Supplementary Appendix for “Solving heterogeneous-belief asset
pricing models with short selling constraints and many agents”

Michael Hatcher, University of Southampton

This appendix provides (i) derivations of optimal demands with short-selling constraints, as
in Sections 2.1 and 3.3 of the main text, and (ii) supporting material for the generalizations
and extensions in Section 3.3, Section 5 (start) and Sections 5.1-5.3 of the main text.

1 Derivations

In this section we derive the optimal demand schedules for the cases of unconditional short-
selling constraints (benchmark model) and conditional short-selling constraints (Section 3.3).

1.1 Derivation of demands in the benchmark model

Each type h € H solves the following problem:!

~ a ~
max By p[wegrn] — §Vt,h[wt+1,h] st.  zp=>0 (1)
t,h

where wiy1p = (Pre1 +dir1)zen+ (1+7) (Wi, — pr2ey) is future wealth, wy , — pr2e p, is holdings

of the risk-free asset, a,7 > 0 are parameters and V; w1 4] = 0222, with o2 > 0.

Formulating the above problem as a Lagrangean:

a

max Ly; = Eyp [Wig1] Vi [Wesrn] + Menzen (2)

Ztho Mk 2
where )\, > 0 is the Lagrange multiplier on the short-selling constraint, z;; > 0.
The first-order conditions are
Zth Et,h [De1] + Et,h [disa] — (L +7)py — CWQZt,h +Mp=0 (3)
Apt Zen >0 (4)
and the complementary slackness condition is:
Atnzen = 0. (5)

By (3), Ap = —(L?t,h [Dey1] + E}ﬁ [dis1] — (14 7)py — ac?2, ). Note that A\, = 0 if and only
if 2o = (a0®) M (Epp [prs1] + Eop [dia] — (14 7)p). This 2z, satisfies (5) (given Ay, = 0)
and therefore it is an optimal demand iff E; j, [pri1] + Evp [dig1] > (1 + 7)pe; see (4).

'We assume (as is standard) that these operators satisfy some basic properties of conditional expectation
operators, namely, E; p[y:] = y: and Vi p[y¢] = 0 for any variable y; that is determined at date t; Ey p[zi+1 +
Yi+1] = B plxi41] + By p[ye41] for any variables z and y; and Vi p[zyi41] = fot’h[ytH].
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If By p [proa] + Evp [dea] < (1+F)py. we can reject Ay ; = 0, since the condition in (4) is
not satisfied. It follows that A;;, > 0 when Ej [prs1] + Eip [disa] < (1 + 7)pe, and by the
complementary slackness condition (5) it follows that z;, = 0 (which satisfies (4)).

Therefore, the demand schedule of type h € H is given by

Et,h [De1] + Et,h [dea] — (L +7)pe Et,h [pes1] + Et,h [di41]

if p, < —
Zep = ac? ~ 147 (6)
' if Eyn [pesa] + Epp [digd]
0 = 1+7

as stated in Equation (2) of the main text.

1.2 Derivation of demands for conditional short-selling constraint

If g(pi—1, -, p—rc) > 0, the short-selling constraint is absent at date ¢; if g(p;_1,...,pi—x) <0
the short-selling constraint is present. We introduce an indicator variable 1; := Ly, _,,...p,_ x)<0}
equal to 1 if the short-selling constraint is present at date t (i.e. if g(p;_1,...,pi—x) < 0), and
equal to 0 otherwise. The problem of type h € H at date t is thus amended from (1) to:

~ a ~
max £ p[wii1,n] — §Vt,h[wt+1,h] s, Lizep 20 (7)
Zt,h

where w1 = (Pr1 + dev1)zen + (1 +7) (Wi, — przen) as above.

Note that if 1; = 0, the portfolio choice of all types h € H is unconstrained at date t,
since 1,2, = 0 > 0 is satisfied for any z;;, € R. On the other hand, if 1, = 1 then all types
face the same maximization problem as in (1), i.e. short-selling is banned at date ¢.

Formulating the above problem as a Lagrangean:

~ a ~
max »Ct,h = Et,h [wt+1,h] - —V;tyh [wt+1,h] + /\t,hﬂtzt,h (8)
2t by Atk 2

where A\;;, > 0 is the Lagrange multiplier on the constraint 1,2z, > 0.
The first-order conditions are
Zth Et,h [De1] + Et,h [di1] — (L +7)py — GUQZt,h +Aply =0 (9)
Ant Lz, >0 (10)
and the complementary slackness condition is:
Aenlize, = 0. (11)

If 1, = 0, then (10)—(11) are satisfied and z; 5, = (aaz)_l(Eth [pt+1]+E’t7h [dig1]—(14+7)p,) € R

by (9). Hence, demands are unconstrained if 1, = 0. If 1; = 1, the first-order conditions

(9)—(11) are identical to (3)—(5), so the cases are the same as discussed below Eq. (5).
Therefore, demands are z., = (a0?) " (Eyp [pe1] + Eup [dia] — (14 7)py) if 1, = 0 or

< By plpes1]+Eppldesa] By npi1]+ By pldesa) )
Pt = 1+7 ; 1+7 :

and z;, = 0 otherwise (i.e. if 1; = 1 and p; >
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2 Minor generalizations and nested cases

In this section we discuss some minor generalizations and nested cases briefly mentioned at
the start of Section 5 in the main paper: individual investors or types who may be connected
in a social network; housing as a physical investment asset subject to a short-selling ban;
and short-selling constraints that permit negative positions up to some limit.

2.1 Individuals in a social network

First, note that if the types hy, ho, ..., hy are individual investors we may fix the population
shares at n;; = 1/H. This interpretation is relevant for asset pricing models with many
agents that differ in beliefs; for example, agent-based models as in LeBaron et al. (1999)
or the social network model with individual-specific types in Hatcher and Hellmann (2022).
Alternatively, some papers consider type adoption as in the Brock and Hommes (1998) model,
but with local social networks. In the model of Panchenko et al. (2013), for example, type
updating follows Brock and Hommes (1998) except that only the types (and performance)
of investors in an agent’s social network can be observed and adopted; see Panchenko et al.
(2013, Eq. 10). Both the above cases are nested by the benchmark results because the
demand schedules in these papers have the same functional form as in Equations (2) and (4)
in the main paper, and beliefs and population shares satisfy Assumptions 1-2 (main paper).

2.2 Housing as the risky asset

In this section we demonstrate how our results can be applied when the risky asset is housing
as in Bolt et al. (2019) and Hatcher (2021). In these models, housing is an investment
asset that differs from shares due to the interpretation of ‘dividends’. In Bolt et al. (2019)
dividends are replaced by imputed rent based on an arbitrage condition between the user
and rental costs, whereas Hatcher (2021) assumes linear housing utility scaled by a housing
preference variable.? In both models, these additional variables are exogenous processes
whose properties are known to the investors. We assume a fixed supply of housing Z > 0.

With linear excess returns and an unconditional short-selling constraint, demands are:

Et,h Pra1] + Q1+ Pb) — (1 +7)p if p < Et,h D] + Q1+ R)

— ao? . 1+7 .
Zh = . By [pra] + Qi(1+ R) (BDDHLl)
0 if p; > -

where @, is the exogenous rental price and R is the fixed risk-free mortgage rate; and

Et,h [Pr41] + 0,U, — (1+7)p, Et,h [Dr1] + .U,

Zep = ac? pes A (Hatcherl)
th = if Epn [pen] + .U
0 Wpe= =

2Using quadratic utility from housing in the framework of Hatcher (2021) is also possible (under certain
conditions) as this mirrors the mean-variance assumption in the benchmark model.



where ©; > 0 is an exogenous relative preference for housing utility versus financial wealth,
and U, > 0 is a fixed marginal utility of housing (which does not depend on z; ).

