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Appendix: Proofs

Proof of Proposition 2

We start with some additional notation and several lemmas.
Let N be a set of literals. By |N| we denote a set of atoms occurring in N. For in-

stance |{a,¬b, c}| = {a, b, c}. Further, by ch(N) we denote a set of rules of the form
a← not not a, where a ∈ |N|.

By a program literal we mean expressions a, not a and not not a, where a is an atom.
For a program literal l, we set s(l) = a, if l = a or l = not not a, and s(l) = ¬a, if l = not a.
For a set B of body literals, we define s(B) = {s(l) | l ∈ B}. If Π is a program and N is
a set of literals, by Π(N) we denote the program obtained from Π by removing each rule
whose body contains a program literal l such that s(l) ∈ N, and deleting from the bodies of
all rules in Π every program literal l such that s(l) ∈ N.

Lemma 1
Let Π be a logic program and N a consistent set of literals such that |N| ∩Head(Π) = /0.
For every consistent set M of literals such that |N|∩ |M|= /0,

{a | a← B ∈Π∪ ch(N) and s(B)⊆M∪N}\N = {a | a← B ∈Π(N) and s(B)⊆ N}·

Proof
Let c ∈ {a | a← B ∈ Π∪ ch(N) and s(B) ⊆ M ∪N} \N. Let c ∈ |N|. The only rule in
Π∪ch(N) with c as the head is c← not not c. It follows that c∈M∪N. Since |N|∩|M|= /0,
c ∈ N, a contradiction. Thus, c /∈ |N| and there is a rule c← B ∈Π such that s(B)⊆M∪N.
Let B′ be what remains when we remove from B all expressions l such that s(l) ∈ N. The
rule c← B′ ∈Π(N) and s(B′)⊆M. It follows that c ∈ {a | a← B ∈Π(N) and s(B′)⊆M}.

Conversely, let c ∈ {a | a← B ∈ Π(N) and s(B) ⊆ M}. It follows that c /∈ |N| and so,
c /∈ N. Moreover, there is a rule c← B′ ∈ Π(N) such that s(B′) ⊆ M. By the definition
of Π(N), there is a rule c ← B ∈ Π such that s(B) ⊆ M ∪N. Thus, c ∈ {a | a ← B ∈
Π∪ ch(N) and s(B)⊆M∪N}\N.
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Let N be a set of literals. We define N− = {a | ¬a ∈ N}.

Lemma 2
For a logic program Π, a consistent set N of literals such that |N| ∩Head(Π) = /0, and
a consistent set M of literals such that |M| ∩ |N| = /0, GUS(M ∪N,Π∪ ch(N)) \N− =

GUS(M,Π(N)).

Proof
We note that since the sets M and N are consistent and |M|∩ |N|= /0, M∪N is consistent.
Moreover, we note that to prove the claim it suffices to show that U is an unfounded set on
M∪N w.r.t. Π∪ ch(N) if and only if U \N− is an unfounded set on M w.r.t. Π(N).

(⇒) Let a ∈ U \N− and let D ∈ Bodies(Π(N),a). It follows that a /∈ |N|. It also follows
that there is a rule a← B ∈ Π such that for every program literal l ∈ B, s(l) /∈ N, and D is
obtained by removing from B every program literal l such that s(l) ∈ N.

Since U is an unfounded set on M∪N w.r.t. Π∪ch(N), it follows that s(B)∩(M∪N) 6= /0
or U∩B+ 6= /0. In the first case, since for every program literal l∈ B, s(l) /∈N, s(B)∩M 6= /0
follows. Moreover, D differs from B only in program literals l such that s(l) ∈ N. Since
|M|∩|N|= /0, we have s(D)∩M 6= /0. Thus, let us consider the second case. Let a∈U∩B+.
Since a /∈ |N|, a /∈ N−. For the same reason, a /∈ N. Thus, a ∈ U \N− and a ∈ D+. That is,
(U \N−)∩D+ 6= /0. This proves that U \N− is an unfounded set on M w.r.t. Π(N).

(⇐) Let U′ be any unfounded set on M w.r.t. Π(N). By the definition of an unfounded set,
U′ contains no atoms from |N| since they do not appear in Π(N). We show that U′∪N− is
an unfounded set on M∪N w.r.t. Π∪ ch(N). Let a be any atom in U′∪N−.

Case 1. a ∈ N−. It follows that a occurs in the head of only one rule in Π∪ ch(N) namely,
a← not not a. Since ¬a ∈ N, s(not not a) ∈ N and, consequently, s(not not a) ∈M∪N.

Case 2. a ∈ U′. It follows that a 6∈ N and so, Bodies(Π∪ ch(N),a) = Bodies(Π,a). To
complete the argument it suffices to show that for every body B ∈ Bodies(Π,a), s(B)∩
(M∪N) 6= /0 or (U′∪N−)∩B+ 6= /0 holds.

