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Appendix A Proofs

A.1 Splitting Lemma

We use the splitting lemma (Ferraris et al. 2009) to prove a few theorems below.

Splitting Lemma

Let F be a first-order sentence, and let p, q be lists of distinct predicate constants.

If each strongly connected component of DG[F ;pq] is a subset of p or a subset of q

then

SM[F ;pq] is equivalent to SM[F ;p] ∧ SM[F ;q] .

The statement is slightly more general than the one from (Ferraris et al. 2009) in

that p and q are not required to be disjoint. The proof of this enhancement follows

from the Version 3 of the Splitting Lemma from (Ferraris et al. 2009).

A.2 Proof of Lemma ??

Lemma ??

X is a module answer set of (Π, I,O) iff X is an answer set of Π∪{{p} ← | p ∈ I}.

Proof

X is an answer set of Π ∪ {p← | p ∈ (I ∩X)}
iff

X is an answer set of Π ∪ {p← not not p | p ∈ I}
iff

X is an answer set of Π ∪ {{p} ← | p ∈ I} .
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The equivalence between the first and the second follows from the equivalence

between the reducts of each program relative to X.

The equivalence between the second and third is because the transformation

preserves strong equivalence.

A.3 Proof of Theorem ??

Theorem ??

Let F , G, H be first-order sentences, and let p, q be finite lists of distinct predicate

constants. If

(a) each strongly connected component of DG[F ∧G∧H; pq] is a subset of p or

a subset of q,

(b) F is negative on q, and

(c) G is negative on p

then

SM[F ∧G ∧H; pq] is equivalent to SM[F ∧H; p] ∧ SM[G ∧H; q] .

Proof

By the Splitting Lemma above, SM[F ∧G ∧H; pq] is equivalent to

SM[F ∧G ∧H; p] ∧ SM[F ∧G ∧H; q] .

Since G is negative on p, the first conjunctive term can be rewritten as

SM[F ∧H; p] ∧G . (A1)

Similarly, the second conjunctive term can be rewritten as

SM[G ∧H; q] ∧ F . (A2)

It remains to observe that the second conjunctive term of each of the formulas (A1)

and (A2) is entailed by the first conjunctive term of the other.

A.4 Proof of Proposition ??

Proposition ??

For any first-order modules F1, F2, and F3, the following properties hold:

• F1 t F2 is defined iff F2 t F1 is defined.

• SM[F1 t F2] is equivalent to SM[F2 t F1].

• (F1 t F2) t F3 is defined iff F1 t (F2 t F3) is defined.

• SM[(F1 t F2) t F3] is equivalent to SM[F1 t (F2 t F3)].
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Proof

Claims (a) and (b) follow immediately from the definitions.

We prove Claim (c). Let Fi = (Fi, Ii,Oi) for each i ∈ {1, 2, 3} and without loss

of generality assume that each Fi is a conjunction of the form Fi,1 ∧ · · · ∧ Fi,ki
.

From left to right: Assume that (F1 t F2) t F3 is defined. Since F1 and F2 are

joinable,

(i) O1 ∩ O2 = ∅;
(ii) each conjunctive term of F1 is negative on O2, or is one of the conjunctive

terms of F2;

(iii) each conjunctive term of F2 is negative on O1, or is one of the conjunctive

terms of F1;

(iv) each strongly connected component of DG[F1 ∧ F2;O1O2] is a subset of O1

or a subset of O2.

Also, since (F1 t F2) and F3 are joinable,

(v) (O1 ∪ O2) ∩ O3 = ∅;
(vi) each conjunctive term of F1∧F2 is negative on O3, or is one of the conjunctive

terms of F3;

(vii) each conjunctive term of F3 is negative on O1∪O2, or is one of the conjunctive

terms of F1 ∧ F2;

(viii) each strongly connected component of DG[F1 ∧ F2 ∧ F3;O1O2O3] is a subset

of O1 ∪ O2 or a subset of O3.

We first prove that F2 t F3 is defined.

(ix) From (v), it follows that O2 ∩ O3 = ∅.
(x) From (vi), it follows that each conjunctive term of F2 is negative on O3 or is

one of the conjunctive terms of F3.

(xi) We prove that each conjunctive term of F3 is negative on O2 or is one of the

conjunctive terms of F2.

Consider any conjunctive term C of F3. By (vii), C is negative on O1 ∪ O2,

or is one of the conjunctive terms of F1 ∧ F2.

— Case 1: C is negative on O1 ∪ O2. Clearly, it is negative on O2 as well.

— Case 2: C is one of the conjunctive terms of F1 ∧ F2. If C is one of the

conjunctive terms of F2, the claim trivially follows. If C is one of the

conjunctive terms of F1, by (ii), it is either negative on O2 or is one of the

conjunctive terms of F2. In either case, the claim follows.

