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Appendix A Syntax of Datalog!™®

We can now summarize the syntax of our Datalog’® programs obtained by enriching
Horn clauses with the folllowing constructs:

e Running-FS goals
e Multi-occurring predicates, and
e Final-FS goals.

A Datalog™® program is a set of rules where the head literal can either be an atom or an
FS-assert statement. An FS-assert statement describes multi-occurring predicates and is
an atom followed by : K, where K is either a constant or a variable. The literals in the
body of Datalog™® rules can be either atoms or negated atoms, as in Datalog, or they
can be FS-goals. Now FS-goals come in the following two forms:

o Kj:[exprj] for a Running-FS goal, and
e Xj =![exprj] for a Final-FS goal.

where exprj is a conjunction of positive atoms, and Kj (which is called the FS-term) can
either be constant or a variable not contained in exprj. We require our programs to be
stratified w.r.t negation and Final FS-goals.

We will now illustrate the many interesting applications of our stratified Datalog’®
programs, and then discuss the technology for their efficient implementation.

Appendix B Formal Properties

Proof of Theorem 1: If M; and Ms are two models of an FS-program P, their inter-
section My N Mo is also a model for P.
To proof this theorem, we need to show that every rule r € ground(P) is satisfied in
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M N Ms. In fact, let h(r) be the head of our rule: if A(r) is in both My and M then it is
also in M; N My, which will thus satisfy the rule. Otherwise say that h(r) is not in Mj:
then the body of r cannot be satisfied by M7, and thus cannot be satisfied by M; N M,
which is a subset of M;. Symmetrically for Ms. QED.

Proof of Theorem 2: Let P be an FS-program with immediate consequence operator
Tp and least model M(P). Then lfp(Tp) = M(P).
To proof this, let I be a fixpoint for Tp. Now, if I is not a model for P, then ground(P)
must contain a rule r s.t. the body of r is satisfied by I but h(r) is not in I; then I is not
a fixpoint—a contradiction. Therefore, the least fixpoint I fp(Tp) must be a model for P.
Now, for each atom « in the least model Mp, ground(P) must contain some rule r, such
that a is the head of r and the body of r is satisfied in Mp (otherwise Mp — {a} would
still be a model, a contradiction). Therefore, Tp(Mp) 2O Mp. But if Tp(Mp) D Mp,
then Mp cannot be a model. Therefore, Mp is a fixpoint, whereby Mp 2 I fp(Tp). But
since every fixpoint is a model we also have that {fp(Tp) 2 Mp. QED
Proof-Theoretic Semantics We now sketch a way in which the semantics of running
FS-goals can be expressed with standard Horn clauses, and thus supported using SLD-
resolution.

Let Global and Local respectively denote the global (i.e., universal) and local (i.e.,
existential) variables in our b-expression which is a conjunct of one or more positive
atoms:

...,K : [bexpr(Global,Local)],...

Let us then use the following rule to represent bexpr into a single predicate where GL
and LL, respectively denote the list of the global variables and local variables:

bgoal(GL,LL) + bexpr(Global,Local).

Now let us express s(N): [bgoal(GL,LL)] by the predicate fscnt(GL,LL, s(N)) which can
be defined by the following rules:

fscent(GL, [LL], 1) + bgoal(GL,LL).
fscent(GL, [LL|Bag], s(K)) + fscnt(GL,Bag,K), bgoal(GL,LL),notin(LL,Bag).
notin(LL, [ ]).

notin(LL, [H|Rest]) + neq(LL,H),notin(LL,Rest).
where neq is a built-in monotone predicate that is true if its second argument is different
from its first one. Thus our fscnt-based rewriting re-expresses the abstract semantics of
the running fs-count construct of Datalog™.
While this is not an issue in terms of abstract SLD semantics which ignores non-
terminating derivations, the previous rules can be modified into the following terminating
Prolog program with tail-recursion.

fscntl(GLL,K) fscntl11(GL, [, 0,K).

fscntl1(GL, Bag,K, s(K) < kexpr(GL,LL),notin(LL,Bag).

fscntl1(GL,Bag,K,K1) <  kexpr(GL,LL),notin(LL,Bag),
fscntls1(GL, [LL|Bag], s(K),K1).