Let B be any body in Bodies(Π,a). It follows that Π contains the rule a← B. If there is
a program literal l in B such that s(l) ∈ N, then the first condition above holds. Thus, let us
assume that for every program literal l∈B, s(l) /∈N. Let D be obtained from B by removing
from it every program literal l such that s(l) ∈ N. It follows that a← D ∈ Π(N). Since U′

is unfounded on M w.r.t. Π(N), there is l in D such that s(l) ∈ M or U′ ∩D+ 6= /0. In the
first case, we have s(B)∩ (M∪N) 6= /0. In the second case, we have (U′ ∪N−)∩B+ 6= /0.

By W i
Π
(M) we will denote the i-fold application of the WΠ operator on the set M of

literals. By convention, we assume that W0
Π
(M) = M.

Lemma 3
For a normal logic program Π and a consistent set N of literals such that |N|∩Head(Π)= /0,

W i
Π∪ch(N)(N) = W i

Π(N)( /0)∪N·
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Proof
We proceed by induction on i. For i = 0, since N is consistent, we have

W0
Π∪ch(N)(N) = N = /0∪N = W0

Π(N)( /0)∪N·

Let us assume that the identity holds for some i≥ 0. We show that it holds for i+1.
Let M denote W i

Π(N)( /0). We recall that Wfix
Π(N)

( /0) is the well-founded model of the nor-

mal program Π(N). Consequently, the sets Wfix
Π(N)

( /0) and W j
Π(N)

( /0), j ≥ 0, are consistent

(Van Gelder et al. 1991). In particular, M is consistent. Moreover, since |N|∩ |Wfix
Π(N)

( /0)|=
/0, the sets W j

Π(N)
( /0)∪N, j≥ 0, are consistent, too. Thus, we have

W i+1
Π(N)( /0)∪N = N∪WΠ(N)(W

i
Π(N)( /0)) = N∪WΠ(N)(M)

= N∪M∪{a | a← B ∈Π(N) and B⊆M}∪GUS
(
M,Π(N)

)
·

Since |N|∩ |Wfix
Π(N)

( /0)|= /0, |M|∩ |N|= /0. We also observed that M is consistent. By Lem-
mas 1 and 2 and the fact that {¬a | a ∈ N−} ⊆ N, we have

W i+1
Π(N)( /0)∪N = N∪ (M∪{a | a← B ∈Π∪ ch(N) and B⊆M∪N}\N)

∪ GUS
(
M∪N,Π∪ ch(N)

)
\N−

= N∪ (M∪{a | a← B ∈Π∪ ch(N) and B⊆M∪N}\N)

∪ (GUS
(
M∪N,Π∪ ch(N)

)
\{¬a | a ∈ N−})

= N∪M∪{a | a← B ∈Π∪ ch(N) and B⊆M∪N}
∪ GUS

(
M∪N,Π∪ ch(N)

)
·

Since this last set is consistent, it is equal to WΠ∪ch(N)(M∪N) = WΠ∪ch(N)(W i
Π(N)( /0)∪N).

Applying the induction hypothesis, the inductive step follows.

Proposition 2
For a PC(ID) theory (F,Π) such that Π is a normal program, M is a model of (F,Π) if and
only if M is a model of (F,Π) according to the definition by Denecker (2000).1

Proof
Let (F,Π) be a PC(ID) theory. Denecker (2000) defines that a consistent and complete
(over At(F∪Π)) set M of literals is a model of (F,Π) if

(i) M is a model of F, and
(ii) M = Wfix

Π(MOΠ
)
( /0)∪MOΠ

.

To prove the assertion it is sufficient to show that for any model M of F such that |M|=
At(Π∪F), M = Wfix

Πo(MOΠ

) if and only if M = Wfix
Π(MOΠ

)
( /0)∪MOΠ

. Let N = MOΠ

. The

definitions of OΠ and Πo directly imply that |N|∩Head(Π) = /0 and that Πo = Π∪ch(N).
Thus, the property follows from Lemma 3.

1 For the bibliography we refer to the main paper.
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Proofs of Results from Section 3

Proposition 3
For a logic program Π and a set X of atoms,

(a) X ⊆ Head(Π) and X is an input answer set of Π if and only if X is an answer set of
Π.

(b) if (X \Head(Π))∩ At(Π) = /0, then X is an input answer set of Π if and only if
X∩Head(Π) is an answer set of Π.

Proof
The proof of part (a) is straightforward and follows directly from the definition of an input
answer set. To prove (b), let us assume first that X is an input answer set of Π. By the
definition, X is an answer set of Π∪(X\Head(Π)). Thus, X is the least model of the reduct
[Π∪(X\Head(Π))]X . Clearly, we have [Π∪(X\Head(Π))]X =ΠX∪(X\Head(Π)). Since
(X \Head(Π))∩ At(Π) = /0, ΠX = ΠX∩Head(Π). It follows that X is the least model of
ΠX∩Head(Π)∪ (X \Head(Π)). Using again the assumption (X \Head(Π))∩At(Π) = /0, one
can show that X ∩Head(Π) is the least model of ΠX∩Head(Π). Thus, X ∩Head(Π) is an
answer set of Π

The proof in the other direction is similar. Let us assume that X ∩Head(Π) is an an-
swer set of Π. It follows that X ∩Head(Π) is the least model of ΠX∩Head(Π). Since (X \
Head(Π))∩At(Π) = /0, X is the least model of ΠX∩Head(Π) ∪ (X \Head(Π)). Moreover,
since ΠX∩Head(Π)=ΠX , X is the least model of ΠX∪(X\Head(Π))= [Π∪(X\Head(Π))]X .
Thus, X is an input answer set of Π.

