
SUPPLEMENTARY MATERIAL 

A1. Extended legend to Figure 1 

Figure 1 shows simplified block diagrams describing the relationship between the lexical items 

and their semantic representation, at different proficiency stages during L2 learning. Continuous 

lines with terminal arrows denote excitatory synapses, while dashed lines with terminal balls denote 

inhibitory synapses. The line thickness is proportional to the synaptic strength. S represents a 

semantic store. L1 and L2 are two translation equivalent lexical items, in the native language (L1) 

and in the second language (L2) . I1 and I2 are inhibitory interneurons which realize a competition 

network. The upper panels (Fig. 1a) refer to the “basal model” at different proficiency levels. The 

bottom panels (Fig. 1b) refer to the “Extended Model”. The latter also incorporate direct links 

(either excitatory or inhibitory) between lexical items. 

 

 

A2. The basal Model description  

The feature layer  

In the following, each oscillator will be denoted with the subscripts ij or hk. In the present study 

we adopted an exemplary network with 4 areas (F = 4) and each area is made by N1xN2 (N1 =N2 = 

20) oscillators (400 neural groups per area). 

Each single oscillator consists of a feedback connection between an excitatory unit, xij, and an 

inhibitory unit, yij while the output of the layer is the activity of all excitatory units. This is 

described with the following system of differential equations: 
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where H() represents a sigmoidal activation function defined as 
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Parameters  and  define the excitatory-inhibitory coupling within the same neural group; in 

particular,  significantly influences the amplitude of oscillations. Parameter  is the reciprocal of a 

time constant and affects the oscillation frequency. The self-excitation of xij is set to 1, to establish 

a scale for the synaptic weights. Similarly, the time constant of xij is set to 1, and represents a scale 

for time t. x and y are offset terms for the sigmoidal functions in the excitatory and inhibitory 

units. Iij represents the external stimulus for the oscillator in position ij, coming from the sensory-

motor processing chain which extracts features. Eij and Jij represent coupling terms (respectively 

excitatory and inhibitory) from all other oscillators in the features network (see Eqs.4-7), while 
L

ijV  

is the stimulus (excitatory) coming from the Lexical Layer (Eq. 8). z(t) represents the activity of a 

global inhibitor whose role is to ensure separation among the objects simultaneously present. In 

particular, the inhibitory signal prevents a subsequent object to pop up as long as a previous object 

is still active (see previous papers for its description, (Cuppini, Magosso, & Ursino, 2009; Ursino, 

Magosso, & Cuppini, 2009). 

The coupling terms between units in Feature Areas, Eij and Jij in Eqs. (1) and (2) are computed as 

follows 
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where ij denotes the position of the postsynaptic (target) neuron, and hk the position of the 

presynaptic neuron, and the sums extend to all presynaptic units in the Feature Areas. The symbols 

hkijW ,  represent inter-area synapses, subjects to Hebbian learning (see next paragraph), which 



favour synchronization. The symbols 
EX

hk,ijL  and 
IN

hk,ijL  represent lateral excitatory and inhibitory 

synapses among units in the same area.  It is worth noting that all terms 
EX

hk,ijL  and 
IN

hk,ijL  with units 

ij and hk belonging to different areas are set to zero. Conversely, all terms hk,ijW , linking units ij 

and hk in the same area, are set to zero.  

The Mexican hat disposition for the intra-area connections has been realized by means of two 

Gaussian functions, with excitation stronger but narrower than inhibition. Hence,  
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where 
EX

L0  and 
IN

L0 are constant parameters, which establish the strength of lateral (excitatory and 

inhibitory) synapses, and ex and in determine the extension of these synapses. 

Finally, the term L

ijV  coming from the Lexical Layer is calculated as follows 
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where 
L

hkx  represents the activity of the neuron hk in the Lexical Layer and the symbols L

hkijW ,  are 

the synapses from the Lexical Layer to the feature layer (which are subject to Hebbian learning, see 

below). 

