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Examples with Infinitely Many Failed Derivations

The problem of verifying safety properties consists of proving that an unsafe configuration

or error is not reachable from an initial configuration considering all possible program

executions. clp has been shown to be a successful model for performing this task (see for

example Jaffar et al. (2009) and Angelis et al. (2012)). The program P can be translated

into an equivalent clp program P ′ such that the error is unreachable if and only if the

derivation tree of P ′ does not contain any successful derivation.

If the derivation tree is finite and the safety property can be expressed, for example, on

real numbers then any clp system can prove the absence of errors. However, programs

often contain unbounded loops, and therefore, the main challenge lies in discovering loop

invariants that can still prove the unreachability of the error configurations. Another

problem for clp systems is that sometimes the safety property may require reasoning

about other theories different from real or rational linear arithmetic.

In this appendix, we show several examples (Figures 1 and 2) taken from the software

verification literature which are commonly considered to be challenging for automatic

verifiers. We have translated the programs into clp manually in such way that the

original program is safe iff the clp model of the translated program is empty. The details

of the translation are beyond of the scope of this paper and we refer to, for example,

Delzanno and Podelski (2001) and Jaffar et al. (2005) for a formal description. We also

show the inductive invariant required in each case to prove program is safe.

The only program that cannot be verified by our method is t1.c. Note that a safe

inductive invariant is Y ≥ 0∧X ≥ Y . From error/4 we can trivially infer the interpolant

X ≥ Y but unfortunately we cannot infer the other required invariant Y ≥ 0 even though

that clearly holds, since Y = 0 initially and then Y can only be incremented by one. This

shortcoming is typical of methods that rely only on counterexample-driven verification

with interpolation. However, abstract interpreters using intervals or octagons can easily

infer the inductive invariant Y ≥ 0. Thus, verifiers that combine abstract interpretation

with interpolation (Gulavani et al. 2008; Albarghouthi et al. 2012; Jaffar et al. 2012) can

easily infer the required invariant Y ≥ 0.

Note that all C variables are defined as integers. For simplicity, if we would model

them as reals then we can still prove all programs are safe except for t4.c since that has
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t1.c (from (Angelis et al. 2012)) t1.pl

int x=1;

int y=0;

while(*){

x=x+y, y++;

}

assert(x >= y);

Safe inductive invariant: l(X,Y ) =⇒ Y ≥ 0 ∧X ≥ Y

t1 :- {X .=. 1, Y .=. 0}, l(X,Y).

l(X,Y):- {X1 .=. X+Y, Y1 .=. Y+1}, l(X1,Y1).

l(X,Y):- error(X,Y).

error(X,Y):- {Y .>. X}.

t1-a.c (variant of t1.c) t1-a.pl

int x=1;

int y=0;

while(*){

x=x+y, y++;

}

if (y >= 0) assert(x >= y);

Safe inductive invariant: l(X,Y ) =⇒ Y ≥ 0 ∧X ≥ Y

t1 :- {X .=. 1, Y .=. 0}, l(X,Y).

l(X,Y):- {X1 .=. X+Y, Y1 .=. Y+1}, l(X1,Y1).

l(X,Y):- error(X,Y).

error(X,Y):- {Y .<. 0}.

error(X,Y):- {Y .>. X}.

t2.c (from (Jhala and McMillan 2006)) t2.pl
int x,y,i,j;

x=i; y=j;

while (x != 0){

x--;

y--;

}

if (i ==j ) assert(y <= 0);

Safe inductive invariant: l(X,Y, I, J) =⇒ Y + I ≤ X + J

t1 :- {X .=. I, Y .=.J}, l(X,Y,I,J).

l(X,Y,I,J):- {X .<>. 0, X1 .=. X-1, Y1 .=. Y-1},

l(X1,Y1,I,J).

l(X,Y,I,J):- {X .=. 0}, error(X,Y,I,J).

error(_,Y,I,J):- {I .=. J, Y .>. 0}.

t3.c (from (Ball et al. 2004)) t3.pl

int lock,old,new;

old=0; lock=0; new=old+1;

while (new != old) {

lock=1;

old=new;

if (*) {

lock=0;

new++;

}

}

assert(lock != 0);

Safe ind. inv.: l(Lock,Old,New) =⇒ Old+ 1 ≤ New

t3:- {Lock .=. 0, Old .=. 0, New .=. Old + 1},

l(Lock,Old,New).

l(Lock,Old,New):-

{New .<>. Old},

l_body(Lock,Old,New,Lock1,Old1,New1),

l(Lock1,Old1,New1).

l(Lock,Old,New):- { New .=. Old}, error(Lock).

l_body(_Lock,Old,New,Lock1,Old1,New1):-

{Lock1 .=. 0, New1 .=. New + 1, Old1 .=. Old}.

l_body(_Lock,Old,New,Lock1,Old1,New1):-

{Lock1 .=. Lock, New1 .=. New, Old1 .=. Old}.

error(Lock):- {Lock .=. 0}.