Appendix C Efficient Implementation

The three main techniques that make possible very efficient implementations for Data-
logf"S can be listed in the order in which they are applied by the compiler as follows
(i) the magic-set transformation, (i) differential (a.k.a. semi-naive) fixpoint, and (iii)
the max-based optimization. The max-based optimization has been reported in Section
6 of the paper, and the extension of differential fixpoint and magic set to Datalog?™
is reported below. The differential fixpoint technique, which was already presented in
(Mazuran et al. 2012), is summarized below for the convenience of the reader. However,
the magic-set technique for Datalog’® is new and not published in previous papers.

Differential Fixpoint

The differential fixpoint (a.k.a., the seminaive fixpoint) method, which represents the
cornerstone of the bottom-up implementation for Datalog programs (Arni et al. 2003;
Zaniolo et al. 1997), is also applicable and effective for Datalog™® programs. The method
applies a reduced differentiation step upon recursive FS-rules that are in canonical form.
Moreover every rule can put into canonical form by rewriting its FS-goals by (i) a relaxed
factorization step, and (ii) a reduction step (Mazuran et al. 2012).

Relazed Factorization This transformation replaces an FS goal K: [expr(X,Y)] (where X
and Y denote the global and local variables) by the equivalent pair of goals:
expr(X, ),K:[expr(X,Y,)]
Take for instance the following recursive rule:
reach(Y):V < reach(X), V:[reach(X),arc(X,Y)].

where X and Y are global, and there are no local variables in the b-expression of this rule;
thus the expansion step produces:

reach(Y):V « reach(X),reach(X),arc(X,Y),V:[reach(X),arc(X,Y)].

Reduction Step: This step removes each redundant goal introduced by the previous step.
For the example at hand, we see that reach(X) appears twice, and thus one of the
occurrences can be eliminated, producing;:

reach(Y):V < reach(X),arc(X,Y),V:[reach(X),arc(X,Y)].

In general the reduction step will merge pairs of goals that are identical except for a
renaming of variables. The applications of these two steps reduces the rules to canonical
form. We can now proceed with the reduced differentiation of the canonical rules.

Reduced Differentiation: The rules produced by the reduction step are differentiated with
their b-expression treated as constants (i.e., as if the predicates in the brackets were not
recursive or mutually recursive with the head of the rule). Thus, for the example at hand,
we obtain:

dreach(Y):V - Jreach(X),arc(X,Y),V:[reach(X),arc(X,Y)].



More examples and details can be found in (Mazuran et al. 2012). Here we consider a
second version of Floyd’s Algorithm.

Another Version of Floyd’s Algorithm and its Implementation

Consider a weighted graph represented by arc(X,Y,D) where (X,Y") is the edge and D is
its weight. Assume that upperb is the sum of the weights of all edges in the graph added
by 1. We implement the Floyd algorithm with the following Datalog!® program:

fpath(X,Y):K «+ arc(X,Y,D),K = upperb — D.

fpath(X,Z):K <+ node(Y),K1: [fpath(X,Y)],K2 : [fpath(Y,Z)],
K = K1 + K2 — upperb.

sp(X,Z,D) « K! = [fpath(X,Y)],D = upperb — K.

That is, the first rule scales the weights of the edges in the graph with respect to the
upper bound. The second rule computes the maximum weight of a path from X to Z
again scaled with respect to the upper bound, that is, we have to sum the weight of the
two paths: (i) from X to Y and (ii) from Y to Z. The weight of (i) is upperb — K1 and
the weight of (ii) is upperb — K2, thus by summing the two and then scaling we have
D = upperb — [(upperb — K1) + (upperb — K2)] = K1+ K2 — upperb. Finally, the third
rule scales this value for the last time and we obtain a weight that corresponds to the
minimum one.
Consider the graph represented by the following arc facts:

{arc(a,b,1),arc(a,c,5),arc(b,c,2),arc(c,d,3)}
then we have upperb = 11. The least fixpoint execution is:

