the steady state:

u(l—@g) = AR
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Given the Walrasian budget constraint, positive growth and inflation, for the borrowing con-
straint of constrained households to bind we need 1 > %% to hold. In other words, 3, > f.

must be satisfied.

2 Stationary Equilibrium

All the variables are transformed by dividing the corresponding variable to z;. where z; =

1 ©

T . T-n v — Y ~ — o T o— b v o— wr o~ o— Gt — My,
A, " ax, 7" For example, Y; = a=t =t w =2 q =1, M,y ==, ete. Investment
and capital stock follow [, = 1t K, = B&
Xtz Xt2t
Zt a+ ,UX Xt —
Gep = —— g = and g, = = gx =X
Zt—1 IL—wn Xt—1

where g, denotes the steady state value of g.;, and g, = g.g, is the steady state rate
of capital stock growth. On the balanced growth path, investment grows at the same rate
as capital, therefore we have g; = ¢;. Additionally, we have S\M = Au,tzt,:\c’t = Aes2, b =
Mzt S\b,t = Mpi2t, and Uy = ugxe and 5\k,t = At Xt2t

Using the transformations indicated above, the full model becomes:
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3 Steady State
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4 Estimation Procedure

The estimation procedure follows Fernandez-Villaverde et al. (2015), who show that models
with stochastic volatility can be estimated without measurement error. To do this, we first

define the structural shocks are as
Z, = (log Xu, log ji, log my, log Ay, log w, t,1og 0y, 10g @)’
The structural shocks are assumed to follow the process below.
Zity1 = piZi + Noioi 16011 (1)

for all ¢ € 1,...,m where 0,1 denotes the stochastic volatility shock and A represents the

perturbation parameter. The stochastic volatility shocks evolve as

1
log oit11 = po, log o + A (1 - Pgl) Mty (2)

Next, we put the approximated model into a state space representation. The endogenous state

vector evolves as

Sit1=h (Su Zi 1,821, &L U, A ’Y) (3)

while two policy functions evolve according to the following processes
yt :g(Stuzt—laEt—laghuhA;’Y) (4)

Vis1 = 9 (Se41, 24, B, Ao, AUypia, A ). (5)



The functions h and g map R"**™ into R” and R¥. The vector of volatility shocks is defined as
Et = (8X,t7 /0-\J,t7 /O-\m,ta /O-\A,h /O-\w,t; a-\g,ta a\-g@,t>/

where 0, = 0,,/0,. The innovations are divided between an m x 1 vector of innovation to
structural shocks, & and an (m) x 1 vector of innovations to volatility shocks, U;. For this

model, the vector of innovations are defined as

g o !/
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and
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As in Ferndndez-Villaverde et al. (2015), equations 1 to 3 are stacked into the following
transition equation

Str1 = h(St, A; ) + EW, g (6)

where S; = (S}, 2/_,, %}, &_,,U/_,)" and h maps R***"=2+1 into R™*"=2 The vector W,;; =
( {t+1aW§t+1)/ is a (2m — p) x 1 vector of random variables, where Wy, and Wk are,
respectively, m x 1 and (m — p) x 1 vectors with N(0, /) distributions. The random variables
Wi align with the innovations to the shocks and the random variables W, align with the
innovations to the stochastic volatility shocks. Z is an (n +4m — 2p) x (2m — p) matrix, where
the top n+2m—p rows equal to zero and the bottom of the matrix equal to a (2m—p) x (2m—p)

identity matrix. The policy function can also be rewritten as
Ve =9 (S, A7) (7)

Equations 6 and 7 are approximated around the steady-state using the perturbation method
to find a second-order approximation. The approximate solution then is used to calculate the

likelihood of Y? = (Yy,...,Yr), where Y; is the data counterpart to the observable ) in the



model. The likelihood can be written as

where
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Since there is not an analytical solution to the likelihood, a particle filter is used in order to
evaluate the likelihood.
Fernandez-Villaverde et al. (2015) show that the difference between the observed variables

and the approximated observation equation can be written as
i i i i
Ay (Yta Str Zt—1, 011> gt) =

1 & &il 52,1 &i 52,2
3,8 St ¥31S; \113\]71 et ¥y
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where S = (s, 201, 07 4, e?')’ represents the simulated states without the stochastic volatility
components and Si represents these states in deviation from the mean form. Also, ql%/] repre-
sents the first-order components of the approximation to the observation equation that relates

to Si, while @;1] represents the second order components relating to S; , \Ilé\,yj represents the

10



linear terms of the approximation, and \I~/§,2] represents the second order components related to
the innovations to the shocks and stochastic volatility shocks for 7 = 1, ..., k. It is important to

also define

B(g,) = ; . (11)
55@322

These equations are used to calculate the measurement density as
p (yt = Yt|5i7 22717 0271; ’7) =

‘det (E_l <€i/; 7)) ‘ p <(Ut) =B <€i/; 7) Ay (Si} 51,01 4,6 s 7)) . (12)

This can be evaluated since the distribution of ¢; is known. The measurement density can be

applied to the particle filter in order to approximate the likelihood.