Proposition 4
A set of literals M is a model of an SM(ASP) theory [F,Π] if and only if M is a model of
an SM(ASP) theory [F,Πo].

Proof
Proceeding in each direction, we can assume that M is a complete (over At(F∪Π)) and
consistent set of literals such that |M| = |At(F∪Π)|. It follows that to prove the assertion
it suffices to show that for every such set M, M+ is an input answer set of Π if and only if
M+ is an input answer set of Πo.

We note that Πo =Π∪{a← not not a | a∈At(F∪Π)\Head(Π)}. Thus, M+⊆Head(Π)

and so, by Proposition 3, M+ is an input answer set of Πo if and only if M+ is an answer
set of Πo. It follows that to complete the argument, it suffices to show that under our
assumptions about M, M+ is an answer set of Π∪ (M+ \Head(Π)) if and only if M+

is an answer set of Πo. This statement is evident once we observe that the reducts of
Π∪ (M+ \Head(Π)) and Πo with respect to M+ are equal (they are both equal to ΠM+ ∪
(M+ \Head(Π))).

Proposition 5
For any SM(ASP) theory [F,Π] that is Π-safe, a set X of atoms is an answer set of Π if and
only if X = M+∩At(Π), for some model M of [F,Π].
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Proof
(⇒) Let X be an answer set of Π. Since [F,Π] is Π-safe, there is a model M of F such that
X = M+ ∩Head(Π). Moreover, again by the Π-safety of [F,Π], {¬a | a ∈ OΠ} ⊆ M. It
follows that X = M+∩At(Π) and (M+ \Head(Π))∩At(Π) = /0. By Proposition 3(b), M+

is an input answer set of Π.

(⇐) Let X = M+ ∩At(Π), where M is a model of [F,Π]. It follows that M is a model of
F. By the Π-safety of [F,Π], we have {¬a | a ∈OΠ} ⊆M. As above, it follows that (M+ \
Head(Π))∩At(Π) = /0. Since M+ is an input answer set of Π, Proposition 3(b) implies
that M+∩Head(Π) is an answer set of Π. From the identity (M+ \Head(Π))∩At(Π) = /0,
it follows that M+∩Head(Π) = M+∩At(Π). Thus, X is an answer set of Π.

Corollary 1 follows immediately from Proposition 5. We omit its proof and move on to
Proposition 6. We start by proving two simple auxiliary results.

Lemma 4
For a logic program Π, and a consistent and complete set M of literals over At(Π), if
M = WΠ(M), then M is a model of Π.

Proof
It is sufficient to show that for every rule a← B ∈Π if s(B)⊆M then a ∈M. This follows
from the definition of the operator WΠ and the fact that M = WΠ(M).

Lemma 5
For a logic program Π and a consistent and complete set M of literals over At(Π), if M =

WΠ(M) then M+ does not have any non-empty subset that is unfounded on M with respect
to Π.

Proof
Let us assume that U is a non-empty subset of M+ that is unfounded on M with respect to
Π. It follows that U ⊆M. Since U 6= /0, M is inconsistent, a contradiction.

Next, we recall the following generalization of a well-known characterization of answer
sets in terms of unfounded sets due to Leone et al. (1997). The generalization extended the
characterization to the case of programs with double negation.

Theorem on Unfounded Sets (Lee 2005)
For a set M of literals, M+ is an answer set of a program Π if and only if M is a model of
Π and M+ does not have any non-empty subset that is unfounded on M with respect to Π.

Proposition 6
For a total PC(ID) theory (F,Π) and a set M of literals over the set At(F∪Π) of atoms, the
following conditions are equivalent:

(a) M is a model of (F,Π)

(b) M is a model of an SM(ASP) theory [F,Π]

(c) M is a model of an SM(ASP) theory [Comp(ΠAt(Π))∪F,Π]

(d) for some model M′ of an SM(ASP) theory [ED-Comp(ΠAt(Π))∪F,Π], M = M′ ∩
At(F∩Π).
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Proof
(a)⇒(b) It is sufficient to show that M+ is an input answer set of Π, that is, an answer set
of Π∪ (M+ \Head(Π)). Since M is a model of the PC(ID) theory (F,Π), M is a complete
and consistent set of literals over At(F ∪Π) and M = Wfix

Πo(MOΠ

). It follows that M =

WΠo(M). Since At(Πo) = At(F ∪Π), by Lemma 4 it follows that M is a model of Πo.
Consequently, M is a model of Π∪ (M+ \Head(Π)). By Theorem on Unfounded Sets, it is
sufficient to show that M+ does not have any non-empty subset that is unfounded on M with
respect to Π∪(M+ \Head(Π)). For a contradiction, let us assume that there is a nonempty
set U ⊆ M+ that is unfounded on M with respect to Π∪ (M+ \Head(Π)). Let a ∈ U. It
follows that a ∈ M+. If a /∈ Head(Π), then a is a fact in Π∪ (M+ \Head(Π)). This is a
contradiction with the unfoundedness of U. Thus, a ∈ Head(Π). By the definition of Πo,
Bodies(Πo,a) = Bodies(Π,a). It follows that for every B ∈ Bodies(Πo,a), s(B)∩M 6= /0
or U∩B+ 6= /0. This shows that U is unfounded on M with respect to Πo. This contradicts
Lemma 5.