 

The Lexical Layer 

In the following each element of the Lexical Layer will be denoted with the subscripts ij or hk (i, 

h = 1, 2, …, M1; j, k = 1,2,…, M2) and with the superscript L. In the present study we adopted M1
 
= 

M2
 
= 40. Each single element exhibits a sigmoidal relationship (with lower threshold and upper 



saturation) and a first order dynamics (with a given time constant). This is described via the 

following differential equation:  
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τ
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is the time constant, which determines the speed of the answer to the stimulus, and   tuH LL  

is a sigmoidal function. The latter is described by the following equation:  
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where 
L  defines the input value at which neuron activity is half the maximum (central point) and 

Lp  sets the slope at the central point. Eq. 10 conventionally sets the maximal neuron activity at 1 

(i.e., all neuron activities are normalized to the maximum).  

The overall input,  tu L

ij , to a lexical neuron in the ij-position can be computed as follows: 
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 tI L

ij is the input produced by an external linguistic stimulation. F

ijV  represents the intensity of 

the input due to synaptic connections from the feature network; this synaptic input is computed as 

follows:  
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where hkx  represents the activity of the neuron hk in the Feature Areas and F

hkijW ,  the strength of 

synapses from the Feature Areas to the Lexical Layer. These synapses are subject to a Hebbian 

training during the learning of words in a language. The term   tzG LL  1  accounts for the 

inhibitory action by the decision network. In particular,  tz L  is a binary variable representing the 

output of the decision network (1 in case of correct detection, 0 in case of incorrect detection – see 

(Ursino et al., 2009)); hence, the strength of the inhibition shifts from the value 
LG  to 0 when the 

decision network shifts from the OFF to the ON state. It is worth noting that the external linguistic 



input  tI L

ij
, when present, is set sufficiently high to overcome the inhibition received from the 

decision network. The term L

ijC  represents the inhibition that the neuron at position ij in the Lexical 

Layer receives from units in the “Competition Area”. This competition is triggered only in case of 

multiple words representing the same object (as in bilingualism) and is computed as follows: 
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where 
I

hkx  is the output of the inhibitory interneuron at position hk in the Competition Area, and 

I
hk,ijW  are the inhibitory synapses from a presynaptic inhibitory interneuron at position hk to the 

post-synaptic neuron at position ij in the Lexical Layer. These synapses are trained during the 

learning of a second language. All synapses I

hkijW ,  with ij = hk are set to 0.  

 

The Competition Area 

This area is composed of M1xM2 units (that is, the same number as in the Lexical Layer); they 

receive synapses from the element in the Lexical Layer located at the same position (the “master”) 

and may send inhibition to all other lexical units. Moreover, they also receive an external input (say 

BIAS

ijI  in Eq. (15)) coming from high-level top-down influences, which try to inhibit a non target 

word. This input is normally set to zero, but may assume a high value in problems like language 

selection or language switching (see Discussion). 

Outputs are computed with equations similar to (9) and (10), with an analogous meaning of 

symbols, i.e.  
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The connections from the lexical units to the units in the Competition Area are not subject to a 

Hebbian learning; conversely they are supposed to be assigned a priori. 

 

A3. Synapse training  in the basal model 

Training has been subdivided in three different phases: i) learning of objects; ii) learning of 

words in a first language (L1 words); iii) learning of words in a second language (L2 words). The 

first phase is common to both models; it was described in details in previous papers (Cuppini et al., 

2009) hence only a brief description is given here. The second and third training phases are 

described in greater details since they represent points of novelty of the present study, moreover 

they involve different sets of synapses in the two versions of the model. The three phases of 

learning are described first in the basal model, and then in the Extended Model by stressing the 

differences between the two versions. 

 

Phase 1: Learning of objects 

Learning of objects involves training of the synapses hkijW , linking units belonging to different 

Feature Areas. 

Recent experimental data suggest that synaptic potentiation occurs if the pre-synaptic inputs 

precede post-synaptic activity by 10 ms or less. (Markram, Lubke, Frotscher, & Sakmann, 1997). 

