
1

Online appendix for the paper

A Practical Analysis of Non-Termination in Large
Logic Programs

published in Theory and Practice of Logic Programming

Senlin Liang and Michael Kifer

Department of Computer Science

Stony Brook University, USA
(e-mail: {sliang, kifer}@cs.stonybrook.edu)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Experiments

Terminyzer+ has been implemented for the Flora-2 and SILK systems, and we report

our experiments below. All tests were performed on a dual core 2.4GHz Lenovo X200

with 3 gigabytes of main memory running Ubuntu 11.04 with Linux kernel 2.6.38. The

sources of the test programs as well the reports produced by Terminyzer+ are available

online at http://rulebench.projects.semwebcentral.org/terminyzer+.

Test programs. Here we include four test cases: T1 ,T2 ,T3 , and T4 , and none of them

terminates. The first three tests are performed with subgoal abstraction enabled, while

T4 was tested without subgoal abstraction. T1 is the query and the rule set of Example 1.

T2 and T3 are very large programs which were derived from Flora-2 programs used in

the SILK project. T2 has 844 rules and facts, and its corresponding XSB program (after

Flora-2 -to-XSB translation) is estimated to have 2,000 rules and facts. T3 consists of

4,774 rules and 919 facts, and its XSB program has over 1,000 facts and over 5,500 rules.1

T4 is the program of Example 3.

For T1 and T2 , we set XSB to abort after the answer depth reached 30. For T3 , we let

the evaluation continue until all available memory was consumed. The reason is that T3

is a really complex program, and in order to get a usable prefix of its infinite trace, we

have to let it run “long enough.” The execution of T2 produces a log trace of 3 megabytes

with around 26,000 log entries, and the trace for T3 is in excess of 2 gigabytes with more

than 14 million log entries.

Test results. Terminyzer+ produced expected results in all the test cases. For T1 ,

Terminyzer+ constructed the unfinished-call graph shown in Figure 1 and identified its

culprit loop. The auto-repair technique presented in Section 5 successfully fixed the non-

termination problem as demonstrated in Example 2.
For T2 , Terminyzer+ determined that the predicate entailed(X) of the following rule

was generating infinitely many answers:

entailed(conjunction(Antecedent1,Antecedent2)) :-

1 We also tested other, fairly large real programs from the SILK project with similarly positive results.

2

entailed(Antecedent1), entailed(Antecedent2).

The heuristic auto-repair method of Section 5 fails to fix this non-terminating query since

it is the query itself, not its subqueries, that has infinitely many answers.

For T3 , the unfinished-call CPG has 14 nodes and 34 edges, and its answer-flow CPG

has 9 nodes and 28 edges. Our auto-repair method successfully removes the cause of non-

termination and the remedied program terminates with one answer. We should mention

that an experienced knowledge engineer spent hours debugging T3 — all in vein.

For T4 , Terminyzer+ successfully identified the optimal subgoal pattern, as described

in Example 3.

Computation times. For T1 , T2 , and T4 , Terminyzer+ took less than 1 second for

each program. For the much more complex T3 , it took 170 seconds. Compared to the

fruitless hours spent by our knowledge engineer, Terminyzer+ appears to be a much

more inviting alternative.

Appendix B Related Work

There have been many works on termination analysis for logic programs (Bol et al.

1991; Sahlin 1993; Schreye and Decorte 1994; Decorte et al. 1998; Shen 1997; Ohlebusch

et al. 2000; Shen et al. 2001; Verbaeten et al. 2001; Lindenstrauss et al. 2004; Bruynooghe

et al. 2007; Nguyen and De Schreye 2007; Nguyen et al. 2008; Schneider-kamp et al. 2010;

Shen et al. 2010) while non-termination analysis received much less attention (Neumerkel

and Mesnard 1999; Payet 2007; Payet and Mesnard 2006; Shen et al. 2001; Voets and

De Schreye 2009; Shen et al. 2010; Voets and De Schreye 2011). Most of these studies are

either norm-based or transformation-based. In norm-based approaches (Bol et al. 1991;

Sahlin 1993; Schreye and Decorte 1994; Decorte et al. 1998; Shen 1997; Shen et al. 2001;