(xii) We first prove that each strongly connected component of DG[F1 ∧ F2 ∧
F3;O1O2O3] is contained in only one ofO1,O2 orO3, from which the fact that

each strongly connected component of DG[F2∧F3;O2O3] is contained inO2 or

O3 follows, as DG[F2∧F3;O2O3] is a subgraph of DG[F1∧F2∧F3;O1O2O3].

By (i) and (v), O1, O2 and O3 are pairwise disjoint. Consider any strongly

connected component S of DG[F1 ∧F2 ∧F3;O1O2O3]. By (viii) S is a subset

of O1 ∪O2 or a subset of O3. Assume that S is a subset of O1 ∪O2. Clearly,

S is also a strongly connected component of DG[F1 ∧F2 ∧F3;O1O2]. In view
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of (vii), DG[F1 ∧F2 ∧F3;O1O2] is the same as DG[F1 ∧F2;O1O2], so that S

is a strongly connected component of DG[F1 ∧F2;O1O2] as well. By (iv) S is

contained in O1 or O2.

We now prove that F1 t (F2 t F3) is defined.

• From (i) and (v), it follows that O1 ∩ (O2 ∪O3) = ∅;
• From (ii) and (vi), it follows that each conjunctive term of F1 is negative on

O2 ∪ O3 or is one of the conjunctive terms of F2 ∧ F3;

• From (iii) and (vii), it follows that each conjunctive term of F2∧F3 is negative

on O1 or is one of the conjunctive terms of F1;

• From the claim proven in (viii), it follows that each strongly connected com-

ponent of DG[F1 ∧ F2 ∧ F3;O1O2O3] is contained in O1 or O2 ∪ O3.

From right to left: Assume that F1 t (F2 t F3) is defined. By Claim (a), (F2 t F3) t F1

is defined, and then (F3 t F2) t F1 is defined. By the first part of Claim (c) that

was proven, F3 t (F2 t F1) is defined, and then by applying Claim (a) twice, we

have that (F1 t F2) t F3 is defined.

We now prove Claim (d). Using Theorem ?? and Claim (c),

SM[(F1 t F2) t F3] ⇔ SM[F1 t F2] ∧ SM[F3]

⇔ SM[F1] ∧ SM[F2] ∧ SM[F3]

⇔ SM[F1] ∧ SM[F2 t F3]

⇔ SM[F1 t (F2 t F3)] .

A.5 Proof of Theorem ??

Theorem ??

Let F1 = (F1, I1,O1) and F2 = (F2, I2,O2) be first-order modules of a signature σ

that are joinable, and, for i = 0, 1, let ci be a subset of σ that contains c(Fi) ∪Oi,

and let Ii be a ci-partial interpretation of σ. If I1 and I2 are compatible with each

other, then

I1 ∪ I2 |= SM[F1 t F2] iff I1 |= SM[F1] and I2 |= SM[F2] .

Proof

Let us identify F1 with (F ′1 ∧ H, I1,O1) and F2 with (F ′2 ∧ H, I2,O2) as in the

definition of join (Definition ??).

By definition SM[F1 t F2] is SM[F ′1 ∧ F ′2 ∧H; O1 ∪ O2]. By Theorem ??,

I1 ∪ I2 |= SM[F ′1 ∧ F ′2 ∧H; O1 ∪ O2] iff

I1 ∪ I2 |= SM[F ′1 ∧H; O1] and I1 ∪ I2 |= SM[F ′2 ∧H; O2]
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Clearly, I1 ∪ I2 is compatible with I1. Since c1 contains c(F ′1 ∧H) ∪ O1, it follows

that I1 ∪ I2 |= SM[F ′1 ∧ H; O1] iff I1 |= SM[F ′1 ∧ H; O1]. Similarly, I1 ∪ I2 |=
SM[F ′2 ∧H; O2] iff I2 |= SM[F ′2 ∧H; O2]. Consequently, the claim follows.

A.6 Proof of Proposition ??

Lemma 1
Let 〈B,P [t], Q[t]〉 be an incremental first-order theory, and let Pi and Rk be as in

Proposition ??. It holds that

Out(Pi) = pr(B ∧ P [1] ∧ · · · ∧ P [i]),

Out(Rk) = pr(B ∧ P [1] ∧ · · · ∧ P [k] ∧Q[k]).

Proof
We show the first clause by induction. The second clause is similar.

• Base case: P0 = FM (B, ∅) = (Bω, ∅, pr(B)).
• Inductive step: Assume that Out(Pi−1) = pr(B ∧ P [1] ∧ · · · ∧ P [i− 1]). The

module FM (P [i],Out(Pi−1)) is

(P [i]ω, Out(Pi−1), pr(P [i])\Out(Pi−1)) .

