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Dresden University of Technology, 01062 Dresden, Germany

Center for Advancing Electronics Dresden

(e-mail: penaloza@tcs.inf.tu-dresden.de)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Proofs

Theorem 1

Let U ∈ I, and P be a program. The fixpoint TU
P ⇑0 is reached after a linear number of

iterations, measured on the number of atoms appearing in P .

Proof

W.l.o.g. let us assume that all empty rule bodies are replaced by constant 1. Let L0 := 0

and Li+1 := TU
P (Li), i ≥ 0. For every i ≥ 0 and a ∈ B such that (i) Li(a) < Li+1(a),

there are a rule r and a literal b ∈ B+(r) such that H (r) = a and Li+1(a) = 〈Li ,U 〉 (r).

In particular, note that (ii) Li+1(a) ≤ Li(b). In this case we say that a is inferred by b.

Let n be the number of propositional atoms in P . We prove that any chain of inferred

atoms has length at most n +1, which implies that n applications of TP give the fixpoint

TU
P ⇑ 0. Suppose on the contrary that there are a0, . . . , an+1 such that a0 is a numeric

constant and ai+1 ∈ B is inferred by ai ∈ B, 0 ≤ i ≤ n. As P contains n propositional

atoms, there exist 1 ≤ j < k ≤ n + 1 such that aj = ak . Hence, from (i) we have

Li+1(ai+1) > Li(ai+1) for i = 0, . . . ,n, and thus Lk (ak ) > Lk−1(ak ) ≥ Lj (ak ) (where the

last inequality is due to the monotonicity of TP ). From (ii) we have Li+1(ai+1) ≤ Li(ai)

for i = 0, . . . ,n, and thus Lk (ak ) ≤ Lj (aj ) = Lj (ak ). Therefore, we have Lk (ak ) > Lj (ak )

and Lk (ak ) ≤ Lj (ak ), that is, a contradiction.

Theorem 2

For FASP programs without numeric constants and crisp sets, Definition 2 coincides with

the original notion of unfounded set by Van Gelder et al. (1991).
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Proof
Let L,U be crisp sets, L ⊆ U ⊆ B, and P be an ASP program. According to Van Gelder

et al. (1991), a crisp set Y ⊆ B is an unfouded set for P w.r.t. (L,U ) if for each r ∈ P

such that H (r) ∈ Y , (1) B+(r) 6⊆ U , or (2) B−(r) ∩ L 6= ∅, or (3) B+ ∩ Y 6= ∅. Let

X ∈ I be such that X (a) = 1 if a ∈ Y , and X (a) = 0 otherwise. We have to show that

Y is an unfounded set for P w.r.t. (L,U ) (according to Van Gelder et al.) if and only if

X is a fuzzy unfounded set for P w.r.t. (L,U ) (according to Definition 2).

(⇒) Consider a rule r ∈ P such that X (H (r)) > 0. We have H (r) ∈ Y . Any of (1), (2)

and (3) implies 〈U ∩ (1 \X ),L〉 (r) = 0.

(⇐) Consider a rule r ∈ P such that H (r) ∈ Y . We have X (H (r)) = 1, and hence

0 = [U ∩ (1 \X )](H (r)) ≥ 〈U ∩ (1 \X ),L〉 (r) = 0. We prove that if (1) and (3) do not

hold, then (2) holds. Falsity of (3) implies 〈U ∩ (1 \X ),L〉 (r) = 〈U ,L〉 (r), and falsity

of (1) implies 〈U ,L〉 (r) = L(not B−(r)). Therefore, there is an element b of B−(r) such

that L(b) = 1, and hence B−(r) ∩ L 6= ∅, i.e., condition (2) is satisfied.

Theorem 3
Let X1,X2 be two fuzzy unfounded sets for P w.r.t. (L,U ). Then also X1 ∪ X2 is an

unfounded set for P w.r.t. (L,U ).

Proof
Let X = X1 ∪ X2 and r ∈ P such that X (H (r)) > 0 holds. We have to show that

[U ∩ (1 \ X )](H (r)) ≥ 〈U ∩ (1 \X ),L〉 (r). Assume w.l.o.g. that X (H (r)) = X1(H (r)).

Since X1 is unfounded, it follows that

[U ∩(1\X )](H (r)) = [U ∩(1\X1)](H (r)) ≥ 〈U ∩ (1 \X1),L〉 (r) ≥ 〈U ∩ (1 \X ),L〉 (r),

which proves the result.

Theorem 4
M is a fuzzy answer set of a program P if and only if GUSM ,M

P = 1 \M .

