
1

Online appendix for the paper

ASP with non-Herbrand Partial Functions:
a Language and System for Practical Use

published in Theory and Practice of Logic Programming

MARCELLO BALDUCCINI
Eastman Kodak Company

(e-mail: marcello.balduccini@gmail.com)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Sample of ASP{f} and ASP Encodings from the Case Study

In order to give a sample of the encodings used in the case study, in this section we show key
rules for dealing with production estimation. The rules used for dealing with shipping estimation
are similar.

As typical, the main input to the system is described by facts. For example, the following
ASP{f} facts describe an order, r1, for 10 items of product p1 with quoting deadline 13 (e.g. 13
days in the future) and destination l10 (of course the declaration needs to occur only once in the
program).

#nherb quantity/1.

#nherb product/1.

#nherb deadline/1.

#nherb destination/1.

rfq(r1).

product(r1) =# p1.

quantity(r1) =# 10.

deadline(r1) =# 13.

destination(r1) =# l10.

For consistency with the terminology in use in the application domain, orders are identified by
relation rfq, which stands for request for quote. The ASP encoding of the same information is:

rfq(r1).

product(r1, p11).

quantity(r1, 10).

deadline(r1, 13).

destination(r1, l10).

Information about the average quantity of a product p on order per day can be specified by means
of a fact daily order(p) =# q. If not specified, this value is assumed to be 0 in the ASP{f}



2

encoding by the rule

daily order(P ) =# 0← product(P ), not daily order(P ) 6=# 0.

and in the ASP encoding by the rules:

daily order(P, 0)← product(P ), not ¬daily order(P, 0).

¬daily order(P, 0)← daily order(P,Q), Q 6= 0.

The determination of the production peaks is centered around the ASP{f} rule (some auxiliary
atoms have been omitted here and below to simplify the presentation):

at peak production(RFQ ID,D)←
rfq(RFQ ID),

product(RFQ ID) =# P,

deadline(RFQ ID) =# QD,

D ≤ QD,

expected on order(P,D) =# max[expected on order(P,DAYp) : DAYp ≤ QD].

The rule informally states that order RFQ ID is at peak for production on day D if D is no later
than the quoting deadline, RFQ ID is for product P , and the expected quantity of product P
on order on day D is equal to the maximum quantity of P expected to be on order on each day
from now until the quoting deadline. The corresponding rule in the ASP encoding is:

at peak production(RFQ ID,D)←
rfq(RFQ ID),

product(RFQ ID,P ),

deadline(RFQ ID,QD),

D ≤ QD,

expected on order(P,D,Q),

Q = max[expected on order(P,DAYp, Qp) = Qp : DAYp ≤ QD].

Function expected on order is defined in the ASP{f} encoding by rules such as:

expected on order(P,D) =#

today quantity − due quantity +M ∗ daily order ←
product(RFQ ID) =# P,

current time(T ),

M = D − T,

daily order(P ) =# daily order,

M <# avg deadline(P ),

today quantity =# sum[rfq(RFQ IDp) : product(RFQ IDp) =# P

= quantity(RFQ IDp)],

due quantity =# sum[due quantity(P,D′) : D′ < D].

This rule intuitively states that the quantity expected to be on order for product P on day D

is obtained by subtracting, from the quantity on order now, the quantity due between now and
day D, and then adding to this value the average daily orders forP multiplied by the number
of days in the period considered. (This formula is motivated by domain-specific considerations.)



3

The corresponding rule in the ASP encoding is:

expected on order(P,D, TODAY Q−DUE Q+M ∗DAILY ORDER)←
product(RFQ ID,P ),

current time(T ),

M = D − T,

daily order(P,DAILY ORDER),

avg deadline(P,AV G DLINE),

M < AV G DLINE,

TODAY PAGES = sum[quantity(RFQ IDp, Q) = Q : rfq(RFQ IDp)

: product(RFQ IDp, P )],

DUE PAGES = sum[due quantity(P,D′, Q) = Q : D′ < D].

Appendix B Knowledge Representation in ASP{f}: an Overview

In this section we give an overview of how ASP{f} can be used for some classical knowledge
representation tasks. An extended discussion can be found in (Balduccini 2012). More advanced
knowledge representation topics are addressed in (Balduccini and Gelfond 2012).

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the value
of f(x) is b if p(x) (this example is from (Lifschitz 2011); for simplicity of presentation we
use a constant as the argument of function f instead of a variable as in (Lifschitz 2011)). These
statements can be encoded in ASP{f} as follows:

(r1) f(x) = a← not f(x) 6= a.

(r2) f(x) = b← p(x).

Rule r1 encodes the default, and r2 encodes the exception. The informal reading of r1 is “if there
is no reason to believe that f(x) is different from a, then f(x) must be equal to a”.

Extending a common ASP methodology, the choice of value can be encoded in ASP{f} by
means of default negation. Consider the statements (again, adapted from (Lifschitz 2011)): (1)
the value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the domain of
variable X be given by a relation dom(X), and let the possible values of f(X) be encoded by a
relation val(V ). A possible ASP{f} encoding of these statements is:

(r1) f(X) = a← p(X), dom(X).

(r2) f(X) = V ← dom(X), val(V ), not p(X), not f(X) 6= V.

Rule r1 encodes the first statement. Rule r2 formalizes the arbitrary selection of values for f(X)

in the default case. It is important to notice that, although r2 follows a strategy of formalization
of knowledge that is similar to that of ASP, the ASP{f} encoding is more compact than the
corresponding ASP one. In fact, the ASP encoding requires the introduction of an extra rule
formalizing the fact that f(x) has a unique value:

(r′1) f
′(X) = a← p(X), dom(X).

(r′2) f
′(X,V )← dom(X), val(V ), not p(X), not ¬f ′(X,V ).

(r′3) ¬f ′(X,V ′)← val(V ), val(V ′), V 6= V ′, f ′(X,V ).

The behavior of a dynamic domain consisting of a button bi, which increments a counter c,



4

and a button br, which resets it, can be encoded in ASP{f} by:

(r1) val(c, S + 1) = 0← pressed(br, S).

(r2) val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.

(r3) val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button (variable
S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value of
the counter, and states that the value of c does not change unless it is forced to. For simplicity
of presentation, it is instantiated for a particular fluent, but could be as easily written so that it
applies to arbitrary fluents from the domain.

References

BALDUCCINI, M. 2012. Answer Set Solving and Non-Herbrand Functions. In Proceedings of the 14th
International Workshop on Non-Monotonic Reasoning (NMR’2012), R. Rosati and S. Woltran, Eds.

BALDUCCINI, M. AND GELFOND, M. 2012. Language ASPf with Arithmetic Expressions and
Consistency-Restoring Rules. In ICLP12 Workshop on Answer Set Programming and Other Comput-
ing Paradigms (ASPOCP12).

LIFSCHITZ, V. 2011. Logic Programs with Intensional Functions (Preliminary Report). In ICLP11 Work-
shop on Answer Set Programming and Other Computing Paradigms (ASPOCP11).