(a)⇐(b) Since M is a model of [F,Π], M is a complete and consistent set of literals over
At(F∪Π). By the assumption, M+ is an answer set of Π′ = Π∪ (M+ \Head(Π)). Since
Π′ and Π have the same reducts with respect to M+, M+ is an answer set of Πo.

Since MOΠ ⊆M, WΠo(MOΠ

)⊆Wo
Π
(M). Let l ∈Wo

Π
(M). If l = a, where a is an atom in

Πo, then there is a rule a← B in Πo such that s(B)⊆M. Since M is a model of Πo (it is so
since M+ is an answer set of Πo), a ∈M. If l = ¬a, then a ∈ GUS(M,Πo).

Let us assume that a ∈M+ and let us define U = M+∩GUS(M,Πo). Clearly, U 6= /0 and
U ⊆ GUS(M,Πo). Let b ∈ U and let B ∈ Bodies(Πo,b). Let us assume that s(B)M =

/0. By the completeness of M, s(B) ⊆ M. Since b ∈ GUS(M,Πo), there is an element
GUS(M,Πo)∩B+ 6= /0. Let us assume that c ∈ GUS(M,Πo)∩B+. It follows that c ∈M+

and so, c ∈ U. Thus, U is a nonempty set contained in M+ and unfounded on M with re-
spect to Πo. By Theorem on Unfounded Sets, this contradicts the fact that M+ is an answer
set of Πo. it follows that a /∈M+. By the completeness of M, ¬a ∈M. Thus, Wo

Π
(M)⊆M

and, consequently, WΠo(MOΠ

) ⊆ M. By iterating, we obtain that Wfix
Πo(MOΠ

) ⊆ M. Since
(F,Π) is total, Wfix

Πo(MOΠ

) = M. Thus, (a) follows.

(b)⇔(c) It is sufficient to show that M is a model of F if and only if M is a model of
Comp(Πo)∪ F given that M+ is an input answer set of Π or, equivalently, that M+ is
an answer set of Π∪M+ \Head(Π). The “if” part is obvious. For the “only if” part, we
proceed as follows. First, reasoning as above we observe that M+ is an answer set of Πo.
Thus, M is the model of the completion Comp(Πo) and so, M is a model of Comp(Πo)∪F,
which we needed to show.

(b)⇔(d) The equivalence follows from the fact that ED-Comp(ΠAt(Π)) is a conservative
extension of Comp(ΠAt(Π)).

We now proceed to the proof of Proposition 7. We first recall a result proved by Lierler
(2011) (using a slightly modified notation).

Lemma 6 (Lemma 4 (Lierler 2011))
For any unfounded set U on a consistent set M of literals with respect to a program Π, and
any assignment N, if N |= M and N∩U 6= /0, then N+ is not an answer set for Π.
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It is well known that for any consistent and complete set M of literals over At(Π) (as-
signment on At(Π)), if M+ is an answer set for a program Π, then M is a model of Πcl.
The property has a counterpart for SM(ASP) theories. The proof is straightforward and we
omit it.

Lemma 7
For every SM(ASP) theory [F,Π], if M is a model of [F,Π], then M is a model of F∪Πcl.

Next, we prove the following auxiliary result.

Lemma 8
For every SM(ASP) theory [F,Π], every state M other than FailState reachable from /0 in
SM(ASP)F,Π, and every model N of [F,Π], if N satisfies all decision literals in M, then N
satisfies M.

Proof
We proceed by induction on n = |M|. The property trivially holds for n = 0. Let us assume
that the property holds for all states with k′ ≤ k elements that are reachable from /0. For the
inductive step, let us consider a state M = l1 . . . lk such that every model N of [F,Π] that
satisfies all decision literals lj with j ≤ j satisfies M. We need to prove that applying any
transition rule of SM(ASP)F,Π in the state l1 . . . lk, leads to a state M′ = l1 . . . lk, lk+1 such
that if N is a model of [F,Π] and N satisfies every decision literal lj with j≤ k+1, then N
satisfies M′.

Unit Propagate: By the definition of Unit Propagate, there is a clause C∨ l ∈ F∪Πcl such
that C ⊆M and M′ = Ml. Let N be any model of [F,Π] that satisfies all decision literals
lj ∈Ml. It follows that N satisfies all decision literals in M. By the induction hypothesis,
N |= M. Since N |= C∨ l and C ⊆M, Lemma 7 implies that N |= l.