Verbaeten et al. 2001; Lindenstrauss et al. 2004; Bruynooghe et al. 2007; Shen et al. 2010;

Voets and De Schreye 2011), termination analysis is performed by proving certain well-

founded sufficient conditions for termination, which involve norms, i.e., abstractions of the

size of a term (e.g., the number of symbols, depth, etc.). Transformation-based algorithms

(Neumerkel and Mesnard 1999; Ohlebusch et al. 2000; Payet 2007; Payet and Mesnard

2006; Nguyen et al. 2008; Schneider-kamp et al. 2010) rewrite logic programs so that the

termination property of the rewritten program could be used to prove termination of the

original program.

There are three main points that differentiate Terminyzer+. First, a log-based ap-

proach to debugging expounded by Terminyzer+ is fundamentally different from the

works on proving termination. We do not aim to prove termination because if a query

terminates then there is nothing for Terminyzer+ to do. Second, the problems discussed

in most previous work of the subject—except (Decorte et al. 1998; Verbaeten et al.

2001)—are non-issues in our framework, since they stem from the severe incompleteness

of the Prolog inference mechanism and, therefore, do not apply to the inference engines

under consideration. Third, Terminyzer+ aims at helping the programmer to debug pro-

grams without syntactic restrictions. All other approaches perform static or dynamic

analysis in order to prove termination or non-termination for restricted classes of logic

programs, such as function-free programs, positive programs, etc. These restrictions, if

at all stated, are typically very strong; stated or not, they always exist because both of

3

the above problems are undecidable. This also applies to (Decorte et al. 1998; Verbaeten

et al. 2001), which are the only works that study the termination problem for tabling

engines.
Among all these previous studies, only the loop checker approach in (Shen et al. 2001)

resembles our analysis of non-termination in the absence of subgoal abstraction. This work
aims at detecting repetitions of subgoals and clauses, which are akin to Terminyzer+’s op-
timal subgoal patterns. However, there are two major differences between Terminyzer+’s
analysis in Section 6 and the loop checkers in (Shen et al. 2001). First, Shen et al. work
with Prolog without tabling. For instance the following query:

p(X) :- p(f(X)).

?- p(X).

terminates without answers in our framework (with subsumptive tabling or subgoal
abstraction) and thus is a non-issue at all, while their loop checker will report non-
termination because it detects an infinite SLD-derivation. Second, they perform static
analysis of the original program clauses and try to detect possible loops, while Terminyzer+
analyzes logs for actual execution. For instance, this query

p(X) :- p(f(X)).

p(f(a)).

?- p(a).

will be reported as terminating in their framework since there is a successful SLD-

derivation. However, this is a drawback because this analysis considers only some deriva-

tions, while Prolog may explore more. For instance, in the above example, if the user

asks for another answer by typing a “;” then Prolog will go into an infinite loop. So,

in that sense, this analysis is overly optimistic and not completely adequate. In con-

trast, Terminyzer+ would consider the actual executions. For tabled engines without

subgoal abstraction that, like Prolog, return one answer at a time (e.g., the batched en-

gines of XSB and YAP), Terminyzer+ will report the first successful derivation of p(a)

as terminating and the subsequent ones as non-terminating. Furthermore, with subgoal

abstraction, the computation terminates and Terminyzer+ will report this properly.

Appendix C Tabling and Forest Logging in XSB

In tabled (SLG) evaluation, calls to tabled predicates are cached in a table T for subse-

quent calls. T can be viewed as a set of pairs of the form (sub, ansrs) where ansrs are

proven instances of sub. When a tabled subgoal, sub, is issued, SLG examines whether

there is a pair (sub′, ansrs ′) ∈ T such that sub is similar (to be explained shortly) to

sub′. If so, then answer clause resolution is performed instead of program clause resolu-

tion, i.e., ansrs ′ are used to satisfy sub. In this case, sub is referred to as the consumer

of sub′ while sub′ is the producer of sub. If no tabled answers can be used above, a new

table entry of the form (sub, ansrs) is added to T , where initially ansrs = ∅. Then sub

is resolved against program clauses, as usual in Prolog. In such a case, all newly derived

answers for sub are added to ansrs, sub becomes a producer of these answers, and all

subsequent subgoals that are similar to sub become consumers of sub’s answers.