Defining f; 5 := fth + Eth [diy1] — a0®Z and r := 7 — ¢, with Eth [di1] = Qu(1 + R) (or
Et i [dii1] = ©,U.), the above demands can be written as

_ 277
fin (1+rlpt+ao Z £ b < fth1++aa Z
5 = ao ro_ 12
" o if p, > fnt 2 2
t 1+

as in Equation (4) of the main text.

2.3 Short-selling constraints of the form: z;;, > L

Suppose that negative positions are permitted up to some limit L < 0, such that z,;, > L,
Vt, h. Formulating the maximization problem of type h as a Lagrangean:

a-~
max Ly = Eyp [wes1n] — —Vt h[wern] + Aen(zen — L) (13)

24, hsAt

where )\, > 0 is the Lagrange multiplier on the short-selling constraint z;; > L.
The first-order conditions are

B Et,h [Des1] + Et,h [di1] — (1 +7)py — CLUQZt,h +XMn=0, MNp:zmn=>L (14)
and the complementary slackness condition is: Ay p(2ep — L) = 0.

Analogous to the discussion after (3)—(5~), Atp = 0and 2 = (ac?)~ (Et b [Pes] +E~t B diir]—
(1 +7)ps) is an optimal demand iff Eyp [pia] + Epp[dia] — (1 + 7)pe > ac?L, while if
Et,h [pt+1] + Et,h [dt+1] - (]. + f)pt < CLO’2L7 then >\t,h > 0 and Zt,h = L.

Hence, the demand schedule of type h € H is given by

Eop [peya] + Eop [dea] — (1 + 7)py iy < Epp [peia] + Eop [dia] — ao®L
I pt =

ac? - L+7 15
Eip [pr1] + Eop [de1] — ac®L ( )

1+7

Zth =

Defining f, ), := ]Et,h + Et,h [diy1) —ac®Z, r:=r1—7¢and Z, ) := 2, — L, the demands (15) are

27 27
~ fin +acZ : (1+7)p: if p, < ,ftJL1+ ac?Z o
Zth = . ao " ffh++a222 ., where Z =7 — L. (16)
1 Yo
Dt > T r

Note that the demands in (31) have the same form as in Eq. (4) in the main paper, except
that z, is replaced by z;;, and 7 is replaced by Z. Similarly, market-clearing is:

Z N¢,h2t,h = 7z = Z NenZeh = Z (17)

heH heH

where ), 5 nyp, = 1 is used. We can therefore state the following result.
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Remark 1 In the above model, demands and market-clearing are as in the benchmark model,
except that zp, is replaced by Zyp and Z s replaced by Z. Therefore, the market-clearing
price and demands follow Proposition 1 with Z,p replacing z,, and Z replacing Z.

3 Supporting results for Remarks in the main paper

This section gives propositions supporting the Remarks in Section 3.3 and the ‘Extensions’
section #5 of the main paper. Any non-trivial proofs are in Section 6 of this appendix.

3.1 Conditional short-selling constraints

Recall from Section 1.2 that we introduced an indicator variable 1; := Lig(,_; ... p,_x)<o0} that
is equal to 1 if the short-selling constraint is in place at date ¢ (i.e. if g(p;_1,....,p—x) < 0)
and is equal to 0 otherwise (i.e. if g(pi—1,....pt—x) > 0).

The demands for types h € H are given by:

fin— (A +7r)p+ac*Z if e < M orl1;,=0
P 02 1+r (18)
t,h . fin +aoc?Z
0 1fpt>iTandlt:1

where 7 :=7 —C and fi}, := ft,h +d—ac?Z.

Proposition 1 (Proposition 1 (main) adapted to conditional constraint) Let p, be
the market-clearing price at date t € N, let nyp = np(n_1, 1) be the population share of
type h at date t, and let By C H (S; := H \ B;) be the set of types that are unconstrained
(short-selling constrained) at date t. Then the following holds:

(i) If > pes men(fen — mingen{fin}) < ac®Z or 1, = 0, then no type is short-selling
constrained (Bf =H, S =0) and the market-clearing price is

E :hEH Nt hft h
== " = * 19
147 Pe (19)
with demands z, = (ao®) ™ (fin + ac?’Z — (1 +1)p;) Yh € H with zn €RfL, =0,

and z,, > 0 otherwise (i.e. if 1y =1 and Y, cqy mup(frn — minpep{fin}) < ac?Z).

Dt

(ii) If v = 1 and Y, cq nen(fen — minpen{ fin}) > ao®Z, then at least one type is
short-selling constrained and there exist unique non-empty sets Bf C H and S; such

that 3"pcpe nen(fen — minnes; {fen}) < a0’Z < 3o cpe nep(fen — maxpes; {fen}), and the
market-clearing price and demands are

_ ZheB,’; nt,hft,h - (1 - Zhegz nt,h)aa27
and 2y, = (a0®) " (fin +ac®Z — (1 +71)p;) > 0Vh € B}, 2, =0Vh € S;.

Dt > p; (20)

Proof. See Section 6.1 of this appendix. m



3.2 Multiple markets and endogenous participation

In this section we adapt Proposition 1 for the case of multiple risky assets m € {1,..., M}
when participation shares w” € (0,1) in each market are determined by attractiveness
relative to other markets; see Westerhoff (2004) and Section 5.1 of the main paper.

We note in the main text that demand of type h in market m is given by

m (I a0 s Zm [wi — (1™ )pi o m o FnAaoe Zm /w
wy - if pi* < = —
P acy, +r (21)
2 0 T I +aod, Zm fwi
1 pt 14rm
h m . fm Em_ 27 m drm.—F_gn
where f7 = f} + aoo 2 /wyt and ™ =1 — "
Market-clearing in market m is given by
m zm __ 17 m -m .__ _.m m
E N2 = Zm/wi", where Z[7}, := 277}, Jwi". (22)

heH

With this change in variables, the market-clearing condition has the same form as in the
benchmark model (aside from a scaling of supply by 1/w}™"). We therefore have the following.

Proposition 2 (Proposition 1 adapted to multiple markets) Let p}* be the market-
clearing price at date t € N, let n, = np(ni”, ui”,) be the population share of type h in
market m at date t, and let Bj* C H (8" = H \ BJ") be the set of unconstrained types
(short-selling constrained types) in market m at date t. Then the following holds:

(i) If Y pew 0 (f — minpen{ 11 }) < a02, Zy /w}", then no type is short-selling constrained
(B =H, S{** = 0) and the market-clearing price in market m is

ZheH L
m — 9 9 — % 23
2 1+ m 2 (23)

with demands =3, = w™(aoz,) " (fIh + aop Zy Jwi* — (1 +r™)p") > 0 Vh € H.

(i) If 3 pep i (f, — minper{ fi}) > ao? Z,,Jw, then at least one type is short-selling
constrained at date t and there exist unique non-empty sets B"* C H and S such that

> nepp Ny (fi, —mingepp{ f{}}) < a0 Zm /Wi < > nepp= iy (fi, —maxnesy{fi}}), and the
market-clearing price and demands are

o= ZheB;ﬂ* ni Sy — (1= Zheb’;ﬂ* ”Th)aagnEW/wln > pm* (24)
¢ (L4 77) e 1, ¢

and 27}, = wi(aol,) " (f} + a0 Zm /Wi — (L+7™)pi*) > 0 Vh € By, 27}, = 0 Vh € §™*.