Decide: In this case, M′ = Mld (l is a decision literal). If N is a model of the theory [F,Π]

and it satisfies all decision literals in M′, then N satisfies l (by the assumption) and N
satisfies every decision literal in M. By the induction hypothesis, the latter implies that
N |= M. Thus, N |= M′.

Fail: If this rule is applicable, M has no decision literals and is inconsistent. If [F,Π] has a
model N, then by the induction hypothesis, N |= M, a contradiction. It follows that [F,Π]

has no models and the assertion is trivially true.

Backtrack: If this rule is applied, it follows that M has the form Pldi Q, where Q contains no
decision literals, and M′ = Pli. Let N be a model of [F,Π] such that N satisfies all decision
literals in Pli. It follows that N satisfies all decision literals in P and so, by the induction
hypothesis, N |= P. Let us assume that N |=li. Then, N satisfies all decision literals in
M and, consequently, N |= M, a contradiction as M is inconsistent. Thus, N |= li and so,
N |= M′.

Unfounded: If M′ is obtained from M by an application of the Unfounded rule, then M is
consistent and M′ = M¬a, for some a∈U, where U is an unfounded set on M with respect
to Πo. Let N be any model N of [F,Π] such that N satisfies all decision literals in M′. It
follows that N satisfies all decision literals in M and so, by the inductive hypothesis, N |=
M. By the definition of a model of [F,Π], N+ is an input answer set of Π. Consequently,
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N+ is an answer set of Π∪ (N+ \Head(Π)). Arguing as as before, we obtain that N+ is an
answer set of Πo. By Lemma 6, a /∈ N+, that is, N |= ¬a.

Proposition 7
For any SM(ASP) theory [F,Π],

(a) graph SM(ASP)F,Π is finite and acyclic,
(b) for any terminal state M of SM(ASP)F,Π other than FailState, M is a model of [F,Π]

(c) FailState is reachable from /0 in SM(ASP)F,Π if and only if [F,Π] has no models.

Proof
Parts (a) and (c) are proved as in the proof of Proposition 1 (Lierler 2011, Proposition 1)
using Lemma 8.
(b) Let M be a terminal state. It follows that none of the rules are applicable. From the fact
that Decide is not applicable, we derive that M assigns all literals. Since neither Backtrack
nor Fail are applicable, M is consistent. Since Unit Propagate is not applicable, it follows
that for every clause C∨ a ∈ F∪Πcl if C ⊆M then a ∈M. Consequently, if M |= C then
M |= a. Thus, M is a model of F∪Πcl. Consequently, M is a model of F.

Next, we show that M+ is an input answer set of Π, that is, that M+ is an answer set of
Π∪ (M+ \Head(Π)). To this end, it is sufficient to show that M+ is an answer set of Πo

(we again exploit here the fact that M+ is an answer set of Π∪(M+ \Head(Π)) if and only
if M+ is an answer set of Πo). Since M is a model of F∪Πcl, M is a model of Πo.

Let us assume that M+ is not an answer set of Πo. By Theorem on Unfounded Sets,
it follows that there is a non-empty unfounded set U on M with respect to Πo such that
U ⊆M+. Then Unfounded can be applied for some a ∈ U. If ¬a /∈M, M is not terminal, a
contradiction. Thus, ¬a ∈M. Since M is consistent, a /∈M+, a contradiction (as U ⊆M+).
It follows that M+ is an answer set of Πo, as required.

Finally, we sketch a proof for Proposition 8.

Proposition 8
For every program Π, the graphs SM−

Π
and SM(ASP)−Comp(Π),Π are equal.

Proof
Sketch: First we show that the states of the graphs SM−

Π
and SM(ASP)−Comp(Π),Π coincide.

In view of Proposition 3 stated and proved by Lierler (2011) it is sufficient to show that
there is a non-singular edge M =⇒ M′ in SMΠ justified by the transition Unfounded (de-
fined for SM) if and only if there is a non-singular edge M =⇒ M′ in SM(ASP)Comp(Π),Π

justified by Unfounded (defined for SM(ASP)). We conclude by proving the last statement.

Proof of Proposition 9

We first extend Lemma 8 to the “learning” version of the graph SM(ASP)F,Π.
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Lemma 9
For every SM(ASP) theory [F,Π], every state M||Γ reachable from /0|| /0 in SM(ASP)F,Π,
and every model N of [F,Π], if N satisfies all decision literals in M, then N satisfies M.

Proof
The proof is by induction on n = |M| and proceeds similarly as that of Lemma 8. In par-
ticular, the property trivially holds for n = 0. Let us assume that the property holds for
all states M||Γ, where |M| ≤ k, that are reachable from /0|| /0. For the inductive step, let us
consider a state M||Γ, with M = l1 . . . lk, such that every model N of [F,Π] that satisfies all
decision literals lj with j≤ k satisfies M. We need to prove that applying any transition rule
of SM(ASP)F,Π in the state M||Γ, leads to a state M′||Γ′, where M′ = Mlk+1, such that if N
is a model of [F,Π] and N satisfies every decision literal lj with j≤ k+1, then N satisfies
M′.