I, = {fpath(a,b): 10, fpath(a,c): 6,fpath(b,c): 9, fpath(c,d): 8}

I, = {fpath(a,b): 10,path(a,c) : 8,fpath(b,c) : 9, fpath(c,d) : 8, fpath(a,d) : 3,
fpath(b,d) : 6}

I, = {fpath(a,b): 10,path(a,c): 8,fpath(b,c): 9, fpath(c,d) : 8, fpath(a,d) : 5,
fpath(b,d) : 6}

I = {sp(a,b,1),sp(a,c,3),sp(b,c,2),5p(c,d,3),sp(a,d,6),sp(b,d,5)}
Now, consider the following rule from the program:
fpath(X,Z):K < node(Y),K1 : [fpath(X,Y)],K2 : [fpath(Y,Z)],
K = K1 + K2 — upperb.
The relaxed factorization yields:
fpath(X,Z):K + node(Y), fpath(X,Y), fpath(Y,Z)

)
K1:[fpath(X,Y)],K2:[fpath(Y, Z)],
K = K1 + K2 — upperb.

No redundant goals can be eliminated here, whereby we move the standard differentiation
that yields:



0fpath(X,Z):K < node(Y),dfpath(X,Y), fpath(Y,Z),
K1:[fpath(X,Y)],K2:[fpath(Y,Z)],
K = K1 + K2 — upperb.
0fpath(X,Z):K < node(Y), fpath(X,Y),dfpath(Y,Z),
K1:[fpath(X,Y)],K2:[fpath(Y,Z)],
K = K1 4 K2 — upperb.
Thus, we have now reduced the differential fixpoint optimization for Datalog?® to that of
standard Datalog, whereby we can use its well-understood and widely tested optimization
techniques. For instance, a further optimization that is supported by many Datalog
compilers avoids having to repeat the computation of dfpath(X,Y),dfpath(Y,Z) in both
rules. This improvement is thus applicable to Datalog? as well.
More examples and details can be found in (Mazuran et al. 2012).

Differential Fixpoint, Aggregates and Greedy Algorithms

The differential fixpoint implementation of many algorithms that are similar to those we
have discussed here recently appeared in (Seo et al. 2013). The reference paper shows
that performance levels approaching those of procedural programs can be achieved via
Datalog-like rules that use monotonic aggregates in recursive computations. The paper
builds on operational semantics, rather than the declarative semantics, and this does not
allow a clear connection with theoretical concepts, such as model-theoretic semantics or
stable models, which instead provide formal foundations for our paper. In our approach,
we instead start from declarative semantics, and turn it into efficient implementation
via (i) Max-based optimization, and (ii) differential fixpoint. Every program we obtain
from these two optimization steps can be supported using the efficient implementation
techniques described in (Seo et al. 2013). However, the inverse is not true and in particular
we conjecture that the Dijkstra’s algorithm discussed in (Seo et al. 2013) cannot be
expressed in Datalog?™. Indeed, if we consider the maximum probability path problem,
Example 9 in the main paper, and we solve it using Dijkstra’s algorithm, we must use
the arcs departing from the node which has currently the highest probability. Now,
the computation of such a node is not monotonic. (Indeed, if we enlarge a set of pairs
(person, age), the max age in the set behaves monotonically, but not the person who
is the oldest.) The symmetric argument applies to the shortest path, and it is likely to
apply to greedy algorithms in general. A second issue is that the traditional computation
of the differential fixpoint for linear rules only uses the delta values produced at the last
step. However in a greedy algorithm, the determination of the max or min will have to
take into consideration the values of all the nodes considered so far, and not yet used.
Thus, general compilation/optimization techniques starting from operational semantics
might be harder to derive than starting from declarative semantics, as it is in fact done
for Datalog’ in the implementation described in (Shkapsky et al. 2013).