Proof. It follows from the Proposition 1 Proof (main paper) when p;, fi,, r and 7 are
replaced by pi*, fI,, r™ and Z,,/wy", and the demands 2, are replaced by z{’, in (21). =
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3.3 Market maker: benchmark demand specification

As discussed in Section 5.3 of the main text, the demands in the case are the same as in
Equations (2) and (4) of the paper, but the price is now given by

Dt = Pi—1 + M[/\<Zt - 7) + (1 - )‘)(Zt—l - 7)] (25)

where p1 > 0, A € (0,1] and Z; := >, 5, ne.n2,n is aggregate demand per investor at date ¢,
such that Z, — Z can be interpreted as (average) excess demand per investor.

We now present amended versions of Proposition 1, Corollary 1 and the Computational
Algorithm for the benchmark demand specification plus market maker price setting.

Proposition 3 Let p; be the price given by (25) at date t € Ny, let nyp, = np(nq, up—1)
be the population share of type h at date t, and let By C H (S := H \ B;) be the set of
unconstrained (short-selling constrained) types at date t. Then the following holds:

L Ifpy1— mln{ft =1 nt,h(ft,h_ggg{ft,h})"‘ﬂ(l_)‘)zt—l <(p+(1+7r)tac?) Z,
he

then no type is short-selling constrained (Bf = H, S =0, z, > 0 Yh) and price is given by

P11+ % Zhe?—[ Nenfen + (1 = A)(Zi—1 — 7)
1+ pA(1 +7)(ao?)~? '
2. If pr1— mln{fth}+(wg nmh(ft,h—%%{ft,h})+ﬂ(1—)\)zt—1 > (p+ (147r)tao?) Z,

heH
then one or more types are short-selling constrained with z;, = 0 and we have the following:

Dt =

: * Q% A . ac?\ 7
(i) If 3 Bf, S¢ C M such that 15 heZB* nen(fen — }?Ellé}ﬂ{ft,h}) 1+T }ILnlBQ{ft nt < <M + m) Z —

pr-1— (1l =N)Zi1 < Mz Z nen(fen — hm?f{fth}) 1+r hm%,*{ft n}, price is

Di—1+ 452 ZheB; nepfen +p[(1=A)Ziq — (1= A Zhegg nt,h)i]
L+ pA(L+7)(a0?) 7 3 e M
with demands 25, = (a0?) " (fon +ac?Z — (1+71)p;) > 0Vh € B, 2, =0 Vh € S;.

Dt =

(i1) Else, AB; = 0, S; = H such that py_1+u(1—-\)Z;_1— maxhes*{ft nt > <u + 1+r> Z,
all types are constrained (z, = 0 Yh), and price is py = pi—1 + p[(1 — X\) Zi—1 — 7).

Proof. See Section 6.2 of this Appendix. =

Note that there are three distinct cases in Proposition 3, in contrast to Proposition 1
in the main paper, since all types may be short-selling constrained at the price set by the
market maker. Corollary 1 and the Computational Algorithm are amended as follows.



Corollary 1 (amended) Let H, = {1 L H,} be the set such that types are ordered as
Jir < fip <. < ft,ﬁt- Let diipt,k = Mz Zh>k nen(fon—for) — 1+7,ftk: fork e{1,.. Ht_l}
and Gy := (u+ (1 +7)"tac?) Z —p_1 — u(1 — X\)Z;_1. Then the price solution is:

( A H, _
-1+ # Y ohey M fen + (1= AN (Zey — Z) e % - -
1+ pA(1 + r)(ao?) T =P if dispe1 < Gt
2y H; g o o o Hy N
R 11"1 1= A2 e = pil) if dispro < G < dispgn
L+ pA(L +7)(ao?) 1 3050 nun )
P = Dottt Zh o tepfin 1 plU1 ~ N2 1;; 1A% 1) = piz) if dispes < Gy < dispeo
K L+ pA(1 +r)(ao?) ' 30 nen
Pi—1+ %ntfﬂfz,h +pl(l=NZ1 — (1 — )\nt’f{t)i] L (H-1) o ~ B ] ~
L AL+ ) (a0?) n g, i if disp, g, < 90 < disp, g,
N H g -
(P +u[(1 =20~ Z] = pM if disp, g, > Gt

where pgk* 18 the price if types 1, ..., k* are short-selling constmmed pt s the corresponding

price if short-selling constraints were absent (which satisfies p; < pt , VE <E*), and

(k—1) (k)

Y < p® < p*, for all k < k*, p\” := pr. (26)

Proof. See Section 6.3 of this appendix. m

Given Corollary 1, the computational algorithm needs to be amended as shown below. Note
the algorithm uses our definition of g; := (u + (1 +7)"tac?) Z — p;_1 — u(1 — \)Z;_; above.

3.3.1 Computational algorithm (Market maker and benchmark demands)

1. Construct the set 7, by ordering types by optimism as Jea < fia < ... < fipg,, and
find the associated population shares n,, of types h =1, ..., H,.

2. Compute disp; 1 = % Zhng nen(fen — fra) — ﬁft,b If disp;1 < G, accept p; = p; as
the price, compute demands and move to period ¢t + 1. Otherwise, move to Step 3.

3. Compute disp, g, = _f?ft,ﬁt' If disp, 7, > Gt, accept pr = pr1 + pl[(1 = A\)Zi1 — 7|
as the price, set all demands at zero and move to period ¢ + 1. Else, move to Step 4.

275 uess
4. Set p{“”* = p;. Find the largest k such that 2/, = frktao ZM(QHT)ptg < 0, say k.

Starting fror~n k = k, check if dispi i1 < gt < dzspt’k.; if not, try k = kpyep + 1 until a
k* e {1,...,H, — 1} is found such that disp; y+1 < §: < disp;~ and go to step 5.

5. Accept k* as the number of short-selling constrained types, such that the price is

- . 1-))Z 1A | Z
Pt = ng )= . Zit a1 e b0 e St 41700 ], compute demands at

1+puX(1+7)(ac?)—1 Zh:k*H t,h
this price, and move to period t + 1.




3.4 Market maker: alternative demand specification

Similar to Westerhoff (2004) we consider demands of the form a(f;, — pi), where a, > 0
for all h. With a short-selling constraint z;; > 0, the demands are adjusted to
sy = ah(Et,h [pt—H] - pt) %f P < E:'t,h [pt+1] (27)

0 if pr > Eyp [pesa]-

Given price beliefs in Assumption 1, we have Et,h [pey1] = ¢pe + ft,h, where we now assume
¢ € [0,1) (since the interest rate is zero). We define f;, := f;5 and write the demands as

- _ Jin
ah(ft,h - (1 - C)pt) if p, <

Zt,h = fthc (28)
0 if p; > s

Since ¢ € [0,1), the demands are decreasing in the current price. The price equation is
pe = P11+ pAZ + (1 = N)Zi—y — Z], where Z, := ), 5, Ny p 2 is aggregate demand.

Proposition 4 (Proposition 1 (main) adapted to new demand specification) Let p;
be the price at date t € Ny, let ny, = np(ne—1, 1) be the population share of type h at
date t, and let By CH (S; := H\ B;) be the set of types that are unconstrained (short-selling
constrained) at date t. Further, let Ny, := ngpap and fip == ft,h. Then the following holds:

1 Ifpy — 1= mm{fth} + pA Z nth(fth - mln{fth}) + H(l - )‘)Zt—l < M77 then no type
heH

s short—sellmg constrained (Bf =H, Sf =0, z,, > 0 Vh € H) and the price is

Peo1+ BPAY g e fen + (1= N) 2oy — A

b= L+ N1 —2) S fun
heH
2. If pr1 — —mm{fth} +uX > un(fen — mln{fth}) +u(l =N Z,_y > pZ, then one or

heH
more types h € H are short-selling constrained with z, = 0 and we have the following:

(i) If3 Bf,S; C H such that pA hZB T b (fe,h— mm{fth})—— mm{ft < UZ—=(1-N)Za]-
€

Pe—1 < pA Y Rn(fen — max{fth}) — —c max{fth} price s given by
heB; hes; hes;

Di—1 + pA Zhe[gr e frn + pl(1 — N2y — Z]

1 + ,u/\(l — E) Z ﬁt,h
heBf

and demands are z, = ap(fr, — (L —¢)p) > 0 Vh € Bf and 2z, =0 Vh € S;.