There are two main ways to define subgoal-similarity mentioned above. Depending on

which notion is chosen, the tabling strategy is called variant or subsumptive. In variant

tabling, sub is similar to sub′ if sub is a variant of sub′, i.e., they are identical up to

4

variable renaming. In subsumptive tabling, sub is similar to sub′ if sub is subsumed by

sub′, i.e., there is a variable substitution σ such that σ(sub′) = sub. Note that in this case

the notion of similarity is asymmetric. Since only unique answers are added to the table

and returned to consumers, tabled evaluation terminates if there is only a finite number

of tabled subgoals and each tabled subgoal has finitely many answers. For instance, this

is the case in Datalog, i.e., when function symbols are not present.

The workings of SLG resolution can be captured by an SLG forest, which has an SLG

tree for every new (dissimilar) subgoal to a tabled predicate. The SLG tree for sub has

root of the form sub :- sub, and each non-root node is of the form θ(sub) :- θ(left subs),

where θ is the substitution obtained from resolving sub against the knowledge base and

θ(left subs) are the remaining subgoals needed to prove sub. If θ(left subs) is an empty

clause, θ(sub) is an answer to sub. Children of a root node are obtained through resolution

of a tabled subgoal against program clauses. Children of non-root nodes are obtained

through answer clause resolution if the leftmost selected literal is tabled or through

program clause resolution if the leftmost selected literal is not tabled. Each edge in the

tree corresponds to a derivation step of program or answer clause resolution.

Example 1
The SLG forest for the following XSB program is shown in Figure C 1, where each node
is labeled with an ordinal denoting the creation order (a timestamp) of the node during
evaluation.

:- table path/2.

edge(1,2). edge(1,3). edge(2,1).

path(X,Y) :- edge(X,Y). path(X,Y) :- edge(X,Z), path(Z,Y).

?- path(1,Y).

Fig. C 1. The SLG Forest for Example 1

Children of node 11 are obtained through answer clause resolution since its leftmost

selected literal path(1,Y) is tabled, while children of nodes 2 and 5 are obtained through

5

answer clause resolution because their leftmost selected literals not tabled. This is a

simplified version of an example in (Swift et al. 2013). 2

As introduced in Section 2, XSB provides a new facility, called logforest, which

makes the table events available to the programmer and thus helps program debugging

and optimization.

Example 2

For the SLG forest of Example 1, the logforest trace is given in the first column of

Table C 1. The second column in the table is the label of the node in the trees of Figure C 1

Log Node Explanation

tc(path(1, v0),root,new,0) 1 initial call
2 program clause resolution

na([2],path(1, v0),1) 3 program clause resolution, new answer
na([3],path(1, v0),2) 4 program clause resolution, new answer

5 program clause resolution
6 program clause resolution

tc(path(2, v0),path(1, v0),new,3) 7 new call made by node 6
8 program clause resolution

na([1],path(2, v0),4) 9 program clause resolution, new answer
10 program clause resolution

tc(path(1, v0),path(2, v0),incmp,5) 11 repeated unfinished call
ar([2],path(1, v0),path(2, v0),6) 12 answer clause resolution

answer to consumer
na([2],path(2, v0),7) 12 new answer
ar([3],path(1, v0),path(2, v0),8) 13 answer clause resolution

answer to consumer
na([3],path(2, v0),9) 13 new answer

14 program clause resolution
tc(path(3, v0),path(1, v0),new,10) 15 new call made by node 14

16 program clause resolution
17 program clause resolution

cmp(path(3, v0),3,11) 15 evaluation completed
ar([1],path(2, v0),path(1, v0),12) 9 return to consumer
na([1],path(1, v0),13) 6 new answer
ar([2],path(2, v0),path(1, v0),14) 12 return to consumer
ar([3],path(2, v0),path(1, v0),15) 13 return to consumer
ar([1],path(1, v0),path(2, v0),16) 1 return to consumer
cmp(path(1, v0),1,17) 1 evaluation completed
cmp(path(2, v0),1,18) 7 evaluation completed

Table C 1. Forest Log for the Evaluation of Example 1

where a corresponding event happens. The third column is an explanation. An answer

for a subgoal is represented as a substitution for the list of variables in the subgoal.