The Magic-Set Method

Passing down bindings and restrictions implied by goal conditions can expedite the com-
putation, and turn potentially unsafe programs into safe ones. While top-down binding
passing is always a part of SLD-resolution and Prolog, the magic-set and similar methods
(Zaniolo et al. 1997) can often produce similar benefits in in the bottom-up execution



6

model that is typically used for Datalog implementations. To illustrate the extension
of the magi-set method to Datalog?® let us consider the following example where we
use the goal N =![cbasic(frame)] to find out how many basic parts an assembled frame

contains:
Example 1 How many basic components does frame contain?

howmanypartsInFrame(N) « N =![cbasic(frame)].

cassb(Part,Sub):Qty < assbl(Part, Sub,Qty).

cbasic(Pno):1+  basic(Pno, ).

cbasic(Part):K «+ cassb(Part, Sub), cbasic(Sub),
K:[cassb(Part, Subl), cbasic(Subl)].

Here the binding passing analysis shows that Part in the head of the recursive rule
is bound but K is not. Then the body of the recursive rule passes the binding to Sub.
Thus the binding passing property hold for the first argument of cbasic. performing
the binding passing analysis, our Datalog?® compiler would here produce the following
magic-set rules (which only propagate bound values, and thus K is not in the magic-set
rules):

m.cbasic(frame).
m.cbsasic(Sub) « m.cassb(Part, Sub), cbasic(Part).

and the following modified rules:

cbasic(Pno):1 +  basic(Pno, ),m.cbasic(Pno).
cbasic(Part):K < K:[cassb(Part, Sub), cbasic(Sub),
m.cbasic(Part)].

Observe that the modified recursive rule must be retained since it is needed to compute
the values of K. This example illustrates that the full magic set method must be often
applied once the FS test clauses are also considered in the binding passing analysis—
whereas, without the FS—test clauses, they could have been compiled as right-linear rules
(Zaniolo et al. 1997).

Consider now Example 1 in the paper and say that we ask the question whether a
particular individual, denoted by $I will attend, using the goal: 7attend($I). Then,
byrecasting its rules into canonical form,

attend(X) «  organizer(X).
attend(Y) «  student(Y), attend(X),friend(Y,X),
3:[attend(X1), friend(Y,X1)].

and performing the binding passing analysis, we can apply the magic-set transformation
and obtain the following magic set rules
m.attend($I).
mattend(X) +  student(Y), m.attend(Y),friend(Y,X),
3:[attend(X1), friend(Y,X1)].

and the following transformed rules:

attend(X) +  organizer(X),m.attend(X).
attend(Y) +  student(Y), attend(X), friend(Y,X),
3:[attend(X1), friend(Y,X1)], m.attend(Y).
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The meaning of the magic-set rules here is quite obvious: we chase down the friends of
$I, and the friends of his friends, and so on and include them in the magic set (an exclude
every other person since they are irrelevant to the issue of whether $I will attend). But
before we include the friends of X we also make sure that in fact he/she has at least three
friends. The standard differential fixpoint will then be applied to rules so re-written.

A Datalog"™s Prototype

A deductive database system supporting all the new monotonic constructs introduced
by Datalog’® is the UCLA DeAL system (DeAL stands for Deductive Application
Language). While much development work remains, the core system is functional and it
is scheduled for demonstration at the VLDB 2013 conference (Shkapsky et al. 2013).

The design and development of De AL has greatly benefited from the lessons learned
from previous Datalog prototypes and in particular from the LDL/LDL-++ system, and
its deployment in real-life applications written by the less-sophisticated users'. Indeed
an important challenge faced by De AL and its predecessors is that of allowing a wider
range of users to take full advantage of the powerful logic-based semantics provided by
these declarative languages. To achieve that, we found that the language and its system
must present users with concepts and constructs that are intuitive and similar enough to
those with which they are familiar with from previous experience. We expect that many
of the De AL users will come from a data-intensive background and they are thus familiar
with SQL and its aggregates, including the COUNT * (UNLIMITED PRECEDING) of SQL
2003, which (i) has an operational semantics that is very similar to our running FS-goals
and (ii) is only allowed in the SELECT clause of SQL statements. For this reasons, De AL
supports the Datalog/“extension via continuous aggregates in the head of the clauses.
Therefore, the formal semantics of De AL programs are defined by simple syntactic rules
that map them back to Datalog’*programs.