Pt =

(it) Else, 3B; = 0,8 = H such that py_1 + p(1 — N\)Zy—1 — 7= maxpes: {fin} > pZ, all
types are constrained (z, =0 Yh € H), and price is py = pt L+ upl(l=NZ — 7).

Proof. See Section 6.4 of this appendix. m



Corollary 2 (amended) Let H, = {1, ...,fIt} be the set such that types are ordered as

Jia < fro < ... < [ p,- Let dispyy = pA EhHLkH Men(fen — for) — {t—_% and g(pi—1, Z—1) =

wlZ — (1= N)Zy_1] — pi_a, for k € {1, ..., H, — 1}, Nup = apnep. The price solution is:

(proa+ pA S i fon + pl(1= N Zia = Z]
L iA1= 0) 4 e
Dot F NS Aunfin +ul(1 = N2 — Z R .
CREIO¥E L o ‘E,(t . a2l . pg) if dispra < g(Pe-1, Zi—1) < dispi
L+ pA(1 =) 2o ts N

R D 7 +u1=NZy—Z 2 g .
Pro1 1Ay TS ME}( - )2 ] = pg ) if dispys < 9(pi-1, Zi—1) < dispy o
L+ pA1=2) Y20ty fun

=p;  if dispey < g(pe—1, Zi—1)

yg;

Pt + pAy g fon +pl(1=NZa = 2] (-1) o . ,
{Jr U)\(l _ E)ﬁt,l:lt ~'_ Dy ' Zf dZSpt7Ht S g(pt—la Zt—l) < dZSp,:’f[t_l
(Pe—1 + p[(1 = N) 2y — 7] = ngt) if diSPt,gt > g(pi—1, Z1-1)

where pgk*) 15 the price if types 1, ..., k* are short-selling constrained, p; is the corresponding
price if short-selling constraints were absent (which satisfies p; < pik), Vk < k*), and

k—1 k k* * 0 *
P < p® < p 0 forall k < K, p® = pr (29)

Proof. See Section 6.5 of this appendix. m

Given Corollary 2, the computational algorithm needs to be amended as shown below.

3.4.1 Computational algorithm (Market maker and heterogeneous slopes)

1. Construct the set H, by ordering types by optimism as Jia < fro2 < ... < fi g, and
find the associated population shares n;, of types h =1, ..., H,.

2. Compute disp;1 = pA ZhHLQ R (fen— fr1) — {t—_lz If dispiy < pwZ —(1=NZ_1] = pi_1,
accept p; = p;, compute demands and move to period ¢ + 1. Otherwise, go to Step 3.

ft.flt 7

— T If disp, g, > plZ — (1 = A)Zi-1] — pi-1, accept p; =
pi—1 + p[(1 — N)Zi—1 — Z] as the price, set all demands at zero, move to period t + 1.
Else, move to Step 4.

3. Compute disp, 7, =

4. Set p{*** = p;. Find the largest k such that 2/} = ax(fix — (1 —2)p{*"™") < 0,

say k. Starting from k = k, check if dispypy1 < p[Z — (1 = N)Zi 1] — proa < dispy;
if not, try k = kpep + 1 until a k* € {1,..., H; — 1} is found such that disp; 11 <

wlZ — (1= XN)Zi—1] — pr—1 < dispy - and go to step 5.

5. Accept k* as the number of short-selling constrained types, such that the price is
(k*) Pt—1+ﬂ)\ZhHik*+1 A p S, 1[(1=XN) 21— 2]
bt =Dy = 1, _

1+pA(1-2) Zh:k*+1 g, h

, compute demands, move to ¢t + 1.
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4 Additional heterogeneity

4.1 Heterogeneous responses to p;

In the case of heterogeneous forecast coefficients on p;, price beliefs are amended to

Et,h [Dt+1] = Cnpe + ft,h (30)

where ¢, € [0,1 4 7) for all h € H.

As discussed below, this case requires an amendment to the computational algorithm
because ranking types in terms of f;;, is no longer sufficient. We first provide an amended
version of Proposition 1 before discussing the necessary changes to the algorithm.

Defining f; 5, := ft,h +d — ao?Z and 1, := 7 — G, the demands are amended to:

=y i (31)
i Jt,h
Pt > T

Using the market-clearing condition ), _,, n¢n2en = 7, we have the following.

Proposition 5 (Heterogeneous p; coefficients) Let p, be the market-clearing price at
date t € Ny, let nyp, = np(ne_1,1—1) be the population share of type h at date t, and let
B: CH (S :=H\ B:) be the set of unconstrained types (constrained types). Let fip, 11, be
defined as above and fyp, := nep(1 +14). Then the following holds:

(1) If > e e fen — minheq{{%} Y ohew Men <0, then no type is short-selling con-

strained (Bf = H, S =0) and the market-clearing price is

n
P = Dleﬂ—tflfth (32)
Zhe?—é Ni,n

with demands 25, = (a0®) " (fin + ao®Z — (1 +r,)p) > 0 Vh € H.

(i) If > peq Menfen — minheﬁ{%} Y ohew Men > 0, at least one type is short-selling

. . * % ~ . ft’h—i-aJQZ
constrained and 3 unique B;, S; C H such that ZheB: nt,hft,h—zhesg Tig,p, MiNpep; {W

_ N 1 ao?Z ) )
(1= hes: nep)ac’Z < D heB Mehfth = Dpeps Mt maxhegt*{%}, and the price is

_ ZheBg‘ nt,hft,h - (1 - Zhegr nt,h)a(jZ?
Zheg;j ﬁt,h

with demands 25, = (ao®) " (fin +ac*Z — (1 +1)ps) > 0Vh € B}, 2, =0Vh € S;.

Proof. See Section 6.6 of this appendix. m

Note that types with the lowest values of (f;, + ac?Z)/(1 + r;,) should be considered least
optimistic, as they are more likely to be short-selling constrained at any given price. We
thus define f; := (fin +ac®Z)/(1+ ry,), which allows us to state the following result.

11

} <



Corollary 3 Let H, = {1,...,H,} be the set of types such that ftJ < ft,g <l < ft i,
¢ o2Z . H 27 oo ~
where fi ), = f“ﬂ—ih Let dispyy, == >t tunfin — <ftk11—‘:,k) Y g N and disp, =

dispsy + nyrac®Z for k € {1, ..., H, — 1}, fup = nen(1 +1p). The market-clearing price is:

(S . : —
Letmt Tehth gy if dispry < (1 =320 nyp)ac®Z (= 0)
Zh 17%,h
byl 2 Pen i —ne100’Z pgl) if dispra < (1 — Zh o Mt p)ao? 7 < dzspt 1
5 Zh 2T h
Pt = Zh Mo fun ~ (s + nig)ao’Z = PEZ) if d%sptg (1 - Zh 3 T, h)aa 7 < dwptz
thg N h
e fom — (OET mn)ac®Z -1y, - i -
\ et He ﬁt,;l =p if dispy g, > (1= 32,15, nen)aoc?Z
(k*)

where p; * is the price if types 1,...,k* are short-selling constmmed pt 15 the corresponding
price if short-selling constraints were absent (which satisfies p; < pt , VE < k*), and

RIS LI SR N g Py R O R (34)

Proof. It follows from Proposition 5 and the proof of Corollary 1 (see main paper). m

In light of the changes in Corollary 3, our algorithm needs to be amended as shown below.
We stick with the above notation for which 7y, = ny (1 +74) for all h € {1, ..., H;}.