Hence, in our learning phase we assumed that the Hebbian rule depends on the present value of 

post-synaptic activity, xij(t), and on the moving average of the pre-synaptic activity (say mhk(t)) 

computed during the previous 10 ms. We define a moving average signal, reflecting the average 

activity during the previous 10 ms, as follows 
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where TS is the sampling time (in milliseconds), and NS is the number of samples contained 

within 10 ms (i.e., Ns = 10/TS). The synapses linking two units (say ij and hk) are then modified as 

follows during the learning phase 

)()()()( ,,, tmtxtWTtW hkijhkijhkijShkij         (16) 

where ij,hk  represents a learning factor.  

In order to assign a value for the learning factor, ij,hk, in our model we assumed that inter-area 

synapses cannot overcome a maximum saturation value. This is realized assuming that the learning 

factor is progressively reduced to zero when the synapse approaches its maximum saturation. 

Furthermore, units belonging to the same area cannot be linked by a long-range synapse. We have 

 


 


                 otherwise                                                                          0

 areasdifferent   tobelong    and   if                       ,max0
,

hkijWW hkij
hkij


   (17) 

where Wmax is the maximum value allowed for any synapse, and max0W  is the maximum 

learning factor (i.e., the learning factor when the synapse is zero).  

Eq. (17) implies that each inter-area synapse approximately increases according to a sigmoidal 

relationship, with upper saturation Wmax. The slope of this sigmoidal relationship (hence the 

increasing rate) is determined by parameter 0. 

 

Phase 2: Learning of first language L1 

We trained synapses from the Feature Areas to Lexical Layer, F

hkijW , , and connections from 

lexical units to the features layer, L

hkijW , , simultaneously. These long-range synapses are initially set 

at zero, and then are increased with a Hebbian rule, using the correlation between the pre-synaptic 



and the post-synaptic activity,  txij  or  tx L

ij
. The synapses linking two units (say ij and hk) are 

then modified as follows  

       txtxtWTtW hk

L

ij

F

hkij

F

hkijS

F

khij  ,,,         (18) 

       txtxtWTtW L

hkij

L

hkij

L

hkijS

L

khij  ,,,         (19) 

where F

hkij ,  and L

hkij ,  represent learning factors. 

Moreover, we assumed that inter-area synapses cannot overcome a maximum saturation value. 

This is realized assuming that learning factors are progressively reduced to zero when synapses 

approach saturation. We have 
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where 
FWmax and 

LWmax are maximum values allowed for any synapse, and 
FFWmax0 and 

LLWmax0  are 

maximum learning factors (i.e., learning factors when synapses are zero). 

In this case too, each synapse increases according to a sigmoidal relationship, with the slope 

determined by 0 and with upper saturation Wmax. 

 

Phase 3: Learning of the second  language L2  

During learning of the second language, the L1 and the L2 words are simultaneously active, and 

both send an excitatory input - via already existing synapses - to their corresponding inter-neurons 

in the Competition Area, making them active. Thus, the inhibitory synapses from the interneurons 

in the Competition Area to the lexical units are reinforced by a Hebbian mechanism, depending on 

the present value of the pre-synaptic and the post-synaptic activity (respectively  tx I

hk  and  tx L

ij ). 

The equation for synapse learning is 
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where I  represent the learning rates. In this case too, we assumed that synapses cannot overcome 

a maximum saturation value. Hence,  
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IWmax is the maximum value allowed for any synapse and 
IIWmax0  is the maximum learning rate. 

Furthermore, during this phase the synapses linking the Feature Areas and the L2 word (i.e., 

F

hkijW ,
 and L

hkijW ,
) are reinforced with the same Hebbian mechanism described by Eqs. 18-21.  

At the end of the L2-training, an element in the Lexical Layer receives an inhibitory input 

mediated by the Competition Area only from the other word referring to the same object 

representation, and exhibits a bi-directional link with its semantics in the Feature Areas.  