The rules Decide, Fail and Unfounded can be dealt with as before (with only minor
notational adjustments to account for extended states). Thus, we move on to the rules Unit
Propagate Learn, Backjump, and Learn.

Unit Propagate Learn: We recall that Γ is a set of clauses entailed by F and Π. In other
words, any model of [F,Π] is also a model of Γ. We now proceed as in the case of the rule
Unit Propagate in the proof of Proposition 8 with F∪Πcl replaced by F∪Πcl∪Γ.

Backjump: The argument is similar to that used in the case of the transition rule Backtrack
in the proof of Lemma 8.

Learn: This case is trivially true.

We now recall several concepts we will need in the proofs. Given a set A of atoms, we
define Bodies(Π,A) =

⋃
a∈A Bodies(Π,a). Let Π be a program and Y a set of atoms. We

call the formula∨
a∈Y

a→
∨
{B | B ∈ Bodies(Π,Y) and Bpos∩Y = /0} (1)

the loop formula for Y (Lin and Zhao 2004). We can rewrite the loop formula (1) as the
disjunction

(
∧
a∈Y

¬a)∨
∨
{B | B ∈ Bodies(Π,Y) and Bpos∩Y = /0}. (2)

The Main Theorem (Lee 2005) implies the following property loop formulas. In its
statement we refer to the concept of a program entailing a formula. The notion is defined
as follows. A program Π entails a formula F (over the set of atoms in Π) if for every
interpretation M (over the set of atoms in Π) such that M+ is an answer set of Π, M is a
model of F.

Lemma 10 (Lemma on Loop Formulas)
For every program Π and every set Y of atoms, Y ⊆ At(Π), Π entails the loop formula (2)
for Y .

For an SM(ASP) theory [F,Π] and a list PlQ of literals, we say that a clause C∨ l is a
reason for l to be in PlQ with respect to [F,Π] if

1. P |= ¬C, and
2. F,Πo |= C∨ l.
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Lemma 11
Let [F,Π] be an SM(ASP) theory. For every state M||Γ reachable from /0|| /0 in the graph
SML(ASP)F,Π, every literal l in M is either a decision literal or has a reason to be in M with
respect to [F,Π].

Proof
We proceed by induction on the length of a path from /0|| /0 to M||Γ in the graph SML(ASP)F,Π.
Since the property trivially holds in the initial state /0|| /0, we only need to prove that every
transition rule of SML(ASP)F,Π preserves it.

Let us consider an edge M||Γ =⇒M′||Γ′, where M is a sequence l1 . . . lk such that every
li, 1 ≤ i ≤ k, is either a decision literal or has a reason to be in M with respect to [F,Π].
It is evident that transition rules Backjump, Decide, Learn, and Fail preserve the property
(the last one trivially, as FailState contains no literals).

Unit Propagate Learn: The edge M||Γ =⇒ M′||Γ′ is justified by the rule Unit Propagate
Learn. That is, there is a clause C∨ l ∈ F∪Πcl∪Γ such that C ⊆M and M′ = Ml. By the
inductive hypothesis, the property holds for every literal in M. We now show that a clause
C∨ l is a reason for l to be in Ml. By the applicability conditions of Unit Propagate Learn,
C ⊆M. Consequently, M |= C. It remains to show that F,Πo |= C∨ l.

Case 1. C∨ l ∈ F. Then, clearly, F |= C∨ l and, consequently, F,Πo |= C∨ l.

Case 2. C ∨ l ∈ Πcl. Since Πcl ⊆ (Πo)cl, C ∨ l ∈ (Πo)cl. Let M be a model of [F,Πo].
It follows that M+ is an answer set of Πo. Thus, M |= (Πo)cl and so, M |= C∨ l. Thus,
F,Πo |= C∨ l.

Case 3. C∨ l ∈ Γ. We recall that F,Πo |= Γ by the definition of an augmented state. Con-
sequently, F,Πo |= C∨ l.

Unfounded: We have that M is consistent, and that there is an unfounded set U on M with
respect to Πo and a ∈ U such that M′ = M¬a. By the inductive hypothesis, the property
holds for every literal in M. We need to show that ¬a has a reason to be in M¬a with
respect to [F,Π].

Let B ∈ Bodies(Πo,U) be such that U ∩Bpos = /0. By the definition of an unfounded
set, it follows that s(B)∩M 6= /0. Consequently, s(B) contains a literal from M. We pick an
arbitrary one and call it f (B). The clause

C = ¬a∨
∨
{f (B) | B ∈ Bodies(Πo,U) and Bpos∩U = /0}, (3)

is a reason for ¬a to be in M¬a with respect to [F,Π].
First, by the choice of f (B), for every B ∈ Bodies(Πo,U) and Bpos ∩U = /0, f (B) ∈ M.

Consequently,

M |= ¬
∨
{f (B) | B ∈ Bodies(Πo,U) and Bpos∩U = /0}· (4)

Second, since f (B) ∈ B, the loop formula

(
∧

u∈U

¬u)∨
∨
{B | B ∈ Bodies(Π,U) and Bpos∩U = /0} (5)

entails C. By Lemma on Loop Formulas, it follows that Πo entails C. Consequently,
F,Πo |= C.
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For a list M of literals, by consistent(M) we denote the longest consistent prefix of M.
For example, consistent(abc¬bd) = abc. A clause C is conflicting on a list M of literals
with respect to an SM(ASP) theory [F,Π] if consistent(M) |= ¬C and F,Πo |= C.