Fig. 1. Verification challenges: C and clp versions.

(non-integral) answers {A = 0, B = 0, I = 0, N > 1, N < 2} and {A = 0, B = 0, I =

0, N > 0, N < 1}. In this case we can only show the clp program does not have answers

(and hence, proving the program is safe) if we reason over integer linear arithmetic. Since

MathSAT provides interpolation for integers we can do this without any effort.

Finally, it is worth pointing out that for t5.c our method needs to unroll the recursive

clause of l/2 at least 3 times before it can infer the required invariant. t5.c is a snippet

of a real application from the ssh-simplified benchmark suites available at Beyer (2012).

This is the only example for which Chico de Guzmán et al. (2012) produced a finite

derivation tree without error.
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t4.c (from (Beyer et al. 2007)) t4.pl

int i,a,b,n;

i=0; a=0; b=0;

assume(n > 0);

while (i < n){

if (*){

a=a+1;

b=b+2;

}

else{

a=a+2;

b=b+1;

}

i++;

}

assert(a+b == 3*n);

Safe inductive invariant: l(I, A,B,N) =⇒ A+B ≤ 3 ∗ I

t4 :- {N .>. 0, I .=. 0, A .=. 0, B .=. 0}

l(I,A,B,N).

l(I,A,B,N):-

{I .<. N},

l_body(A,B,A1,B1),

{I1 .=. I+1},

l(I1,A1,B1,N).

l(I,A,B,N):-

{I .>=.N}, error(A,B,N).

l_body(A0,B0,A1,B1):- {A1 .=. A0+1, B1 .=. B0+2}.

l_body(A0,B0,A1,B1):- {A1 .=. A0+2, B1 .=. B0+1}.

error(A,B,N):- {A + B .<>. 3 * N}.

t5.c (snipped from client SSH protocol) t5.pl

int e=0;

int s=2;

while (*) {

if (s == 2){

if (e == 0) e=1;

s=3;

}

else if (s == 3){

if (e == 1) e=2;

s=4;

}

else if (s == 4){

if (e == 3) error();

s=5;

}

}

Safe inductive invariant: l(E,S) =⇒ E ≤ 2 ∧ S ≤ 4

t5 :- {E .=. 0, S .=. 2}, l(E,S).

l(E0,S0):- l_body(E0,S0,E1,S1), l(E1,S1).

l(E,S) :- error(E,S).

error(E,S):- {E .=. 3, S .=. 4}.

l_body(E0,S0,E1,S1):-

{S0 .=. 2}, l_body_1(E0,S0,E1,S1).

l_body(E0,S0,E1,S1):-

{S0 .=. 3}, l_body_2(E0,S0,E1,S1).

l_body(E0,S0,E1,S1):-

{S0 .=. 4}, l_body_3(E0,S0,E1,S1).

l_body(E0,S0,E1,S1):-

{S0 .>. 4, E1 .=. E0, S1 .=. S0}.

l_body_1(E0,_S0,E2,S2):-

l_body_1_1(E0,E1), {S2 .=. 3, E2 .=. E1}.

l_body_2(E0,_S0,E2,S2):-

l_body_2_1(E0,E1), {S2 .=. 4, E2 .=. E1}.

l_body_3(E0,S0,E1,S1):-

l_body_3_1(E0,E1,S0,S1).

l_body_1_1(E0,E1):- {E0 .=. 0, E1 .=. 1}.

l_body_1_1(E0,E1):- {E0 .<>. 0, E1 .=. E0}.

l_body_2_1(E0,E1):- {E0 .=. 1, E1 .=. 2}.

l_body_2_1(E0,E1):- {E0 .<>. 1, E1 .=. E0}.

l_body_3_1(E0,E1,S0,S1):-

{S0 .=. 4, E0 .=. 2, E1 .=. E0, S1 .=. S0}.

l_body_3_1(E0,E1,S0,S1):-

{S0 .<>. 4, S1 .=. 5, E1 .=. E0}.

l_body_3_1(E0,E1,S0,S1):-

{E0 .<>. 2, S1 .=. 5, E1 .=. E0}.

Fig. 2. Verification challenges: C and clp versions.
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