4.1 Particle Filter

The particle filter follows Fernandez-Villaverde et al. (2015), but adds a mutation resample-
move step and adaption for some periods. Since the model does not feature measurement error,
? show that sample impoverishment, where there is little diversity in the particle swarm after
resampling, is a concern. A resample-move step, which can be seen in steps 3-5 of the code
below, is used to reduce the amount of impoverishment. Another concern with the particle
filter is not having enough draws from the tails of the distribution of random shocks during
extreme events, like the global financial crisis and, to a lesser extend, the time following the
dot-com bubble bursting. Adaption is used during the time periods 1999:Q4-2001:Q1 and

2005:Q1-2011:Q4. The details of the particle filter are described in the following paragraphs.

e Initialization Set ¢ ~» 1. Sample N values {si, 2! |, of ,, &}, from

p(StaZt—lazt—lugt§’7)'

11



e Step 1 Compute

p (yt = Yt|5?;, 22717 ULD 5%3 ’Y) =

N

1 y y o , .

5 D [det (B (<59) ) o (@) =B (ef57) A (si 200006037
=1

and define importance weights for each draw as

= [det (B~ (=757)) | p (@) = B~" (157) A (s, 50, 0008037))
PN fdet (B (e59)) [ p () = B ()3 y) Ay (84 2y, 01 1.6057)

e Step 2 Sample N times with replacement from {Sih‘fl’szl|t717U§71|t717€i\t71}i]\;1 using

weights given by {g;};;. Define the draws as {s},, 2} 1, 0} 14, €1, iy

e Step 3 Draw N vectors, ¢, from the distribution N (0,0.157) and calculate &, = &;, + €.

tlt

e Step 4 Compute

p (yt‘8i7 Z;tifla 0-2717 gi ) 7) =
’det (IB%_l <§i/; 7)) ‘ P ((Z/{t) =B! (éi/; 7) A, (si, zz_l, O’i_l,éil; 7))
e Step 5 Fori=1: N, set {Siw ZZ—1|tv O-i—l|t7 6i|t} to {Si|t7 Z§—1|t7 UZ—1|t7 évi|t} with probability

p (yt|8i72§—170-1%—1a51i5 "y)p(é‘%)
p (yt|8§,z§,1,ai,1,é;‘; ,’7)]7(5’3%)

}

a = min{1,
where p(£!) and p(é}) are calculated based on a N (0,I) distribution. Otherwise, set
{Si\ﬁZ:—l\t?ai—l\t?gi\t} to {Si\ﬁZi—l\t’ai—l\t>éi\t}'

: i i AN i i i i N -
e Step 6 Simulate {s ., 2,03, &1 1Ly using {s},, z{ 1, 04y €y, img by making N draws

of &; from the distribution N (0,7).

e Step TIft < T, sett~>t+ 1 and go to step 1. Otherwise stop.

The filter is implemented using 15,000 particles. As discussed by Fernandez-Villaverde and

Rubio-Ramirez (2007), it is important to use the same random numbers used for innovations

12



as new draws in the Metropolis Hastings algorithm. In order to avoid biasing the results based
on the random numbers drawn, the random numbers used for the resample step are different
across draws. Since this procedure creates some noise in the calculation of the likelihood, it
is calculated for both the current draw and the candidate draw of parameters each step of
the algorithm. This method avoids the possibility of obtaining an unusually high calculated
likelihood, and therefore an unusually high posterior, which would result in rejecting many
candidate draws from parameters that may have similar posteriors.

Adaption is only used during the time periods 1999:Q4-2001:Q1 and 2005:QQ1-2011:Q4.! The
particle filter would frequently degenerate without adaption during these periods, since there
were not enough draws from the tails of the distribution. To avoid degeneration, we adapt the
particle filter during these time periods as in Gust et al. (2017). The random draws of the
innovations to the traditional shocks, W, are drawn from the distribution N (0,%), where
¥ = 1.5I, during these time periods instead of N (0, ) as in all other time periods.? As shown
in Gust et al. (2017), this must be accounted for by re-weighting the likelihood and importance
weights by the factor

exp (—icel)

K= I . NE (13)
13|72 exp (8%2_16%)

4.2 Implementation details

The particle filter described above is very time consuming, especially for a model of this size.
To save time, the derivatives of the model needed to measure the approximation are calculated
in MATLAB using the symbolic toolbox which are then saved as functions. The estimation
is run within MATLAB using C code and LAPACK to save time and be more efficient with
memory. The algorithm used in this paper does not use parallel code in the particle filter so
that prefetching can be used in the Metropolis Hastings algorithm. This strategy also allows
us to estimate more specifications of the model at one time. Performing 25,000 draws of the

Metropolis Hastings algorithm takes approximately 293 hours.