For instance, in the second log entry na([2], path(1 , v0), 1), the answer is represented

as [2] and the list of variables in the subgoal path(1 , v0) are [v0]. It means that the

substitution v0 = 2 is an answer. 2

6

Appendix D Unfinished-Call CPG, Path, and Loop Computation

Algorithm 1, below, constructs the unfinished-call CPG Guc = (N , E) from the set of

unfinished calls of a forest logging trace. Construction starts by adding the root call

to the CPG. Then, for each log record of the form unfinished(child , parent , timestamp)

such that parent is already in the CPG, the node child and the edge (parent , child)

are added, if child has not been added before. All unfinished calls are processed in

the order of their timestamps, i.e., their addition to the log, which is also the order

in which these unfinished calls are made during evaluation. Thus, when the record

unfinished(child , parent , timestamp) is encountered, we know that parent must have been

added to the graph as an child-subgoal of its parent, i.e., unfinished(parent , p′, timestamp′)

must be true for some p′ and timestamp′ < timestamp. We have two cases:

1. child ∈ N . The evaluation calls a previously issued subgoal.
2. child /∈ N . A new subgoal is called and a new node is added to the graph.

In the first case, an unfinished-call loop exists, so the current evaluation path of parent is

suspended and alternative derivations is explored. This implies an important property of

unfinished-call CPGs: an unfinished-call loop is created out of an (acyclic) path always

by adding a final edge of the form (sub1 , sub2), where sub1 .timestamp ≥ sub2 .timestamp.

We call such an edge a critical loop edge—see the edges labeled with 11 and 24 in Figure 1

of Example 1.

Let UC be the set of all unfinished calls E = ∅; N = {root}; root .timestamp = −1 ;

while UC 6= ∅ do
Remove unfinished(child , parent , timestamp) from UC , where timestamp is the

smallest among UC ;

if child /∈ N then {N = N ∪ {child}; child .timestamp = timestamp};
E = E ∪ {(parent , child)}; (parent , child).timestamp = timestamp;

end

return Guc = (N , E)
Algorithm 1: Unfinished-Call CPG Construction

If critical loop edges are taken out, any unfinished-call CPG becomes a connected
directed acyclic graph (i.e., a tree) in which every edge goes from a node with a smaller
timestamp to a node with a larger timestamp. A path, connecting the root node to a
subgoal, can be represented as the predicate uc path(Sub,Path) defined by the following
rules.

:- table reversed_uc_path/2.

uc_path(C,P) :- reversed_uc_path(C,RevP), reverse(RevP,P).

reversed_uc_path(C,[C,root]) :- unfinished(C,root,_).

reversed_uc_path(C,[C|P]) :- unfinished(C,Parent,_),

Parent.timestamp<C.timestamp, reversed_uc_path(Parent,P).

After computing all unfinished-call paths, without critical loop edges, from root to

other nodes, all distinct unfinished-call loops can be computed by checking whether there

exists a critical loop edge from the last vertex of a path to any other node in the same

path. Consider an unfinished-call path P = [root , sub1 , . . . , subn]. If there is a critical

loop edge (subn , subi), 1 ≤ i ≤ n, then the part of P from subi to subn , [subi , . . . , subn],

is an unfinished-call loop.

7

Appendix E Answer-Flow CPG Construction

Given a child-parent sequence (defined in Section 4.2), let pat be the subsequence contain-
ing the last n elements in the sequence. The predicate pattern(cps, len, pat , times) speci-
fies the number of times a child-parent pattern pat of length len repeats at the end of cps.
Patterns of different lengths can be computed by posing ?- pattern(cps, len,Pat ,Times)
to the following rules, where the len parameter successively assumes the values 1, 2, and
so on. In this way, we will either find an optimal child-parent pattern or determine that
there is no pattern.

pattern(CPS,Len,Pat,Times) :-

length(Pat,Len),

%% This binds Pat to the suffix of CPS of length Len

append(CPSPrefix,Pat,CPS),

aux_pattern(CPSPrefix,Pat,Times).

aux_pattern(CPS,Pat,Times) :-

append(CPSPrefix,Pat,CPS), !,

pattern(CPSPrefix,Pat,TimesPrefix),

Times is TimesPrefix+1.

aux_pattern(CPS,Pattern,1).