Proof
(⇒) Since 1 \ (1 \ M ) = M and M |= P , 1 \ M is an unfounded set. Moreover, we

can prove that for any unfounded set X for P w.r.t. (M ,M ), M ∩ (1 \ X ) |= PM

holds, from which X ⊆ 1 \ M follows, since M is a minimal model of PM . Consider

a rule r ∈ P . As the interepretation of B−(r) is fixed in the reduct PM , we have to

show that [M ∩ (1 \ X )](H (r)) ≥ 〈M ∩ (1 \X ),M 〉 (r) holds. If X (H (r)) = 0, then

[M ∩(1\X )](H (r)) = M (H (r)) ≥ 〈M ,M 〉 (r) ≥ 〈M ∩ (1 \X ),M 〉. Otherwise, it follows

that [M ∩ (1 \X )](H (r)) ≥ 〈M ∩ (1 \X ),M 〉 by Definition 2. Thus, GUSM ,M
P = 1 \M .

(⇐) Let GUSM ,M
P = 1\M . We first show that M |= P . Let r ∈ P . If [1\M ](H (r)) = 0,

then M |= r because M (H (r)) = 1. If [1 \ M ](H (r)) > 0, then M |= r follows from

Definition 2 and the fact M ∩ (1 \ (1 \M )) = M . Hence M |= P , which in turn implies

M |= PM . We now prove that for any M ′ ⊆ M such that M ′ |= PM , X = 1 \ M ′ is

an unfounded set for P w.r.t. (M ,M ), from which X ⊆ GUSM ,M
P = 1 \ M and thus

M ′ = M . Consider a rule r ∈ P such that X (H (r)) > 0. Since M ′ |= PM , it holds

that M ′(H (r)) ≥ 〈M ′,M 〉 (r). From M ′ = 1 \ X and M ′ ⊆ M , it then holds that

[M ∩ (1 \ X )](H (r)) = M ′(H (r)) ≥ 〈M ′,M 〉 (r) = 〈M ∩ (1 \X ),M 〉 (r), which shows

that X is an unfounded set.



3

Theorem 5

Let L,U ∈ I, L ⊆ U , and P be a program. If 1\RL,U
P ⇓1 ⊆ U , then RL,U

P ⇓1 = GUSL,U
P .

Proof

(⊆) We show that X = RL,U
P ⇓ 1 is an unfounded set. Consider r ∈ P such that

X (H (r)) > 0. We have to show that [U ∩ (1 \ X )](H (r)) ≥ 〈U ∩ (1 \X ),L〉 (r). Since

1 \ X ⊆ U , we can equivalently show [1 \ X ](H (r)) ≥ 〈U ∩ (1 \X ),L〉 (r). As X is

a fixpoint of RL,P
P , we have X (H (r)) ≤ 1 − 〈U ∩ (1 \X ),L〉 (r), which implies that

1−X (H (r)) ≥ 〈U ∩ (1 \X ),L〉 (r).

(⊇) Let now Y be an unfounded set. We will show that (i) RL,U
P (Y ) = Y and (ii) I ⊆ J

implies RL,U
P (I ) ⊆ RL,U

P (J ), from which we derive Y ⊆ RL,U
P ⇓1. To show (i), consider

a ∈ B. If Y (a) = 0, then also RL,U
P (Y ) = 0 by definition. Let now Y (a) > 0, and

suppose that there is some r ∈ P such that Y (a) > 1 − 〈U ∩ (1 \Y ),L〉 (r). This is

equivalent to 1 − Y (a) < 〈U ∩ (1 \Y ),L〉 (r). Since Y is unfounded, it must hold that

[U ∩ (1 \Y )](a) ≥ 〈U ∩ (1 \Y ),L〉 (r), and thus we have that

[U ∩ (1 \Y )](a) ≥ 〈U ∩ (1 \Y ),L〉 (r) > 1−Y (a),

which is a contradiction with the fact that [U ∩ (1 \ Y )](a) ≤ 1 − Y (a) must hold. To

show (ii), we just note that 1 − 〈U ∩ (1 \ I ),L〉 (r) ≤ 1 − 〈U ∩ (1 \ J ),L〉 (r) holds for

every r ∈ P .

Theorem 6

Let L,U ∈ I and P be a program. The fixpoint RL,U
P ⇓1 can be computed in polynomial

time on the size of P .

Proof

It is easy to see that one application of the RP operator requires linear time in the

number of rules P . Moreover, as in Theorem 1, the greatest fixpoint RL,U
P ⇓1 is obtained

after at most as many applications of this operator as there are atoms in P . In total, this

means that this fixpoint can be computed in polynomial time on the size of P .

Theorem 7

Let P be a program, L,U two interpretations, (L′,U ′) = WP (L,U ), and M an answer

set of P . If L ⊆ M ⊆ U , then L′ ⊆ M ⊆ U ′.

Proof

By definition, L′(a) = [TU
P (L)](a) = max{〈L,U 〉 (r) | H (r) = a}. By assumption,

L ⊆ M ⊆ U and hence 〈L,U 〉 (r) ≤ 〈M ,M 〉 (r) = M (B(r)) for every rule r . Since M is

a model of its reduct, we have L′(a) ≤ max{M (B(r)) | H (r) = a} ≤ M (a).