4.1.1 Computational algorithm (Heterogeneous coefficients on p;)

1. Construct the set H, by ordering types by optimism as fm < ft,g <. < ft a,» Where

ft _ I ntac?Z

T, and find the associated population shares n,j, of types h =1, ..., H,.

i o i
2. Compute dispiy = Sout, nunfon — (ftﬁ—‘:jz> M g If dispyy <0, accept p, = pi

as the date t price, compute demands, move to period ¢ + 1. Otherwise, go to Step 3.

feutac®Z—(1try)pf“e**

ao?

3. Set p{"“* = p;. Find the largest k such that 2], =
Starting from k = k, check if disp i1 < (1 — Zh;kH nep)aoc?Z < dzfspt’k; if not, try
k = kprep+1 until a £* is found such that disp; g1 < (1—Zf;k*+1 nep)ac’Z < dz’tspt,k*.

< 0, say k.

4. Accept k* as the number of short-selling constrained types, such that the price is

I:It K* 2%
E* D onts g Menftn— |2 h—1 Nt,n| a0 Z .
P = pg )= — [ ] , compute demands, move to period t + 1.
Zhik*ﬂ Tit,h

12



4.1.2 Numerical example

We now turn to a numerical example. Consider H = 3,000 belief types with heterogeneity
in the weights ¢, on the current price (see Section 5.2.1 main paper and 4.1 above) and fixed
population shares n;, = 1/H for all ¢, h. There are three groups of investors consisting of
1,000 types each; within each group individuals use the same forecasting method, but their
individual forecasts differ due to different weights ¢, and idiosyncratic shocks in some periods
(see below). Trend-followers expect the future change in price to be linked to past changes
in price; contrarians believe the recent trend in prices will be reversed; and arbitrageurs base
their expectations on the deviation of the current price from a fundamental price p.

The first 1,000 types are trend-followers, types 1,001-2,000 are contrarians, and types
2,001-3,000 are arbitrageurs. All investors use the current price as a reference point, but
we allow heterogeneity in the weights ¢,. In addition, each type has an idiosyncratic
random component to beliefs u;. Beliefs of trend-followers have the form E~t7h[pt+1] =
Chnpe + gL AP 1 + giAp: o + gy, where g}, g2 > 0 and Ap; = p; — pi_1. Contrarians have
beliefs Eyp[pia] = Eupe + G APt + giApi_s + ugp, where g3, gt < 0. For arbitrageurs,
Et,h[pt+1] = ChPt — QZ(pt—l — D) + ugn, where 92 > 0. We set d; = d= 1.1, Et,h[gitﬂ]f d for
all h, 7 =0.1,a = 0?> =1 and Z = 0.1. The fundamental price is therefore p = % = 10.

Prior to period 1, the parameters g; and g? are drawn from uniform distributions on
(0,0.5) and (0,0.2), g3, gi are drawn from a uniform distribution on (-0.1,0), and g, is drawn
from a uniform distribution on (0.2,0.8). The ¢, parameters are drawn from a uniform
distribution on (0.95,1.05). The idiosyncratic shocks w, ) are set at zero in periods 1-10
and are drawn from a normal distribution N(0,0.04%) in all later periods. Initial prices are
set at p+ 0.6 = 10.6. Figure 1 shows time series of the price and number of short-selling
constrained types in a simulation of 7" = 500 periods, of which the first 40 periods are shown.

Asset price No. of constrained types

12 2000
1157 1950 |
11
1900
10.5
1 1850
10 I
95 It} — — —Wiout short-sell constraints | 1800 t
|} ———With short-sell constraints
o ' ' : - 1750 : ‘ :
0 10 20 30 40 0 10 20 30 40
Time, t Time, t

Figure 1: Simulation paths plotted over the first 40 periods (H = 3,000 types). The left
panel shows the dynamics of the asset price p; from periods t = 1, ..,40 and the right panel
shows the number of short-selling constrained types, |S;|, in each period.
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Figure 1 (left panel) shows that short-selling constraints have a substantial impact on
the asset price dynamics. With short-selling constraints there are persistent price cycles
(solid line); by contrast, when short-selling constraints are absent there are dampening price
oscillations that rapidly converge toward the fundamental price (dashed line, left panel).
The price is higher with short-selling constraints, and it oscillates depending the number of
types which are short-selling constrained in a given period (see right panel).

Table 1: Computation times and accuracy: H = 3,000 types and T" = 500 periods

Case Short-sale constraints Time (s) Bind freq. max(Error;)
No heterogeneity: No 0.09 - 3.8e-16
¢, =1forall h Yes 0.16 497/500 4.3e-14
Heterogeneity 1: No 0.40 - 2.0e-15
¢n € (0.95,1.05) Yes 0.66 500/500 8.9e-16
Heterogeneity 2: No 0.13 - 5.3e-16
e € (0.995,1.005) Yes 0.22  500/500 4.1e-15
Note: max(Errory) = max{Errori, ..., Errorp}, Errory := |3,y nenzen — Z|. The middle row

of the table (bold font) shows the results for the case in Figure 1 and described above. The other
cases change the amount of heterogeneity in ¢, with all other parameters and shocks fixed.

In Table 1 we report computation times and a measure of accuracy for the example
in Figure 1, as well as two variations on this example. The first variant (bottom row)
reduces the heterogeneity in ¢, while the second case (top row) eliminates heterogeneity in
¢y, altogether. Our measure of accuracy (final column) is based on the maximum deviation
from market clearing across all periods, i.e. max(Error,) := maxi<i<r | Y peq Mh2eh — 7).

The results in Table 1 show that the solutions with short-selling constraints are computed
quickly using our amended computational algorithm: computation times for a 500 period
simulation with 3,000 types are below 1 second in all three cases. Further, both computation
time and accuracy are comparable to the case where short-selling constraints are absent (see
top rows in Table 1), which is based on the standard analytical solution p; and does not
require any search procedure.?

The price time series for the low heterogeneity and zero heterogeneity cases (not shown)
are qualitatively similar to those in the case where short-selling constraints are absent (see
Figure 1, dashed line). Intuitively, if heterogeneity is small its effects may largely ‘wash out’,
but adding extra heterogeneity means constraints bind more often and on more types. Sim-
ulation codes are available at the author’s GitHub page: https://github.com/MCHatcher.

3The simulations were run in Matlab 2020a (Windows version) on a Viglen Genie desktop PC with
Intel(R) Core(TM) i5-4570 CPU 3.20GHz processor and 8GB of RAM.
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4.2 Heterogeneity in variances
In the case of heterogeneous subjective return variances, demands are given by

Et"h [])t+1] + E — (1 =+ f)pt Et,h [])t+1] + E

if p; < :
Zp = ao? - 1+7 . (35)
0 it >

where o7 > 0 is the subjective return variance of type h and Eth [Des1] = pe + ft,h-

Defining ay, := (ao?)™", fun = fun +d — Z/ay and r := 7 — ¢, the demands in (35) are

i _ _ -
an(fon+Zfan — (A +r)p) i p < fth%/ah (36)
Zt,h = T
0 if p, > fth%fr/ah

In (35) and (36), the subjective variances are heterogeneous, but it should be clear that
heterogeneity in risk aversion is also nested by this approach. Time variation is also straight-
forward: add time subscripts. By (36) and market-clearing, we have the following.

Proposition 6 (Heterogeneous subjective variances) Let p; be the market-clearing price
at date t € Ny, let nyp, = np(ny_1, 1) be the population share of type h at date t, and let
By CH (S, :=H\B,) be the set of unconstrained types (constrained types). Let ap = (aoi)™,
Ny p = apnep and fin as above. Then the following holds:

(1) If > pew Toen(fen — minpey{ fin +Z/an}) <0, then no type is short-selling constrained
(B =H, S =0) and the market-clearing price is

ZheH ﬁt,hft,h
1 + T) ZhE'H ﬁt,h

with demands zp, = an(fin + Z/)an — (1 +7)p;) > 0 Vh € H.