Example 3
The child-parent sequence of the forest logging trace for Example 1 is the cps below:

[(q(_h599,r2),p(_h599,r4)), (p(_h599,r4),q(_h599,r2)), (q(_h619,r2),p(_h619,r4)),

(p(_h639,r4),q(_h639,r2)), (q(_h659,r2),p(_h659,r4)), (p(_h679,r4),q(_h679,r2)),

(q(_h699,r2),p(_h699,r4)), (p(_h719,r4),q(_h719,r2)), (q(_h739,r2),p(_h739,r4)),

(p(_h759,r4),q(_h759,r2)), (q(_h779,r2),p(_h779,r4))].

This cps has two child-parent patterns. The first is cpp1 = [(p(h759, r4), q(h759, r2)),

(q(h779, r2), p(h779, r4))] of length two and it repeats five times. The second one

is cpp2 = cpp2
1 of length four, which repeats twice. The optimal child-parent pattern

is cpp1 , as it covers 2 × 5 = 10 entries in cps compared to cpp2 , which covers only

4 × 2 = 8 entries. 2

Let Gaf be the answer-flow CPG for the forest logging trace in question. Its answer-flow
paths and loops can be computed in a way similar to the computation of unfinished-call
paths and loops. All answer-flow paths from node child to node parent can be computed
using the predicate af path(child , parent , path); all answer-flow loops starting from child
can be computed using the predicate af loop(child , loop), defined below.

:- table af_path/3.

af_path(Child,Parent,[Child]) :- optimal_cpp(Child,Parent).

af_path(Child,Parent,[Child|P]) :- optimal_cpp(Child,Sub),

af_path(Sub,Parent,P), \+ member(Child,P).

af_loop(Sub,Loop) :- af_path(Sub,Sub,Loop).

Example 4

Consider cpp1 , the optimal child-parent pattern of Example 3. Its answer-flow graph is

the subgraph shown inside the rectangle in Figure 1. The only answer-flow loop is [16,

20, 16], which tells us that subgoal p called from rule r4 and subgoal q called from rule

r2 return answers to each other in an infinite answer derivation loop. 2

Appendix F Proofs of Theorems

8

Proof of Theorem 1
(i) Clearly, non-termination can be caused only by unfinished calls. As described in

Section 2, either tc(child , parent , , timestamp) or nc(child , parent , , timestamp) must be

logged whenever a tabled subgoal child is called by parent , and only when child is com-

pletely evaluated, cmp(child , , timestamp) is recorded. The timestamps of these log en-

tries preserve the sequential order of the corresponding events. Therefore, the sequence of

unfinished calls defined in Section 4.1, sorted by their timestamps, records exactly those

unfinished calls that cause that specific non-termination.

(ii) The program transformation described in Algorithm 1 generates a new rule id for

each rule and embeds it in each of the rule’s tabled body subgoals as the last argument,

and these rule ids appear in each call to these subgoals. Therefore, each log entry for

each unfinished subgoal includes the id of the rule calling that subgoal.

Proof of Theorem 2
(i) There has to be at least one loop. Suppose there is no unfinished-call loop in the

corresponding unfinished-call CPG Guc = (N , E). Subgoal abstraction ensures that only

a finite number of calls to tabled predicates can exist, so Guc is a finite graph. Since

there is no unfinished-call loop, there must be terminal nodes that have no outgoing

edges. Let S ⊆ N denote this set of nodes. It means that their SLG-children are not

in N , i.e., they are not unfinished subgoals. Therefore the SLG-children of S are either

completely evaluated tabled subgoals or base facts. But then, after long enough time, all

subgoals in S should have been completely evaluated and completed. This contradicts

the assumption that S ⊆ N , i.e., the subgoals in S are unfinished.

