
1

Online appendix for the paper

Autonomous Agents Coordination: Action
Languages meet CLP(FD) and Linda∗
published in Theory and Practice of Logic Programming

AGOSTINO DOVIER
Università di Udine, Dipartimento di Matematica e Informatica

(e-mail: dovier@dimi.uniud.it)

ANDREA FORMISANO
Università di Perugia, Dipartimento di Matematica e Informatica

(e-mail: formis@dmi.unipg.it)

ENRICO PONTELLI
New Mexico State University, Department of Computer Science

(e-mail: epontell@cs.nmsu.edu)

submitted 23 November 2010; revised 5 July 2011; accepted 31 August 2011

Appendix A The languages BAAC, BMAP, and BMV

The language BAAC, and its implementation, heavily relies on its foundations BMAP

and BMV. In this section we briefly compare these three languages to clarify which
parts of the solvers of the previous languages can be used for the implementation
of BAAC presented in Subsection 3.6.

Let us focus first on BMV. This is a single agent framework. Therefore, considering
a given action theory, all fluents and actions are known to the single agent, and the
language does not permit to specify private fluents or actions. Moreover, BMV allows
one to specify static causal laws. The syntax of fluent expressions and constraints
is exactly the same as in BAAC. The syntax for executability and action effects is
analogous to that of BAAC. More precisely, in BMV, these laws take the forms:

• exectuable(a,C )
• causes(x ,C1,C2), where C1 is the constraint that will hold in the next state

if the action x is executed in a state where C2 holds.

These are just syntactical variants of (5) and (6), respectively. The semantics of BMV

is given via a transition system analogous to that introduced for BAAC. In particular,
one might note that if a BAAC action description involves a single agent that knows all

∗ Research partially funded by GNCS-INdAM projects, MUR-PRIN: Innovative and
multidisciplinary approaches for constraint and preference reasoning project; NSF grants IIS-
0812267 and HRD-0420407; and grants 2009.010.0336 and 2010.011.0403.



2

the fluents (and no communication laws are included), then its semantics coincides
with the one of the corresponding BMV program obtained by an immediat syntactical
translation. The Prolog interpreter for BMV is proved to be correct and complete
(for soundness the absence of static laws is needed, but this is the case of BAAC, as
presented here) with respect to the semantics in (Dovier et al. 2010).

Let us consider now BMAP. It is a multiagent, centralized language, where collective
actions, namely actions that require more than one agent for being executed, are
allowed. For instance, a law of the form

action x executable by a1, a2, . . . , an

specifies that agents a1, a2, . . . , an may execute together the action x . In BAAC, in-
stead, in the domain of an agent a, an action definition implicitly states that the
action is executed by a (hence, this is a particular case of the BMAP law). On the
other hand, since the reasoner is centralized, conflicts among effects never occur and
all (concomitant) planned actions are always successfully executed. The declaration
of fluents in BMAP is analogous to that in BAAC, whereas BMAP has a different syntax
for dynamic laws, since they can refer directly to action-occurrences. A BMAP dy-
namic law has the form Prec causes Eff , where Prec and Eff are constraints and
at least one reference to an action x must explicitly occur in Prec. Such references
are specified by exploiting action flags of the form actocc(x).

The semantics of BMAP is given via the same notion of transition system used for
BMV and for BAAC. If a multi-agent action description in BAAC, together with initial
state and goal, is such that during the plan, no conflict occurs, then the BMAP action
description obtained by a simple (mostly one-to-one) translation, has exactly the
same behaviour on the transition system. Let us observe that in this translation,
collective actions are not generated.