Pe = ( (37)

(ii) If 3 g T (frn — mingepd{ fon + Z/an}) > 0, at least one type is short-selling con-
strained and 3 unique B, S; C H such that Zhegg fen(fen — mingeps { frn + Z/an}) <

(L= Yhenr mn)Z < YXpeps Mt (fen — maxpesy {fen + Z/an}), and the price is

B Zhesg M pfen — (1= ZheB; ) Z
(1 + T) ZhEBf ’th,h

with demands zyp = an(fin +Z/an — (1 +7)p;) >0 Vh € B, zn =0Vh €S/

Dt (38)

Proof. See Section 6.7 of this appendix. m

Note that types with the lowest values of f;; + 7 /ay, should be considered least optimistic,
as they are more likely to be short-selling constrained at any given price. We thus define
fen == fin + Z/ay, to rank types by optimism, which allows us to state the following result.
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Corollary 4 Let H, = {1,...,H,} be the set such that types are ordered as ft,l < fiz <
< fth where fth = fth + Z/dh Let disptk = Zthk ﬁth(fth — [ftlc —f-?/dk]) and

dzsptk = dispiy, +nixZ fork € {1,.. — 1}, fup i= apnep. The market-clearing price is:
( zl:lf @i f ﬁ N2
’121—”’ff =P if dispry < (1 =255 men)Z (= 0)
(1+7) Zh 17
Zh Qnihfthfntlz _pg ) Zfdlspt2 (1 _Zh Qnth)Z < dZSptl
(1+’)Zh 2Tt
Pt = Zh nthfth — (ntl +nt2) : (2) Zf dZSpt?, (1 - Zh 3nth)Z < dlspt?

(1+7) Zh:3 o

ﬁ~j;t(2 )2 He=) ot di Z
\ 1,0 ”21+r)n]z; Lhl 2 . PE =) zfdlsptﬁt_l > (1 Zh H— 1nth)Z

where pgk* 15 the price if types 1, ..., k* are short-selling COnstmmed pt 15 the corresponding

price if short-selling constraints were absent (which satisfies p; < pt , VE < k*), and

(k—1) (k)

Y < p < pM, for all k < k*, p\” := pt. (39)

Proof. It follows from Proposition 6 and from the same steps used in the proof of Corollary
1 (see main paper) with the necessary alterations being made. m

4.2.1 Computational algorithm (Heterogeneous subjective variances)

1. Construct the set H, by ordering types by optimism as ft 1 < ft 2 < ... < ft 1, Where
ft h= fin+ Z/ah, and find the associated population shares n,j of types h=1,. Ht

2. Compute disp;; = 21{21 fen(fon — [fin + Z/a1)). 1 dispsy <0, accept p; = p} as the
date t price, compute demands and move to period ¢t + 1. Otherwise, move to Step 3.

3. Set p{"“ = p;. Find the largest k such that z/," = ax(fix +7Z )y — (1+7)pl"*) <0,
say k. Starting at k = k, check if disp; g1 < (1_Z;Iik+1 nep)aoc’Z < ditspnk; if not, try

k = kprep+1 until a £* is found such that disp; g1 < (1—Zf;k*+1 nep)ac’Z < dz’tspt,k*.

4. Accept k* as the number of short-selling constrained types, such that the price is
Hy ~ k¥ —

b= p(k*) o P oh k41 nt,hft:h_[thl nt,h]Z

LR W) ST

, compute demands, and move to period £ + 1.

4.2.2 Numerical example

We stick with the same numerical example as set out above, except we set ¢, =¢ = 1 for
all h and draw the subjective variances of different types from a uniform distribution, such
that o7 ~ U(o? The results in Table 2 show that the solutions with short-selling

mzn7 max)
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Upper panel: Low heterogeneity

Asset price MNo. of constrained es
11 F P - 2000 Rl
— — —Wfout short-sell constraints
—With short-sell constraints 1500 F
1000
OO
gt . . ! E 0 . —
0 A 10 15 20 0 5 10 15 20
Time, t Time, t

Lower panel: High heterogeneity

Asset price No. of constrained types
1" T 2000 T T r
1500 1
1000
5001
! ] 0 e
0 5 10 15 20 0 5 10 15 20
Time, t Time, t

Figure 2: Simulation with low and high heterogeneity in o2 (H = 3,000 types)

Table 2: Computation times and accuracy: H = 3,000 types and T" = 500 periods

Heterogeneity ~ Short-sale constraints Time (s) Bind freq. max(Error;)
High case: No 0.16 - 9.7e-16
o2 € (0.9,1.1) Yes 0.23  499/500 3.4e-15
Low case: No 0.14 - 8.1e-16
J}ZL € (0.99,1.01) Yes 0.22 497/500 4.0e-15
Note: max(Errory) = max{Errory,..., Errorr}, Errory := |,y M nzth — Z|.

constraints are fast and accurate, being comparable to those when short-selling constraints
are absent. The time series for the first 20 periods are plotted in Figure 2.

The codes used to generate the above results are available from the author’s GitHub page
at https://github.com/MCHatcher.
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5 Generalization to population shares n;; € [0, 1]

In this section we relax the assumption n;; € (0,1) to allow n.y € [0,1] at dates t € N,
subject to ), 4, 1 = 1. We show how our analytical results and algorithm can be adjusted
for this weaker assumption. The cases n;;, = 1 and n;; = 0 can be dealt with together
because if n;;, = 1 for some A', then n; ), = 0 for all h # h';* and if ng . = 0 for some types
h' € H, then the sum of population shares across all other types is equal to 1. Let H;*® C H
be the subset containing all types with a zero population share at date ¢, such that n;; =0
for all h € H" and ngy € (0,1] for all h € H \ H, with > g e = 1. Given that

nen = 0 for all h € H;**, market-clearing at date ¢ is given by

Z N nZtn = Z nenzin = Z, where Hj = H \ H*® #£ 0, (40)

heH heH;

which is analogous to the problem we solve in the main text, except that the set of types
under consideration (H;) is not restricted to be fixed over time.

Since H; can be found without knowledge of the current (or future) market-clearing price
pt, nothing changes except H is replaced by H; in Proposition 1. Formally, we have:

Proposition 7 (Proposition 1 adapted for 0 < mn;, < 1) Let p; be the market-clearing
price at date t € N, let nyp, = np(ne_1,us—1) be the population share of type h at date t, let
H; be the set of types (with non-zero pop. shares) defined above, let By C Hf (S; := H\ B:)
be the set of unconstrained types (constrained types) at date t. Then the following holds:
(i) If D pepes nen(fen — minper {fin}) < ac®Z, then no type is short-selling constrained
at date t (Bf = H;, S; =0) and the market-clearing price is

. Zhe?—[;‘ nt,hft,h
B 1+r
with demands 2, = (a0?) " (fin +ac®Z — (1+71)p;) > 0 Vh € H}.

12 =P} (41)

(i) If > ners nan(fen—minper: { frn}) > ac®Z, at least one type is short-selling constrained
and 3 unique non-empty sets B C H;, S; such that Zhesg nen(fen — minpeps{ frn}) <
ac’Z < ZheB: nen(fe.n — maxpesy { fen}), and the price and demands are given by

- ZheB; nepfrn — (1= ZheB;; nen)ao’Z
(1+7) X pes: neh
and zip, = (a0?) " (fon +ao?Z — (L +7)p;) > 0Vh € By, 2z, =0Vh € S;.