'We choose not to use a methodology that adapts for every time period, like Plante et al. (2017), because
computation of the likelihood is already very taxing and time consuming.
2The value of ¥ = 1.5I was selected after extensive testing.
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5 Prior and Posterior Distribution Comparison

Figure 1: Prior Distributions (Solid Lines) vs. Kernel Density of the Posterior Draws (Blue,
Dashed Lines)
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Figure 2: Prior Distributions (Solid Lines) vs. Kernel Density of the Posterior Draws (Blue,
Dashed Lines)

6 Running Mean Plots

The figures below show plots of the running means from the Metropolis Hastings algorithm for

each parameter. These figures show that the estimates have converged.
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Figure 3: Running Mean Plots
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Figure 4: Running Mean Plots
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7 Underlying States: Confidence Bands

Figure 5: Underlying States: Level Shocks
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Figure 6: Underlying States: Stochastic Volatility
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8 Robustness: Alternative Calibrations

In the model, we have a total of 46 parameters and we only calibrate 9 of them. Among these
nine parameters, capital depreciation, labor share of production, average loan to value ratio,
and the steady state gross inflation rate are based on U.S. data and are commonly used in the
literature as described in Section 4 of the main paper. The discount factors, the weight of labor
utility, and the monopoly power, are more model specific that we base our choice of values

on the previous research. This section explores the importance of fixing these parameters.
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To do this, we study three alternative calibrations. The first calibration sets the discount
factors of the entrepreneurs and unconstrained households to lower values than used in the
benchmark case, with 3, = 0.985 and v = 0.975 instead of 0.99 and 0.98, respectively. The
second calibration lowers the weight of labor in the utility function and the level of monopoly
power, setting 1. = 71, = 2 instead of 2.17 and ¢ = 11 instead of 21. The third calibration
lowers the discount factor of constrained households, setting 5. = 0.93 instead of 0.95. After
adjusting the calibrated parameters, the remaining parameters are estimated using the same
data and method as in the benchmark case.®> The results of these alternative calibrations show
that changing the calibrated values in the model does not have any significant effect on the
results highlighted in the paper.

We study the effects of changing the calibration of these parameters in four ways. First, we
present information on the posterior distributions from each estimation, which can be seen in
Table 1. Second, we compare the impulse responses calculated from these estimates with the
benchmark case in Figures 7 to 9. Third, we present the underlying states of each calibration
alternative in Figures 10 to 15. Finally, we conduct the same counterfactual as in Section 6
of the main paper to analyze the importance of stochastic volatility shocks in explaining the
house price volatility during the Great Recession under each calibration alternative in Figures
16 to 18.

As the posterior estimates show in Table 1, the values are similar across alternative cal-
ibrations compared to the baseline case. Then we use these estimates from the alternative
calibrations to calculate impulse response functions. The GIRFs from the alternative calibra-
tions are plotted along with the baseline results in Figures 7 to 9. As the figures show, the
impulse responses are qualitatively similar to those of the baseline case. One noticeable differ-
ence is that the collateral constraint uncertainty shock has a smaller magnitude impact when
the discount rates for unconstrained households and entrepreneurs are lower, as can be seen in

Figure 7. The smaller magnitude is likely due to the steady state level of loans being 25% lower

3Due to the computational burden, 100,000 draws are done following the burn-in period instead of 170,000
as is done in the main paper.
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with the alternate calibration. In this alternative calibration with the lower discount factor
for the unconstrained households, they become less patient, and therefore, save less. Given
that lower available funding also decreases lending, tightening of credit conditions cannot affect
the economy as much. Therefore, the effects of the collateral constraint uncertainty decline.
Another difference we can observe between the alternative calibrations and the baseline model
is when the discount rate for constrained households is lower, as in calibration 3. In this cal-
ibration, the magnitude of impact of the intertemporal preference shock is somewhat larger
than the baseline case, however the results are qualitatively similar. Part of the difference
can be attributed to the lower level of housing held by the even more impatient constrained
household under this calibration. Since the constrained households cannot demand as much
housing, entrepreneurs end up with more housing, and therefore, borrowing a bigger share of
loans. Overall, the uncertainty results in a larger decline in investment due to increased housing
holdings of entrepreneurs.