For a state M||Γ reachable from /0|| /0 in SML(ASP)F,Π, by rM we denote a function that
maps every non-decision literal in M to its reason to be in M (with respect to [F,Π]).
By RM we denote the set consisting of the clauses rM(l), for each non-decision literal
l ∈ consistent(M).

A resolution derivation of a clause C from a sequence of clauses C1, . . . ,Cm is a sequence
C1, . . . ,Cm, . . . ,Cn, where C ≡ Cl for some l ≤ n, and each clause Ci in the sequence is
either a clause from C1, . . . ,Cm or is derived by applying the resolution rule to clauses Cj

and Ck, where j,k < i (we call such clauses derived ). We say that a clause C is derived
by a resolution derivation from a sequence of clauses C1, . . . ,Cm if there is a resolution
derivation of a clause C from C1, . . . ,Cm.

Lemma 12
Let [F,Π] be an SM(ASP) theory, M||Γ a state in the graph SM(ASP)F,Π such that M is
inconsistent, and C1 a clause in RM . If clause C2 is conflicting on M with respect to [F,Π],
then every clause C derived from C1 and C2 is also a conflicting clause on M with respect
to [F,Π].

Proof
Let us assume that C is derived from C1 and C2 by resolving on some literal l ∈ C1. Then,
C2 is of the form l∨C′2.

From the fact that C1 ∈ RM , it follows that F,Πo |= C1 and that C1 has the form
c1 ∨C′1, where consistent(M) |= ¬C′1. Since C2 is conflicting, consistent(M) |= ¬C2 and
F,Πo |= C2. By the consistency of consistent(M), there is no literal in C′1 such that its
complement occurs in C2. Therefore l = c1 and, consequently, C = C′1∨C′2. It follows that
consistent(M) |= ¬C. Moreover, since F,Πo |= C1 and F,Πo |= C2 and C results from C1

and C2 by resolution, F,Πo |= C.

For an SM(ASP) theory [F,Π] and a node M||Γ in SM(ASP)F,Π, a resolution derivation
C1, . . . ,Cn is trivial on M with respect to [F,Π]2 if

(1) {C1, . . . ,Ci}= RM
(2) Ci+1 is a conflicting clause on M with respect to [F,Π]
(3) Cj, j > i+ 1, is derived from Cj−1 and a clause Ck, where k ≤ i (that is, Ck ∈ RM),

by resolving on some non-decision literal of consistent(M).

For a record M0 l1 M1 . . . lk Mk, where li are all the decision literals of the record, we say
that the literals of li Mi belong to a decision level i. For a state MlM′ l′M′′, we say that l is
older than l′. We say that a state is a backjump state if it is inconsistent, contains a decision
literal, and is reachable from /0|| /0 in SML(ASP)F,Π.

Lemma 13
For every SM(ASP) theory [F,Π], the transition rule Backjump is applicable in every back-
jump state in SM(ASP)F,Π.

2 This definition is related to the definition of a trivial resolution derivation (Beame et al. 2004).
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Proof
Let M||Γ be a backjump state in SM(ASP)F,Π. We will show that M has the form Pl∆ Q and
that there is a literal l′ that has a reason to be in Pl′ with respect to [F,Π].

Since M||Γ is a backjump state, it follows that M has the form consistent(M)l N. It is
clear that l is not a decision literal (otherwise consistent(M)l would be consistent). By
Lemma 11, there is a reason, say R for l to be in M. We denote this reason by R. Since
consistent(M)l is inconsistent, l ∈ consistent(M). This observation and the definition of a
reason imply that consistent(M) |= ¬R. Moreover, since F,Πo |= R (as R is a reason), R is
a conflicting clause.

Let dec be the largest of the decision levels of the complements of the literals in R
(each of them occurs in consistent(M)). Let D be the set of all non-decision literals in
consistent(M). By Ddec we denote a subset of D that contains all the literals that belong to
decision level dec.

It is clear that C1, . . . ,Ci,Ci+1, where {C1, . . .Ci} = RM and Ci+1 = R, is a trivial res-
olution derivation with respect to M and consistent(M) |= ¬Ci+1. Let us consider a trivial
resolution derivation with respect to M of the form C1, . . . ,Ci,Ci+1, . . . ,Cn, where n≥ i+1
and consistent(M) |= ¬Cn. Let us assume that there is a literal l ∈ D such that l in Cn. It
follows that Cn = l∨C′n, for some clause C′n.

Since l ∈ D (is a non-decision literal in consistent(M)), the set RM contains the clause
rM(l), which is a reason for l to be in M. The clause rM(l) is of the form l∨ l1 ∨ . . .∨ lm,
where literals l1, . . . , lm are older than l and consistent(M) |= ¬(l1 ∨ . . .∨ lm). Resolving
Cn and rM(l) yields the clause Cn+1 = C′n ∨ l1 ∨ . . .∨ lm. Clearly, C1, . . . ,Cn+1 is a trivial
resolution derivation with respect to M and conistent(M) |= ¬Cn+1.