P > Py (42)

Proof. It follows from Proposition 1 in the main text when the set H is replaced by H;. =

Corollary 1 does not require any amendments since we may re-define the function h; in the
main text as a function from the set H; to the set H,, i.e. hy : Hf — H,. Finally, since we
keep the set H;, the computational algorithm also does not require any changes.

“Recall that n;j, € [0,1] and > hep Mtn = 1. Hence, if ng pr = 1 for a type h' € H, then this implies that
Zhih, nep, = 0. The latter is possible only if n, j, = 0 for all h # h’/, since negative shares are ruled out.
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6 Proofs

6.1 Proof of Proposition 1

By Section 3.1 the indicator variable 1; := Lyyp,_,,..p_x)<0} is equal to 1 if the short-selling

constraint is in place at date ¢ (i.e. if g(p;_1, ..., pi—x) < 0) and is 0 otherwise.

Case 1: 1, =1

If the short-selling constraint is in place at date ¢ (i.e. if 1, = 1), the cases for price
and demands are equivalent to those for an unconditional short-selling constraint, as in
Proposition 1 in the main paper and its proof. The short-selling constraint is slack for all
types if Y, oy e (fepn — minpey{fin}) < ao?Z and binds for one or more types (but fewer

than H) otherwise, i.e. if Y, o nen(fen — minpen{fin}) > ac?Z

Case 2: 1, =0

If the short-selling constraint is not in place at date ¢ (i.e. if 1, = 0) then demands are given
by 2z = (a0?) " (fin +ac*Z — (1 +1)p;) € R for all h € H, and thus the market-clearing

o, . = . n. . . .
condition ), . nypzn = Z gives py = pj = w (which is the same expression as for

1 =1, Y pey un(fen — minpen{fin}) < ac?Z). This conclusion holds regardless of whether
> new en(fon — minper{ fin}) < ao?Z or Yo, cpy mun(frn — minpep{fin}) > ac’Z. M

6.2 Proof of Proposition 3
Case 1: Short-selling constraint is slack for all h € H

Let us guess that 25, = (a0?)"Y(fin + ao®Z — (1 +r)p;) > 0 Vh € H, which implies by the

- : Po1+ 2% S en nenfentu(1=N)(Zi-1-2)
price equation that p, = ——=2> fiﬁx(tmg(aﬁ)—l :

only if f; y+ac?Z—(1+7)p; > 0Vh € H, which requires (ﬁ + £%) (ao?Z+minpen{fin}) >

ac?

:= p;. The guess is verified if and
Pi_1+ % Y onen enfen + (1 = A)(Z—1 — 7), giving the inequality in Proposition 3 Part 1.

Case 2(i): Short-selling constraint slack for all 4 € B} and binds for all h € H \ B;

Let us guess z;), = (a0'22_1(ft,h +ao?Z — (1+7r)p;) > 0Vh € Bf and 2, =0 Vh € S} =
N o Pt71+a’fj Zhesj ne b fe nHu[(1=A) 21— (A=A, c g 1t,0) Z)
H \ Bt’ 50 pt - 1+M>\(1+7')(a0'2)_12h€32‘ Nt h - :
fon+ac®Z — (1+7)p, > 0Vh € Bf and f), + ac’Z — (1 +r)p, < 0 Vh € S}, which requires
(1 +pA(ao®) ™! 2 heB: nen)(ao®Z + fip) > (<) pror + 2 > ones: Menfen + (1= N)Zy —
(L= ADhes: nen)Z) Vh € By (Vh € S;), giving the inequalities in Proposition Part 3(i).

The guess is verified iff
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Case 2(ii): Short-selling constraint binds for all h € H

Let us guess 2,5 = 0 Vh € H, which implies that p; = p;_; + p[(1 — N\)Z;_1 — Z]. The guess
is verified if and only if fij, + a0?Z — (1 +1r)p; < 0 Vh € H, i.e. iff maxpep{fin} + ac’Z <

(14 7r)(pr—1 + p[(1 — \)Z;—1 — Z]), which is the inequality in Proposition 3 Part 2(ii). W

6.3 Proof of Corollary 1

The first (last) ‘if’ statement follows from Proposition 2 main paper as disp;1 < Gy (dz’spt, i, >

gt) is equivalent to p;_1 — 1—J1rT minheH{ft,h} + % Zhgy nt,h(ft,h - gg{l{fth}) + ,u(l - /\)Zt—l <

(b+ (L+7)"ao?) Z (vesp. pr—1+p(1—N)Zi1 — 1 maxpes; { fon} > (n+ %)7) The other
cases follow as there are H; — 1 other candidates for B}, S, i.e. Sy = {1}, B, = {2, ..., H;— 1};
S, =1{1,2},B,={3,.... H, — 1};...8, = {1,..., H,}, B, = (. For arbitrary sets S, = {1, ..., k},
By = {k+1, ..., H;}, where k € {1, .., H,— 1}, we have by Proposition 3 (above) that p, = pgk)
and the guess is verified if and only if disp; 41 < G < dispy .

(k—1

It remains to show pgk) < pgk*) Vk < k* and pik) > p, ©

) for such k, where p;’ = pj.
Recall that the demands 2 ,(p;) are decreasing in the price for all h. Note that pj satisfies
puZ — Zyy = V¥ —pf, where Z,_y = p;1 + (1 — N)Z_1, Vi i= p) ZhH;l nenzen(py), and
z,1 < 0 since pj is not consistent with short-selling constraints (or else p; = py). Similarly,
pgl) satisfies uZ — Zi 1 = V;(l) —pl(tl), where Vt(l) = pA ZhHLQ ntvhzt,h(pgl)). Suppose pgl) <pj,
which implies that Vt(l) > V;*. This leads to the contradiction Vt(l) — pil) > pZ — Zp_q;

therefore pﬁl) > p;. For arbitrary k£ and j = k — 1, k, note that pgj) satisfies uz — Ziq =

Vt(j) — pgj), where Vt(j) = A EhH;J nt,hzt,h(pgj)). Suppose pgk) < pgkfl). This leads to a
contradiction since uZ — Z,_1 = Vt(k_l) —pgk_l) < Vt(k) —pgk); therefore pgk) > pgk_l). Finally,

pgk*) > pgk) Vk < k* follows from applying the above argument for j = k* — 1, k*. &

6.4 Proof of Proposition 4
Case 1: Short-selling constraint is slack for all h € H

Let us guess that z,, = an(fin — (1 —7¢)py) > 0 Vh € H, which implies by the price equation
that p, = Re1ti) zl:ii”;\‘(?t_’g%:e’:ilf;fz“l_uz := p;, where 7, j, := apng . The guess is verified if
and only if f,;, > (1—¢)p} Vh € H, which requires (1—2)7" (14 g1 =€) Y pcpy ) frn =
D1+ PAD per T fen + (1 — N)Zpq — 1Z Yh € H. Note that this is equivalent to (1 —
o)t (1 + A1 =7C) > en ﬁt,h) minpep{ fin} = Pio1 + HAD peqy nfin + (1 —AN)Zi1 — nZz,

which simplifies to the inequality in Proposition 4 Part 1.
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Case 2(i): Short-selling constraint slack for all 4 € B} and binds for all h € H \ B;}

Let us guess z¢, = ap(fen — (1 —¢)p:) > 0Vh € By and 2z, = 0 Vh € S = H \ B}, such that
- pt—1+ﬂ>\zhe3? g n fe,nt(1=A) Zp—1—pZ

Pt = T+iA(1=0) S nepy P

guess is verified iff f,), > (1 —¢)p, Vh € Bf and fi), < (1 —¢)p Vh € S}, ie. (1 —

o (1 +uAML=72) X e ﬁt,h) fon = P + A e Tupfon + (1 = N Ziy — pZ) > 0
(< 0) Vh € By (Vh € §;), which are equivalent to puA ZheB;‘ Mo n(fen — Minpep:{ frn}) —

%_Eminhegg{ft,h} < plZ — (1 — NZioa] — peo1 < pA Zhegt* T n(frn — maxXpess{ fin}) —
—=maxpes; { fin}, as stated in Proposition 4 Part 2(i).