 

A4. The Extended Model - Differences with respect to the Basal Model 

Differences in the Lexical Layer 

The Extended Model differs from the basal model due to the presence of direct connections 

among units of the Lexical Layer. All other aspects and equations described in the “Supplementary 

Materials” with reference to the basal model hold for the Extended Model too.  

In the Extended Model, the overall input,  tu L

ij , to a generic ij neuron in the Lexical Layer 

includes an additional term 
L
ijS which accounts for the influences from other lexical units: 
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L

hkijL ,
 is the strength of the synaptic connection linking the hk presynaptic neuron in the Lexical 

Layer with the postsynaptic ij neuron in the Lexical Layer. Such synapses may be inhibitory or 

excitatory and are trained during the learning of language L1 and L2 (see section below).  

 

Differences in training the Lexical Layer 

Connections within the Lexical Layer are initially set at zero; then during the learning of 

languages L1 and L2, which involves activation of units in the Lexical Layer, they are subjected to 

a Hebbian mechanism. In particular, we assumed that the weight of the connection between two 

lexical units changes whenever the pre-synaptic neuron is active (pre-synaptic gating); the sign of 

the change (positive or negative) depends on the activity (above or below a given threshold) of the 

post-synaptic neuron. 

This learning rule is realized as follows: 
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where hk and ij denote the position of the pre-synaptic and post-synaptic neuron in the Lexical 

Layer. SL

hkij ,  is the learning factor. The term 
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 is used to verify that the 

presynaptic element is active (i.e., its activity is greater than a threshold
L , whose value is set just 

above the baseline activity of the units in this area), and in this case the synapse can change its 

strength. If the post-synaptic neuron is active   LL

ij tx  , the term   LL

ij txsign   is positive and 

the connection weight increases; if the postsynaptic element is silent   LL

ij tx  , the term 

  LL

ij txsign   becomes negative and the strength of the synapse decreases. Accordingly, the 

synapse linking two units in the Lexical Layer may be both excitatory or inhibitory. 

Moreover, we assumed that the intra-layer synapses are limited within given bounds 

(  LL LL maxmax , ). This is obtained by using the following equation for the learning rate: 
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where LLmax is the absolute value of the upper and lower limits, and L
hkijL , denotes the absolute 

value of the current synaptic strength. 

According to the previous description, in the Extended Model, the following direct synapses 

originate within the Lexical Layer during the training phases: 

1) Learning of language L1 – During this phase only one element (corresponding to the L1 

word) is active in the Lexical Layer. Hence inhibitory synapses sprout from the activated 

L1 word to all other silent units in the same area. 

2) Learning of language L2 – During this phase the L2 word is given as input to the network 

together with its translation in the L1 language. Accordingly an excitatory synapse 

originates from L2 word targeting the simultaneously active L1 word, whereas the 

inhibitory synapse from L1 to L2 word (previously created) becomes weaker (it rises 

towards zero) and may even become positive. Of course in this phase, inhibitory synapses 

are formed from L2 word to all other silent units in the Lexical Layer. 

A list of parameters used in the present work is provided in Table 1. 

 

A5.  Simulation of a patient with lesions (Extended Model) 

We simulated naming tasks in the case of a high-proficiency bilingual (i.e., we used parameters 

values at the end of the training period), assuming the presence of a lesion either in the competitive 

mechanism, or in the semantic network. The effect of a lesion was simulated by reducing the 

strength of the synapses leaving some units. This hypothesis is plausible, since a single unit in the 

model represents a group of neurons coding for the same information, hence a reduction in the 

number of neurons is reflected in a reduction in the strength of the outward synaptic activity. 

Some examples concerning an L1 naming task are shown in Fig. A1. In these simulations, the 

semantic representation of an object was given to the network together with a strong top-down input 



to favor the response of the L1 word. With normal synapses the L1 word clearly wins the 

competition. The simulation was then repeated by reducing the strength of synapses from the 

semantic network to the L1 word (10% and 20% synaptic reduction, left-hand panels) or reducing 

the strength of the competition from L1 to L2 (30% and 40% reduction, right-hand panels).  