Thus

Out(Pi) = Out(Pi−1) ∪
(
pr(P [i])\Out(Pi−1)

)
= Out(Pi−1) ∪ pr(P [i])

and by the I.H., this is then pr(B ∧ P [1] ∧ · · · ∧ P [i]).

Lemma 2
Given any two first-order formulas F1, F2 and disjoint sets of predicate constants

p1,p2 such that pr(F1) ⊆ p1, and F2 is negative on p1. Every strongly connected

component of DG[F1 ∧ F2;p1p2] is contained in p1 or p2.

Proof
Since F2 is negative on p1, we have that head(F2) ∩ p1 = ∅. Thus every outgoing

edge in the dependency graph from a predicate constant in p1 must be obtained

from F1. Since pr(F1) ⊆ p1, such outgoing edge always leads to a vertex in p1.

Consequently, every strongly connected component of DG[F1∧F2;p1p2] containing

a predicate constant from head(F1) is contained in p1, so the claim follows.

Proposition ??

If an incremental first-order theory 〈B,P [t], Q[t]〉 is acyclic, then the following mod-

ules are defined for all k ≥ 0.

P0 = FM (B, ∅),
Pi = Pi−1 t FM (P [i],Out(Pi−1)), (1 ≤ i ≤ k)

Rk = Pk t FM (Q[k],Out(Pk)) .
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Proof

We first prove by induction that Pi is defined.

Base case: It is clear that P0 = FM (B, ∅) is defined.

Inductive step: Assume that Pi−1 = (Fi−1, Ii−1,Oi−1) is defined for any i > 0.

Also,

FM (P [i],Oi−1) = (P [i]ω,Oi−1, pr(P [i])\Oi−1)

is trivially defined. To show that they are joinable, we will check the following:

(i) head(Fi−1) ∩ (pr(P [i])\Oi−1) = ∅;
(ii) head(P [i]ω) ∩ Oi−1 = ∅;

(iii) every strongly connected component of

DG[Fi−1 ∧ P [i]ω; Oi−1 ∪ (pr(P [i])\Oi−1)]

is a subset of Oi−1 or pr(P [i])\Oi−1.

Note that

pr(Fi−1) ⊆ pr(B ∧ P [1] ∧ . . . P [i− 1]) (A3)

and

head(P [i]ω) ⊆ head(P [i]) . (A4)

Proof of Claim (i): By Lemma 1, Oi−1 is pr(B ∧ P [1] ∧ · · · ∧ P [i− 1]), and Claim

(i) trivially follows in view of (A3) and the fact that head(Fi−1) ⊆ pr(Fi−1).

Proof of Claim (ii): Since the theory is acyclic,

head(P [i]) ∩ pr(B ∧ P [1] ∧ · · · ∧ P [i− 1]) = ∅ ,

and from (A4) and Lemma 1, we have that

head(P [i]ω) ∩ Oi−1 = ∅ . (A5)

Proof of Claim (iii): The claim follows from (A5) and Lemma 2.

We next show that Rk is defined. By our previous result, Pk = (Fk, Ik,Ok) is

defined. It also holds that

FM (Q[k],Ok) = (Q[k]ω,Ok, pr(Q[k]) \ Ok)

is defined trivially. The rest of the reasoning is similar to the previous one.

A.7 Proof of Proposition ??

Proposition ??

Let 〈B,P [t], Q[t]〉 be an acyclic incremental first-order theory and let Rk be the
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module as defined in the statement of Proposition ??. For any nonnegative integer k,

IB ∪ IP [1] ∪ · · · ∪ IP [k] ∪ IQ[k] |= SM[Rk]

iff IB |= SM[FM (B, ∅)]
and IP [1] |= SM[FM (P [1],Out(P0))]

and . . .

and IP [k] |= SM[FM (P [k],Out(Pk−1))]

and IQ[k] |= SM[FM (Q[k],Out(Pk))] .

where IB (IP [1], . . . , IP [k], IQ[k], respectively) is a c(B)-partial interpretation (c(P [1]),

. . . , c(P [k]), c(Q[k])-partial interpretation, respectively) such that IB , IP [1], . . . , IP [k], IQ[k]

are pairwise compatible.

Proof

Via repeated applications of Theorem ?? on Rk as indicated by Proposition ??.

A.8 Proof of Proposition ??