At least one of the loops must be responsible for the generation of an infinite number

answers; otherwise all answers would be derived and the evaluation would terminate.

(ii) This is proved by the same argument as in Theorem 1 (ii).

Proof of Theorem 3
(i) There can be only a finite number of unfinished subgoals due to subgoal abstraction,

and thus there must be at least one child-parent pattern. Otherwise the evaluation would

have terminated. Therefore, an optimal child-parent pattern must exist in the forest

logging trace.

(ii) Suppose there is no answer-flow loop in Gaf . There must be a set S ⊆ N of terminal

nodes and, since these nodes are terminal, the graph has no edges going out of S. The

SLG-children of these terminal nodes are therefore not in N and answers for these SLG-

children are not being repeatedly derived. Recall that, due to subgoal abstraction, Gaf

can have only a finite number of nodes and, if we let the engine run long enough, all

possible edges in Gaf will be generated and further computation will not change that

graph. Therefore, the nodes for which answers are not derived repeatedly cannot stay

unfinished (in the sense of unfinished SLG subgoals) infinitely long. So, after a while,

all SLG-children of S must either become completely evaluated tabled subgoals or they

must have been base facts all along. This implies that, given enough time, all subgoals in

S would be completed, contrary to the assumption that S ⊆ N . Therefore, there must

be an answer-flow loop.

(iii) If sub ∈ N and sub is not contained in any answer-flow loop, then sub’s evalu-

ation would have been completed and it cannot be part of any child-parent pattern, a

contradiction.

9

(iv) Consider an edge (sub1 , sub2) ∈ E , where sub1 is of the form predicate(..., ruleid).

We know sub2 calls sub1 and sub1 keeps returning answers to sub2 , by the definition of

the edges in Gaf . It follows from the argument made in (ii) of Theorem 1 that this call

of sub1 must have been made from the rule with the id ruleid .

Proof of Theorem 5

If sub ∈ Naf then it must be an unfinished subgoal, since answers to sub continue to be

derived. That is, the evaluation of sub has not been completed and Naf ⊆ Nuc . In fact, we

even have that Naf ⊂ Nuc , since root ∈ Nuc \ Naf . For any edge (child , parent) ∈ Eaf , we

know that child returns answers to parent , i.e., it is issued in a SLG tree for parent . There-

fore (parent , child) ∈ Euc . This implies that any answer-flow loop is also an unfinished-call

loop.

Proof of Theorem 6

We know that the set of nodes of the unfinished-call CPG for a trace is its set of unfinished

subgoals. In case of a terminating evaluation, all subgoals are completed and thus there

are no unfinished subgoals, i.e., its unfinished-call CPG must be empty, as it has no

nodes. It follows from Theorem 5 that the corresponding answer-flow CPG is likewise

empty.

Proof of Theorem 7

Soundness: If an optimal subgoal pattern exists then the evaluation does not terminate.

Indeed, if the evaluation terminates, there would be no unfinished subgoals and thus no

optimal subgoal pattern. Suppose the evaluation produces only a finite number of sub-

goals. Since there are only two causes for non-termination in a tabled logic engine without

subgoal abstraction—infinite number of answers or infinite number of subgoals—non-

termination must be due to an infinite number of answers. As described in Section 4.2,

this means that a finite subset of these subgoals, contained in the trace’s optimal child-

parent pattern, keeps receiving, deriving, and returning answers. Since there is an optimal

subgoal pattern, this requires certain predicates from certain rules to recursively and re-

peatedly call each other, supplying deeper and deeper terms as arguments. These calls

would then be causing new subgoals of bigger and bigger sizes to appear in the child-

parent pattern, contrary to the assumption that the evaluation produces only a finite set

of subgoals.

Completeness: As discussed above, when non-termination happens because of an infi-

nite number of subgoals, these subgoals must have increasingly deep function terms as

arguments, and these subgoals’ predicates must be recursive. Otherwise there would be

only a finite number of terms in a finite program. Therefore, there must be repetitions

in the simplified unfinished subgoal sequence of the trace, which implies that there must

be an optimal subgoal pattern.