The comparison of the underlying states from the alternative calibrations to the baseline case
in the main paper can be seen in Figures 10 to 15. The underlying states for each alternative
calibration look very similar to the baseline results from the main paper. The only noticeable
difference is with the collateral constraint shock, m, in Figure 10 which falls by more after 2010
in the first alternative calibration where we have more impatient unconstrained households and
entrepreneurs. The larger decline is, not surprisingly, combined with an increase in stochastic
volatility for the collateral constraint shock as can be seen in Figure 11. This difference is due
to the steady state level of lending being lower, as mentioned above, which means that changes
in the collateral constraint will have a smaller effect on borrowing and economic activity.

The final way to understand what role the calibrated parameters play in the estimation
results is to perform the counterfactual study completed in Section 6 of the main paper. In
these counterfactual exercises, our goal is to understand the role of stochastic volatility shocks
in house price volatility observed during the Great Recession for each alternative calibration.
As can be seen in Figures 16 to 18, the results are very similar to that of the baseline estimation

from Figure 7 from the main paper. In each case, the removal of stochastic volatility shocks
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greatly reduces the observed house price volatility during the 2007 to 2011 time period. In
other words, stochastic volatility shocks explain a large portion of the house price volatility

during the Great Recession, regardless of the calibration values used in the paper.
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Figure 10: Underlying States for Alternative Calibration 1: Level Shocks
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Note: Smoothed underlying states of the level shocks in log deviation from the mean form. They are
calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the first alternative calibration where f = 0.985 and v = 0.975.
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Figure 7: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 1
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Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation
increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the first alternative calibration where 5 = 0.985 and v = 0.975. All coefficients are set to the
posterior mode. The responses are calculated at the unconditional mean of the states. All responses are
normalized so that the units of the vertical axis are percentage deviations from the steady-state.
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Figure 8: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 2

(a) Housing Demand Uncertainty Shock (j)
Output

Investment House Prices Loans
0.15 { 17 06}, 0.5,
| 0.1 ! i
i \ f g
o1 0.05f ) oaff! h
I Al Y
0.0 ! 0 [
\ _ o2l )
\ 0.05 d T }
0 _ A 1
AN of N
-0.05 -0.15
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
(b) Collateral Constraint Uncertainty Shock (m)
0 Output 0 Investment House Prices 0 Loans
0.5 T
-1 r
¥
-1.5 I‘\w;
i\
21y
1 -4
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
(c) Intertemporal Preference Uncertainty Shock (o)
Output Investment House Prices Loans
0.02 0
0

-0.02
-0.04
-0.06
-0.08

-0.1

15 20

Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation

increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the second alternative calibration where €

11 and 7. = 1, = 2. All coefficients are set to
the posterior mode. The responses are calculated at the unconditional mean of the states. All responses are

normalized so that the units of the vertical axis are percentage deviations from the steady-state.
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Figure 9: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 3

(a) Housing Demand Uncertainty Shock (j)
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Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation
increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the third alternative calibration where 8. = 0.93. All coefficients are set to the posterior mode.
The responses are calculated at the unconditional mean of the states. All responses are normalized so that
the units of the vertical axis are percentage deviations from the steady-state.
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Figure 11: Underlying States for Alternative Calibration 1: Stochastic Volatility
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Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the first alternative calibration where g = 0.985 and v = 0.975.

28



Figure 12: Underlying States for Alternative Calibration 2: Level Shocks
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Note: Smoothed underlying states of the level shocks in log deviation from the mean form. They are
calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the second alternative calibration where ¢ = 11 and 0. =7, = 2.
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Figure

13: Underlying States for Alternative Calibration 2: Stochastic Volatility
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Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the second alternative calibration where ¢ = 11 and 7. = 7, = 2.
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Figure 14: Underlying States for Alternative Calibration 3: Level Shocks
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Smoothed underlying states of the level shocks in log deviation from the mean form. They are

calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the third alternative calibration where 5. = 0.93.
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Figure 15: Underlying States for Alternative Calibration 3: Stochastic Volatility
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Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the third alternative calibration where 5. = 0.93.
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Figure 16: Counterfactual Study: Alternative calibration 1
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Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the first alternative calibration where 5 = 0.985 and v = 0.975 are used to calculate the filtered shocks.

Figure 17: Counterfactual Study: Alternative calibration 2
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Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the second alternative calibration where e = 11 and 7. = 7, = 2 are used to calculate the filtered shocks.
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Figure 18: Counterfactual Study: Alternative calibration 3
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Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the third alternative calibration where 8. = 0.93 is used to calculate the filtered shocks.
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