If we apply this construction selecting at each step a non-decision literal l ∈ Ddec such
that l ∈ R, then at some point we obtain a clause Cn that contains exactly one literal whose
complement belongs to decision level dec (the reason is that in each step of the construc-
tion, the literal with respect we perform the resolution is replaced by older ones).

By Lemma 12, the clause C = Cn is conflicting on M with respect to [F,Π], that is,
consistent(M) |= ¬C and F,Πo |= C. By the construction, C = l′∨C′, where l′ is the only
literal whose complement belongs to the decision level dec and the complements of all
literals in C′ belong to lower decision levels.
Case 1. dec = 0. Since for every literal l ∈ C′, the decision level of l is strictly lower than
dec, C′ = ⊥. Since M||Γ is a backjump state, M contains a decision literal. Then M can
be written as Pl∆ Q, where P contains no decision literals (in other words P consists of
all literals in consistent(M) of decision level dec = 0) and l′ ∈ P. Clearly, P |= ¬C′ (as
C′ =⊥). Since F,Πo |= C(= l′∨C′), C is a reason for l′ to be in Pl′.
Case 2. dec≥ 1. Let l be the decision literal in M that starts the decision level dec. Then, M
can be written as Pl∆ Q. By the construction of the clause C, the complement of every literal
in C′ belongs to a decision level smaller than dec, that is, to P. It follows that P |= ¬C′.
Thus, as before, we conclude that C is a reason for l′ to be in Pl′.

Proposition 9
For any SM(ASP) theory [F,Π],

(a) every path in SML(ASP)F,Π contains only finitely many edges justified by basic tran-
sition rules,
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(b) for any semi-terminal state M||Γ of SML(ASP)F,Π reachable from /0|| /0, M is a model
of [F,Π],

(c) FailState is reachable from /0|| /0 in SML(ASP)F,Π if and only if [F,Π] has no models.

Proof
Part (a) is proved as in the proof of Proposition 13↑ (Lierler 2010) (we preserve the notation
used in that work).

(b) Let M||G be a semi-terminal state reachable from /0|| /0 (that is, none of the basic rules
are applicable.) Since Decide is not applicable, M assigns all literals. Next, M is consis-
tent. Indeed, if M were inconsistent then, since Fail is not applicable, M would contain a
decision literal. Consequently, M||Γ would be a backjump state. By Lemma 13, the transi-
tion rule Backjump would be applicable in M||Γ, contradicting our assumption that M||Γ is
semi-terminal. We now proceed as in the proof of Proposition 7 (b) to show M is a model
of F and M+ is an input answer set of Π.

(c) If FailState is reachable from /0|| /0 in SML(ASP)F,Π, then there is a state M||Γ reachable
from /0|| /0 in SML(ASP)F,Π such that there is an edge between M||Γ and FailState. By the
definition of SML(ASP)F,Π, this edge is due to the transition rule Fail. Thus, M is inconsis-
tent and contains no decision literals. By Lemma 9, every model N of [F,Π] satisfies M.
Since M is inconsistent, [F,Π] has no models.

Conversely, if [F,Π] has no models, let us consider a maximal path in SML(ASP)F,Π
starting in /0|| /0 and consisting of basic transition rules. By (a), it follows that such a path
is finite and ends in a semi-terminal state. By (b), this semi-terminal must be FailState,
because [F,Π] has no models.

Proofs of Results from Section 6

Proposition 10
For a total PC(ID) theory (F,Π) and a consistent and complete (over At(F∪Π)) set M of
literals, M is a model of (F,Π) if and only if M+ is an answer set of π(F,Π).

Proof
By Proposition 6, it is enough to prove that M is a model of the SM(ASP) theory [F,Π] if
and only if M+ is an answer set of π(F,Π). By the definition of π(F,Π), M+ is an answer
set of π(F,Π) if and only if M+ is an answer set of Πo and a model of F. Since M+ is a
subset of Head(Πo) (since Head(Πo) = At(F∪Π)), Proposition 3(a) implies that M+ is
an answer set of Πo if and only if M+ is an input answer set of Πo. It follows that M+ is
an answer set of π(F,Π) if and only if M is a model of the SM(ASP) theory [F,Πo]. The
assertion follows now from Proposition 4.

Proposition 11
For a PC(ID) theory (F,Π), we have

SML(ASP)ED-Comp(Πo)∪F,Πo = SML(ASP)ED-Comp(π(F,Π)),π(F,Π).
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Proof
We recall that π(F,Π) = Fr∪Πo. From the construction of ED-Comp, it is easy to see that

ED-Comp(Πo)∪F = ED-Comp(π(F,Π))·

Furthermore, from the definition of an unfounded set it follows that for any consistent set
M of literals and a set U of atoms, U is unfounded on M with respect to Πo if and only if
U is unfounded on M with respect to π(F,Π).