 

Figure A1 – Examples of the “Extended Model” behavior, with different simulated neural lesions. The figure 

shows the responses to a word production task (features are given as input) performed in the L1 language (i.e., the L2 

word receives an external inhibition), obtained in case of a perfect bilingual condition (the network presented high 

proficiency both in L1 and in L2). Panels report the activities of L1 (solid line) and L2 (dashed line) words evoked in 

the Lexical Area. The simulated lesions were mimicked by weakening either the synapses from the Semantic Network 

(“Semantic Lesion”) entering the L1 word, or the inhibitory connections from the Control Area (“Control Lesion”) to 

the L2 word. In the left column, L1 and L2 activities are shown assuming that the semantic synaptic strengths are 

reduced to the 90% of the intact efficacy (upper left panel) or to 80% of the intact efficacy (bottom left panel). In the 

first condition the model is still able to correctly perform the L1 Naming task: the most activated word is in the L1 

language. Conversely, in the second condition the L1 Naming task is no longer properly carried out: the higher activity 

in the Lexical Area corresponds to the L2 word. The right column reports the case of lesions to the connections coming 

from the “Competition Area”, reduced to 70% of the intact value (upper panel) and to the 60% (lower panel). In the first 

case, the network still correctly performs the L1 Naming task; in the second case, the L1 Naming task fails: the L2 word 

emerges as the dominant element in the Lexical Area. 



Results show that when the reduction is below a given threshold, L1 still wins the competition. 

Conversely, if the synapse is damaged above a given threshold, the L2 word is evoked instead of 

the L1 word, resulting in the interference of L2 on L1. 

A similar behavior (but with the opposite interference of L1 on L2) would occur if the synapses 

targeting into L2 were damaged. Of course, in a real patient, neurons and their emerging synapses 

may be damaged in a random fashion (some in L1, some in L2), thus resulting in a more complex 

interference of the two languages. These simulations underline the future potentiality of the model 

for the study of clinical problems.  

It is worth noting that the present model is more sensitive to a damage from the semantic to the 

lexical layer (-20%) than to a reduction of the competition strength (-40%). This result depends on a 

variety of factors, such as on the values reached by the competition strength at the end of the 

training phase (see Fig. 4), on the top-down input used to select a language, and on the number of 

features used to represent the object (just four in the present model). Hence it cannot be easily 

generalized to different situations.   More complex behaviors may be analyzed in future works, 

training the network with several L1 and L2 words and using more complex paradigms for synapse 

damage (for instance, random lesions) and more sophisticate and realistic object representations. 



Table 1. Parameters Values. 

 
Feature Areas Lexical Layer Competition Area 

α 0.3 L
 10 I

  0.3 

β 2.5 p
L
 0.5 p

I
  20 

γ 0.5 L
 1 I

  0.1 

T 0.025 G
L
 20  

φx 0.7   

φy 0.15   

 

Lateral intra-area synapses in 

Feature Areas 

Object attributes Lexical Units 

EXL0  9           σex    0.8 Obj1 [5,5; 5,35; 35,35; 35,5] Wr1_L1 [5,5] 

INL0  3           σin   3.5  Wr1_L2      [30,20] 

   

Hebbian rule synapses Feature 

Areas - Lexical Layer 

Hebbian rule inter-area synapses 

in Feature Areas 

Hebbian rule intra-area 

synapses Lexical Layer 

TS    10 ms TS 10 ms TS 10 ms 
L

0       0.01 β0  0.033 SL

0      0.01 

LWmax     2.5 Wmax      1 LLmax       35 

F

0       0.01  L
         0.1 

FWmax     2.5  

 

Hebbian rule synapses Lexical 

Layer - Competition Area 

 

 TS     10 ms  

 
I

0      0.001  

 
IWmax       70  
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