References

Bol, R. N., Apt, K. R., and Klop, J. W. 1991. An analysis of loop checking mechanisms for
logic programs. Theoretical Computer Science 86, 1, 35–79.

10

Bruynooghe, M., Codish, M., Gallagher, J. P., Genaim, S., and Vanhoof, W. 2007.
Termination analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29, 1–44.

Decorte, S., De Schreye, D., Leuschel, M., Martens, B., and Sagonas, K. F. 1998.
Termination analysis for tabled logic programming. In Logic-based program synthesis and
transformation. Springer-Verlag, London, UK, UK, 111–127.

Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. 2004. Proving termination for logic
programs by the query-mapping pairs approach. In Program Developments in Computational
Logic. Springer-Verlag LNCS, Berlin, Heidelberg, 453–498.

Neumerkel, U. and Mesnard, F. 1999. Localizing and explaining reasons for non-terminating
logic programs with failure-slices. In International Conference on Principles and Practice of
Declarative Programming. Springer-Verlag, London, UK, 328–342.

Nguyen, M. T. and De Schreye, D. 2007. Polytool: proving termination automatically
based on polynomial interpretations. In Logic-based program synthesis and transformation.
Springer-Verlag, Berlin, Heidelberg, 210–218.

Nguyen, M. T., Giesl, J., Schneider-Kamp, P., and De Schreye, D. 2008. Termination
analysis of logic programs based on dependency graphs. In Logic-Based Program Synthesis
and Transformation. Springer-Verlag, Berlin, Heidelberg, 8–22.

Ohlebusch, E., Claves, C., and March, C. 2000. TALP: A tool for the termination analysis
of logic programs. In Rewriting Techniques and Applications. Springer-Verlag, LNCS, Berlin,
Heidelberg, New York, 270–273.

Payet, E. 2007. Detecting non-termination of term rewriting systems using an unfolding opera-
tor. In Logic-based program synthesis and transformation. Springer-Verlag, Berlin, Heidelberg,
194–209.

Payet, E. and Mesnard, F. 2006. Nontermination inference of logic programs. ACM Trans-
actions on Programming Languages and Systems 28, 256–289.

Sahlin, D. 1993. Mixtus: An automatic partial evaluator for full prolog. New Generation
Computing 12, 1 (March), 7–51.

Schneider-kamp, P., Giesl, J., StrÖder, T., Serebrenik, A., and Thiemann, R. 2010.
Automated termination analysis for logic programs with cut. Theory and Practice of Logic
Programming 10, 4-6 (July), 365–381.

Schreye, D. D. and Decorte, S. 1994. Termination of logic programs: The never-ending
story. Journal of Logic Programming 19/20, 199–260.

Shen, Y.-D. 1997. An extended variant of atoms loop check for positive logic programs. New
Generation Computing 15, 2 (May), 187–203.

Shen, Y.-d., De Schreye, D., and Voets, D. 2010. Termination prediction for general logic
programs. Theory and Practice of Logic Programming 9, 6 (Jan.), 751–780.

Shen, Y.-D., Yuan, L.-Y., and You, J.-H. 2001. Loop checks for logic programs with func-
tions. Theoretical Computer Science 266, 1-2, 441–461.

Swift, T., Warren, D. S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Cas-
tro, L., Marques, R. F., Saha, D., Dawson, S., and Kifer, M. 2013. The XSB System,
Version 3.3.x. Volume 1: Programmer’s Manual. XSB documentation.

Verbaeten, S., De Schreye, D., and Sagonas, K. 2001. Termination proofs for logic pro-
grams with tabling. ACM Transactions on Computational Logic 2, 1 (Jan.), 57–92.

Voets, D. and De Schreye, D. 2009. A new approach to non-termination analysis of logic
programs. In Int’l Conference on Logic Programming. Springer-Verlag, Berlin, Heidelberg,
220–234.

Voets, D. and De Schreye, D. 2011. Non-termination analysis of logic programs using
types. In Logic-based program synthesis and transformation. Springer-Verlag, Berlin, Heidel-
berg, 133–148.