Lemma 3

Let 〈B,P [t], Q[t]〉 be an acyclic incremental first-order theory, let k be a nonnegative

integer, let Hk = B ∧ P [1] ∧ · · · ∧ P [k], and let Rk be the k-expansion of the

incremental theory. It holds that IB ∪ IP [1] ∪ · · · ∪ IP [k] ∪ IQ[k] |= SM[Rk] iff

IB |= SM[B; pr(B)]

and IP [1] |= SM[P [1]; pr(P [1]) \ pr(H0)]

and . . . (A6)

and IP [k] |= SM[P [k]; pr(P [k]) \ pr(Hk−1)]

and IQ[k] |= SM[Q[k]; pr(Q[k]) \ pr(Hk)]

where IB (IP [1], . . . , IP [k], IQ[k], respectively) is a c(B)-partial interpretation (c(P [1]),

. . . , c(P [k]), c(Q[k])-partial interpretation, respectively) such that IB , IP [1], . . . , IP [k], IQ[k]

are pairwise compatible.

Proof

Formula Hk is trivially negative on pr(Q[k])\pr(Hk), and since the theory is acyclic,

Q[k] is negative on pr(Hk). Also, by Lemma 2, every strongly connected component

of DG[Hk ∧ Q[k]; pr(Hk) ∪ pr(Q[k])] is a subset of pr(Hk) or pr(Q[k]) \ pr(Hk).

By Theorem ??, it then holds that

IHk
∪ IQ[k] |= SM[Rk] iff IHk

|= SM[Hk] and IQ[k] |= SM[Q[k]; pr(Q[k]) \ pr(Hk)]

where IHk
is a c(Hk)-partial interpretation that is compatible with IQ[k].
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Next we check by induction that IHk
|= SM[Hk] is equivalent to

IB |= SM[B]

and IP [1] |= SM[P [1]; pr(P [1]) \ pr(H0)]

and . . . (A7)

and IP [k] |= SM[P [k]; pr(P [k]) \ pr(Hk−1)] .

Base case: when k = 0, Hk = B. Trivial.

Inductive step: Let the property hold for Hk−1. By definition, Hk = Hk−1∧P [k].

Hk−1 is trivially negative on pr(P [k])\pr(Hk−1) and since the theory is acyclic, P [k]

is negative on pr(Hk−1). Also, by Lemma 2, every strongly connected component

of DG[Hk; pr(Hk)] is a subset of pr(Hk−1) or pr(P [k]) \ pr(Hk−1). By Theorem

??, it then holds that

IHk
|= SM[Hk] iff IHk−1

|= SM[Hk−1] and IP [k] |= SM[P [k]; pr(P [k])\pr(Hk−1)].

The property then holds by the I.H.

Lemma 4

For any first-order formula F , SM[FM (F, I)] is equivalent to SM[F ; pr(F )\I].

Proof

We introduce a notion that helps us prove. By Simpl(F ) we denote the least fixpoint

of the sequence F0, F1, . . . : formula F0 is defined as F , and Fi+1 is defined as

Fi|head(Fi).

Formula SM[FM (F, I)] is SM[(Fω, I, pr(F ) \ I)], which in turn is defined as

SM[Fω; pr(F )\ I]. By Theorem 2 from (Ferraris et al. 2011), this is equivalent to

SM[Fω ∧ Choice(I); pr(F )]. From the definition of Simpl , the latter is equivalent

to SM[Simpl(F ∧ Choice(I)); pr(F )], and, furthermore, by Theorem 4 from (Fer-

raris et al. 2011), is equivalent to SM[F ∧ Choice(I); pr(F )].

Proposition ??

Let 〈B,P [t], Q[t]〉 be an acyclic incremental theory, let k be a nonnegative integer,

let Rk be the k-expansion of the incremental theory, and let Rk be the module as

defined in Proposition ??. For any c-partial interpretation I such that c ⊇ c(Rk),

we have that

I |= SM[Rk] iff I |= SM[Rk].

Proof

Without loss of generality, let I = IB ∪ IP [1] ∪ · · · ∪ IP [k] ∪ IQ[k]. By Lemma 3,
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I |= SM[Rk] is equivalent to (A6), and by Lemma 1, this is further equivalent to

IB |= SM[B; pr(B)]

and IP [1] |= SM[P [1]; pr(P [1]) \Out(P0)]

and . . .

and IP [k] |= SM[P [k]; pr(P [k]) \Out(Pk−1)]

and IQ[k] |= SM[Q[k]; pr(Q[k]) \Out(Pk)] .

We check the following:

• IB |= SM[B; pr(B)] iff IB |= SM[FM (B, ∅)];
• IP [i] |= SM[P [i]; pr(P [i])\Out(Pi−1)] iff IP [i] |= SM[FM (P [i],Out(Pi−1))];

• IQ[k] |= SM[Q[k]; pr(Q[k])\Out(Pk)] iff IQ[k] |= SM[FM (Q[k],Out(Pk))].

The first clause is clear. The last two clauses follow from Lemma 4.

Therefore, by Proposition ??,

IB ∪ IP [1] ∪ · · · ∪ IP [k] ∪ IQ[k] |= SM[Rk] .
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