On the other hand, since M is an answer set of P , by Theorems 4 and 5 it follows that

1 \M = GUSM ,M
P = RM ,M

P ⇓1 ⊇ RL,U
P ⇓1. This implies that M ⊆ 1 \RL,U

P ⇓1 = U ′

Theorem 8

Let P be a stratified program. The least fixpoint of WP coincides with the unique answer

set of P and is computable in polynomial time.
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Proof

The fact that WP ⇑ (0,1) is the unique answer set of P follows using the same ideas

presented in (Lukasiewicz 2006). Each application of WP requires a computation of TP

and one of RL,U
P ⇓ 1, each of which is polynomial on the number of atoms in P . An

increase of L(a) in the i -th iteration of WP is caused by an increase of L(b) or a decrease

of U (b) in the previous iteration, for some b ∈ B. As in the proof of Theorem 1, this

implies that at most linearly many iterations (on the number of atoms appearing in P)

can be applied before a fixpoint is reached.

Theorem 9

Let L,U ∈ I, and P be a program. If M |= P and L ⊆ M ⊆ U , then SU
P (L) ⊆ M ⊆ U .

Proof

Since M |= P and L ⊆ M , we have that [SU
P (L)](a) ≤ M (a) for every atom a ∈ B, and

hence SU
P (L) ⊆ M .

Theorem 10

Let P be a program over the  Lukasiewicz t-norm, and L,U ∈ I. For every atom a ∈ B
it holds that [SU

P (L)](a) = min{I (a) | I satisfies  LP ∪ {L(b) ≤ I (b) ≤ U (b) | b ∈ B}}.

Proof

Let r be a rule of the form (1), and I an interpretation. I |= r if and only if

I (a) ≥ I (B(r)) = max{I (b1) + . . . + I (bm)− I (bm+1)− . . .− I (bn) + 1−m, 0}.

Since I (a) ≥ 0, I |= P if and only if I satisfies the system  LP . Additionally, L ⊆ I ⊆ U

if and only if for every b ∈ B it holds that L(b) ≤ I (b) ≤ U (b). Finally, as the feasible

region is closed, the optimal can be reached.

Theorem 11

Let L,U ∈ I, and P be a program over the  Lukasiewicz t-norm. SU
P (L) is computable

in polynomial time w.r.t. the number of rules.

Proof

The computation of the SP operator requires to solve one linear programming problem

for each atom a appearing in P . Linear programming is well-known to be solvable in

polynomial time on the number of restrictions. As the size of  LP corresponds to the

number of rules in P , this yields a polynomial complexity upper bound.

Theorem 12

The fixpoint of WP gives the well-founded semantics by Damásio and Pereira (2001).
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Proof

The well-founded semantics by Damásio and Pereira (2001) is defined as the fixpoint of

the following operator (adapted to our notation):

Ω(L,U ) := (TU
P ⇑0,TL

P⇑0)

Let U ′ := TL
P⇑0. The claim immediately follows by Theorem 5 and the following property

(proved below):

U ′ ⊆ U =⇒ 1 \U ′ = GUSL,U
P .

We first prove that 1 \ U ′ is unfounded w.r.t. (L,U ). Let r be a rule in P such that

U ′(H (r)) > 0. We have

[U ∩ (1 \ (1 \U ′)](H (r)) = [U ∩U ′](H (r)) = U ′(H (r))

≥ max{〈U ,L〉 (r ′) | r ′ ∈ P ,H (r ′) = H (r)}
≥ 〈U ,L〉 (r)

≥ 〈U ∩U ′,L〉 (r)

= 〈U ∩ (1 \ (1 \U ′)),L〉 (r).

We complete the proof by proving X ⊆ 1 \ U ′, or equivalently U ′ ⊆ 1 \ X , for every

unfounded set X w.r.t. (L,U ). To this aim, let Un be the n-th application of TU
P to 0,

n ≥ 0. We prove Un ⊆ 1 \X by induction on n ≥ 0.

For n = 0, the result holds trivially, since U0 = 0. Suppose now that Un ⊆ 1\X holds

for n ≥ 0 in order to show Un+1 ⊆ 1\X . Since TP is monotonic, we know that Un ⊆ U ′.

By combining with the induction hypothesis and the original assumption U ′ ⊆ U , we

have that Un ⊆ U ∩ (1 \X ). Consider now an atom a such that X (a) > 0. We have

Un+1(a) = max{〈(Un ,L〉 (r) | r ∈ P ,H (r) = a}
≤ max{〈U ∩ (1 \X ),L〉 (r) | r ∈ P ,H (r) = a}
≤ [U ∩ (1 \X )](a) (A1)

≤ [1 \X ](a),

where line (A1) follows from the assumption that X is an unfounded set w.r.t. (L,U ).

Hence, Un+1(a) ≤ 1−X (a) holds for every a ∈ B, which complete our proof.
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