[bookmark: _Toc60054457]Supplementary Text 1. Code for Sales Prediction Model
Code were run by OpenBUGS software
#Description and example code for proper Conditional Autoregressive (CAR) Model are also available in GeoBugs manual. https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/geobugs12manual.pdf
#OpenBUGS code to generate sales of plain yogurt (same code can be applied to the other food categories)
YOGPL stands for plain yogurt.
Note that Y_YOGPL correspond to Q_ij in the main text and contain observed and missing sales
model{
 ### Non-sugar yogurt sales ###
 for(j in 1:J_YOGPL){ #J_YOGPL inicdates number of stores
 # log sales of soda as normal
 logY_YOGPL[j] ~ dnorm(mu.y_YOGPL[j], tau.y_YOGPL)
 # Mean of log sales specified by the sum of chain random effect and area-level effect for area
 # ID_chain_YOGPL is an index for chain where store j belongs to
 # ID_neigh_YOGPL is an index for area where store j belongs to
 mu.y_YOGPL[j] <- betaChain_YOGPL[ID_chain_YOGPL[j]] + Z_YOGPL[ID_neigh_YOGPL[j]]
 # generate non-log soda sales
 Y_YOGPL[j] <- exp(logY_YOGPL[j])
 }

 # Area-level effects Z containing area-level covariates and spatial random effect S_YOGPL
 # N_neigh is number of areas (n=193)
 for(i in 1:N_neigh) {
 Z_YOGPL[i] <-
 betaEduc_YOGPL*educ_neigh[i] + betaIncome_YOGPL*income_neigh[i]+ betaPopDensity_YOGPL*popDensity_neigh[i] +
 betaFamSize_YOGPL*famSize_neigh[i] + betaYoung_YOGPL*young_neigh[i] + betaEmpRate_YOGPL*empRate_neigh[i] + S_YOGPL[i]
 }

 # Specification of proper CAR prior for spatially structured area-level random effect. See the link above for details
 S_YOGPL[1:N_neigh] ~ car.proper(mu[], C[], adj_neigh[], num_neigh[], M[], tau.car_YOGPL, gamma)

 for(i in 1:N_neigh){
 mu[i]<-betaZeroArea_YOGPL
 M[i] <- 1/num_neigh[i]
 }

 cumsum[1] <- 0
 for(i in 2:(N_neigh+1)) { cumsum[i] <- sum(num_neigh[1:(i-1)]) }
 for(k in 1 : sumNumNeigh) {
 for(i in 1:N_neigh) { pick[k,i] <- step(k - cumsum[i] - epsilon) * step(cumsum[i+1] - k)
 }
 C[k] <- 1 / inprod(num_neigh[], pick[k,])
 }
 epsilon <- 0.0001
 gamma.min <- min.bound(C[], adj_neigh[], num_neigh[], M[])
 gamma.max <- max.bound(C[], adj_neigh[], num_neigh[], M[])
 gamma ~ dunif(gamma.min, gamma.max)

 # Store chain random effect
 for(k in 1:J_YOGPL_chain){
 betaChain_YOGPL[k] ~dnorm(betaZero_YOGPL, tau.chain_YOGPL)
 }

 # Standard deviations
 sigma.chain_YOGPL <-1/sqrt(tau.chain_YOGPL)
 sigma.car_YOGPL <- sqrt(1/tau.car_YOGPL)
 sigma.y_YOGPL <- sqrt(1/tau.y_YOGPL)

 #Prior probabilities
 tau.y_YOGPL ~ dgamma(0.5, 0.01)
 tau.car_YOGPL ~ dgamma(0.5, 0.01)
 tau.chain_YOGPL ~ dgamma(0.5, 0.01)

 betaZero_YOGPL ~ dnorm(0,0.01)
 betaZeroArea_YOGPL <- 0
 betaEduc_YOGPL ~ dnorm(0,0.01)
 betaIncome_YOGPL ~ dnorm(0,0.01)
 betaPopDensity_YOGPL ~ dnorm(0,0.01)
 betaFamSize_YOGPL ~ dnorm(0,0.01)
 betaYoung_YOGPL ~ dnorm(0,0.01)
 betaEmpRate_YOGPL ~ dnorm(0,0.01)

End of Sales prediction model for yogurt

Extra step- indicator generation
Multiply the column vector of yogurt (plain) sales with matrix whose elements are a pairwise area-level store visit probability, between store and area multiplied with population identity (matrix G* in the main text)
N_Neigh is the number of area (neighborhoods),, 193
n_Neigh is an iterator (index) for area i
odMX_ YOGPL is matrix G*
Y_ YOGPL is exponentiated sales quantity of stores selling yogurt
for(n_Neigh in 1:N_Neigh){
 #Get linear combination of all area’s sales multiplied with the OD weights for eatch area N_Neigh
 # Note that OpenBugs does not allow matrix multiplication, thus a series of inprod() – inner products - is needed.
 neighSales_combined_ YOGPL[n_Neigh] <- inprod(Y_YOGPL[1:J_OD_YOGPL], odMX_ YOGPL[,n_Neigh])

 # finally divide the value (purchased quantity in an area n_neigh by population in each area to make the quantity purchased per resident
 # indicator_ YOGPL corresponds to X in the main text
 indicator_ YOGPL[n_Neigh] <- neighSales_combined_ YOGPL[n_Neigh]/ pop_Neigh[n_Neigh]
}

#End of script
}

 8