Several Datalog languages, proposed in the past, including LDL++, support aggregates
in the heads of the program rules. This similarity in syntactic constructs used, and the
simple extensions for differential fixpoint and magic-set discussed in this paper, allowed
us to base the implementation of De AL on the well-tested architecture and efficient
implementation techniques of LDL++. For documentation, and information about the
system status, availability, and performance on different environments, including parallel
ones, the interested reader is referred to 2.

From Integers to Floating-Point Numbers

The max-based optimization allows us to use very large integers for FS-values, without
having to repeat this computation for every value up to the max. This property addresses
a number of practical issues, including integer arithmetic on very large values causing
overflows. While unlimited precision integers can be used to solve this problem, a more
efficient approach consists in taking advantage of floating point numbers and their very
efficient implementation, although this might result in round-off errors. For instance, if

1 F. Arni, K. Ong, S. Tsur, H.-Wang, and C. Zaniolo. The deductive database system LDL~++. In TPLP,
3(1):61-94, 2003
2 The Deductive Application Language (DeAL) System http://wis.cs.ucla.edu/deals/
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the system only supports four-digit precision, then the integer 5222 will be represented
as 5.222 x 10173 and the sum of this integer with itself will be rounded off to 1.044 x 104,
which is only an approximation for the correct result of 10444. On the other hand, round-
offs define monotonic functions on positive integers and they can thus be used in our
rules without compromising the least-fixpoint semantics and their amenability to max-
based optimization. Thus, by adding to our rules round-off goals that apply to the FS-
values, we obtain normal Datalog’® programs where the max-based computation using
unlimited-precision integers is approximated by the computation using floating-point
numbers. Naturally the user has to decide whether this approximation is satisfactory, or
improvements are required, such as using double-precision arithmetic, or using formulas
that are less prone to round-off errors. These general computation issues can be addressed
by numerical analysis techniques that are outside the scope of this paper.

Supporting Floating-Point Numbers Decimal numbers are required in many applications,
that, e.g., deal with percentages and probabilities. All the decimal numbers used in a Da-
talog!™® program can be viewed as the integer numerators of rational numbers that share a
given large denominator, D. Then, every arithmetic expression on these rational numbers
with common denominator D, can be transformed into equivalent ones that compute the
integer numerator of the result represented over the denominator D. For instance, given
two numbers N1/D and Ny/D their sum is (N7 + Nz)/D). However their product is
((N1 x N3)+D)/D, where the integer division can cause a round-off error (e.g., if base-10
numbers are used, and N; = Ny = 5222, and D = 106, then their product is rounded off to
27/10%). Modern hardware provides very fast implementations for these computations,
whereby the system (i) performs the round-off operation +D automatically, and (ii)
supports very large values for D whereby roundoff errors are minimized. Indeed, we
can set D = 10¢ where C is the largest value for the negative exponent supported by
the system and then the floating point arithmetic emulates exactly the rational number
arithmetic described above, where a real number, such as X = 5.222 x 1073, is simply
a compact representation of the rational number 5.222 x 10¢~3/10¢. For instance, if
C = 12 the floating point unit computes X? = 2.7269284 x 10~°, which corresponds to the
rational number 27269284/10'2. Thus, no round-off occurs when C = 12. However, when
C = 6, the floating point unit will produce 2.7 x 1075 = 27/10° because of the roundoff
caused by the underflow. Therefore, the roundoff behavior of floatin-point numbers with
least exponent —C', produces exactly the same results as those produced by rational
number with denominator D = 10¢. Current systems support C' values where C' >
95 and thus underflow is unlikely to be an issue in most applications. Of course, the
emulation that real numbers provide for rational numbers is also limited by the fact
that their mantissa is of finite length, and thus for large numbers, we will also incur
in the roundoff errors.Therefore, while users must be warned that Datalogf® is not
better than any other language in preventing overflow and roundoff problems, positive
floating-point numbers can be used freely in normal Datalog™® programs, which have
formal semantics, and provide a very efficient implementation through floating-point
arithmetic®. Using floating-point numbers and real arithmetic, Datalog”® can express a
cornucopia of interesting applications.

3 For simplicity, we have used a decimal base, but the same conclusions hold for other bases.
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