1-¢c

by the price equation, with 7., = apnis. The

Case 2(ii): Short-selling constraint binds for all h € H

Let us guess z;, = 0 Vh € H, which implies p; = pi—1 + p[(1 — N)Z;—1 — Z] by the price
equation. The guess is verified if and only if f,, < (1 —¢)p, Vh € H, ie. if and only if
= maxpen{fin} < pi-1 + p[(1 — A)Z,1 — Z], as stated in Proposition 4 Part 2(ii). H

6.5 Proof of Corollary 2

The first (last) ‘if’ statement follows from Proposition 4 (above) as dispi1 < g(pi—1, Zi—1)
(dz’sptﬁt > g(pe—1, Z4—1)) is equivalent to pr_1 +p(1=X) Z,_1+pA Y, oy ﬁt,h(ft,h_ggyg{ft,h})_
%_Eminhey{ft,h} < uZ (resp. p_1 + pu(l — N Z_q — %_Emaxhegt*{ft,h} > pZ). The other
cases follow as there are H; — 1 other candidates for B}, S}, i.e. S, = {1}, B, = {2, ..., H, — 1};
S, ={1,2},B,={3,...H, — 1};..5, = {1,..., H;}, B, = 0. For arbitrary sets S, = {1, ..., k},
B, = {k+1,...,H}, where k € {1, .., H, — 1} and by Proposition 4 (above) p, = pgk) and the
guess is verified iff dispy i1 < g(pr—1, Zi-1) < dispiy. The proof that pgk) < pik*) Vk < k*

and pﬁk) > pik_l) for such k (where p,EO) := p;) follows the Corollary 1 proof, Section 6.3. W

6.6 Proof of Proposition 5

Existence of a unique price follows from Anufriev and Tuinstra (2013, Proposition 2.1) when

an appropriate relabelling of variables is used. We define ry, := 7 —¢;, and 7,5, := ny 5 (1+174).

Case 1: Short-selling constraint is slack for all h € H

Let us guess 2, = (a0?) Y fip+aoc?Z —(1+71,)p;) > 0Vh € H, which implies by the market-

_ nenmtnfn

clearing condition hew MhZeh = Z that p, = Py = . The guess is verified if and

ZhG’H ﬁ’i,h
J— 277
only if f,,+ac’Z—(1+ry)pt > 0Vh € H, ie. [f’lj—;’z} Socnien = Sper nenfen ¥h € H,
pd
which simplifies to >, 5 nenfen — minheg{ft”"l’iiz Z} > new Mn < 0 as in Proposition 5.
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Case 2: Short-selling constraint slack for all i € B; and binds for all h € H \ B}

Let us guess that 2z, = (a0®) ' (fin + ao?Z — (1 + ry)p;) > 0 VYh € Bf and zn =0
Vh € H\ Bf := S;, where Bf C H is the set of investor types for which the short-
selling constraint is slack, and &; is the set of all other types. Clearly, the above con-
ditions imply that minpep:{fin — (1 + 74)pe} > maxpess{fin — (1 + r4)pe}. Under the
above guess, Y, o M nZen = ZheB;‘ Nt n 2t p, SO market-clearing is ZheB: Nenzen = Z, giving

_ Zneny mnfen—(1=Xpepr min)ao’Z
be = 2hesy b

Vh o€ Bf and fip + ao®Z — (1 + m)ptt < 0 Vh € S}, ie. [f';—”ﬂ S e en > (<)

Y oner Menfen — (1= Zhes;; nep)aoc?Z Yh € By (Vh € SF), which simplify to Zhe[sg N frn —

> ey T minpes; { fin} < (1= e Mn)a0*Z < 3y M fen=Dpeps Tth maxpes: { fun}

A~ 277
where f; ), 1= ft’}ii—izz, which is the inequality given in Proposition 5. B

= pfg. The guess is verified iff ft,h+@027—(1+rh)pf: >0

6.7 Proof of Proposition 6

Existence of a unique price follows from Anufriev and Tuinstra (2013, Proposition 2.1) when

1

an appropriate relabelling of variables is used. We define a; = (aaz)_ and 7 p 1= apny .

Case 1: Short-selling constraint is slack for all h € ‘H

Let us guess 2.5, = an(fin + Z/an — (1 +1)p:) > 0 Vh € H, which implies by the market-

. .. = i
clearing condition ), ,, n¢p2en = Z that p, = p; 1= (E’;f"’“z‘:—h;:{%

and OIlly if ft,h +7/&h — (1 + 7”)]9;5k Z 0 Vh € H, i.e. [ft,h + 7/&}1} Zhe?—t ﬁt,h Z Zhe’H ﬁchfch
Vh € H, which simplifies to >, o4, Ten(fe.n — minpep{ fin + Z/an}) < 0 as in Proposition 6.

. The guess is verified if

Case 2: Short-selling constraint slack for all » € B; and binds for all h € H \ B;

Let us guess that 2, , = ap(fin+72/an—(1+7r)p) > 0Vh € Bf and z,, = 0Vh € H\B} := S,
where By C H is the set of investor types for which the short-selling constraint is slack, and S;
is the set of all other types. Clearly, the above conditions imply that minpep: { fi +Z/an} >
maXpues; {.fen + Z/ayp}. Under the above guess, > hew MhZn = ZheBt* Nepzen, SO market-

.. = .. Pohesr M nfen— (1= peps nt,0)Z B*
clearing is ), e N2ty = Z, giving p, = L - = p;". The guess
; (14+7) X hesy t,n

is verified iff f, + Z/an — (1 + r)prt > 0 Vh € Bf and fi, + Z/an — (1 + r)pyt < 0
Vhoe St ie. [fon+Z/an] Xpep: tun > (<) Dpen unfin — (L= Xpep min)Z Vh € By
(Vh € §;), which simplify to ZheB: T, n (fe,n — minpep; { fen +Z)ap}) < (1— ZheB: nen)Z <
ZheBt* M n (frn — maxpes{ fon + Z /an}), which is the inequality given in Proposition 6. B

22



References

Anufriev, M. and Tuinstra, J. (2013). The impact of short-selling constraints on financial
market stability in a heterogeneous agents model. Journal of Economic Dynamics and
Control, 37(8):1523-1543.

Bolt, W., Demertzis, M., Diks, C., Hommes, C., and Van Der Leij, M. (2019). Identifying
booms and busts in house prices under heterogeneous expectations. Journal of Economic
Dynamics and Control, 103:234—-259.

Brock, W. A. and Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a

simple asset pricing model. Journal of Economic Dynamics and Control, 22(8-9):1235—
1274.

Hatcher, M. (2021). Endogenous extrapolation and house price cycles. Rebuilding Macroe-
conomics Working Paper No. /6.

Hatcher, M. and Hellmann, T. (2022). Networks, beliefs, and asset prices. SSRN Working
Paper No. 4037357.

LeBaron, B., Arthur, W. B., and Palmer, R. (1999). Time series properties of an artificial
stock market. Journal of Economic Dynamics and Control, 23(9-10):1487-1516.

Panchenko, V., Gerasymchuk, S., and Pavlov, O. V. (2013). Asset price dynamics with
heterogeneous beliefs and local network interactions. Journal of Economic Dynamics and
Control, 37(12):2623-2642.

Westerhoff, F. H. (2004). Multiasset market dynamics. Macroeconomic Dynamics, 8(5):596—
616.

23



