
1

Online appendix for the paper

Finding Optimal Plans for Multiple Teams of
Robots through a Mediator: A Logic-Based Approach

published in Theory and Practice of Logic Programming

Esra Erdem, Volkan Patoglu, Zeynep G. Saribatur, Peter Schüller

Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
{esraerdem,vpatoglu,zgsaribatur,peterschueller}@sabanciuniv.edu

Tansel Uras

Department of Computer Science, University of Southern California, Los Angeles, USA
turas@usc.edu

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Additional Experiments

A.1 Answering Queries: ASP vs. SAT

We can answer queries using CCalc with a SAT solver or with an ASP solver. In the

former case, given an action description and a query, CCalc finds an answer to the query

in the spirit of satisfiability planning (Kautz and Selman 1992): 1) it transforms the action

description and the query into a set of formulas in propositional logic (Giunchiglia et al.

2004); 2) it calls a SAT solver (like manysat) to find a model of all these formulas; 3) if

a model is found then it extracts the solution; otherwise, it answers the query negatively.

In the latter case, given an action description and a query in the language of CCalc,

1) we can use cplus2asp (Casolary and Lee 2011) to transform the action description

and the query into an ASP program; 2) an ASP solver (like Clasp with the grounder

Table A 1. Experimental results comparing ASP vs. SAT

Sc
en

ar
io

Tea
m

s

W
or

ks
pa

ce
(g

rid
ce

lls
)

W
or

ke
r
R
ob

ot
s

Tot
al

R
ob

ot
s

O
rd

er
(b

ox
es

)

Q
ue

st
io
ns

(t
ot

al
)

A
ns

w
er

in
g

Q
ue

st
io
ns

(a
ve

ra
ge

tim
e
A
SP

)

A
ns

w
er

in
g

Q
ue

st
io
ns

(a
ve

ra
ge

tim
e
SA

T
)

sec sec

1 2 15 1,2 5 6 212 3.96 6.67
2 3 15 1,2,3 9 9 437 3.92 6.13
3 4 15 1,2,3,4 15 12 525 1.82 3.36

4 2 24 2,4 8 8 127 4.76 7.91
5 3 24 2,4,6 18 12 171 5.37 13.08
6 4 24 2,4,6,8 30 16 293 79.96 151.33

2

Table A 2. Experimental results comparing two approaches to compute optimal values for

plan length l: linear search vs. binary search

Se
ar

ch
M

et
ho

d

Sc
en

ar
io

Tea
m

s

W
or

ks
pa

ce
(g

rid
ce

lls
)

W
or

ke
r
R
ob

ot
s

Tot
al

R
ob

ot
s

O
rd

er
(b

ox
es

)

Q
ue

st
io
ns

(t
ot

al
)

A
ns

w
er

in
g

Q
ue

st
io
ns

(a
ve

ra
ge

tim
e)

sec

l:
li
n
ea

r

1 2 15 1,2 5 6 212 6.67
2 3 15 1,2,3 9 9 437 6.13
3 4 15 1,2,3,4 15 12 525 3.36
4 2 24 2,4 8 8 127 7.91
5 3 24 2,4,6 18 12 171 13.08
6 4 24 2,4,6,8 30 16 293 151.33

l:
b
in

a
ry

1 2 15 1,2 5 6 100 8.78
2 3 15 1,2,3 9 9 187 9.96
3 4 15 1,2,3,4 15 12 310 7.78
4 2 24 2,4 8 8 163 215.13
5 3 24 2,4,6 18 12 201 224.32
6 4 24 2,4,6,8 30 16 351 283.63

Gringo) can be used to compute an answer set for the program; 3) if an answer set is

found then we can extract the solution; otherwise, the query is answered negatively.

We performed experiments to compare these two approaches, with the same instances

used in our experiments, as explained in Section 6. Table A 1 summarizes the results of

these experiments, comparing the computation times using the ASP solver Clasp with

the grounder Gringo, with the computation times using CCalc with the multi-threaded

SAT-solver manysat (limited to four threads). The computation times are average CPU

times in seconds, obtained over three repeated runs of all scenarios. The time reported

for ASP includes the time spent for grounding by Gringo; the time reported for SAT

includes the time spent for obtaining the propositional theory by CCalc. Note that

except for the computation times used to answer queries, all other numbers are the same

as in Table 1.

We observe from these results that the ASP solver Clasp performs better than CCalc

with the SAT solver manysat in all cases. This is also true for real time (not shown in

tables), not only for CPU time (shown in tables).

A.2 Finding Optimal Values: Linear vs. Binary Search

To find the optimal value for a global plan length l, and to find the earliest/latest

lend/borrow times l of individual teams, we can use binary search or linear search.

As discussed in Section 5, one possibility is to apply binary search between 1 and l to

find the earliest lend times and the latest borrow times l, and between 1 and k to find

the optimal value for the global plan length l. With this approach, every team answers

O
(
m·log(k)2

)
queries.

However, the computation time to answer a query drastically increases as the plan

3

length increases (due to inherent hardness of planning (Turner 2002; Erol et al. 1995)). In

such cases, as suggested by Trejo et al. (Trejo et al. 2001), it is not a good idea to apply

binary search to find the optimal value for a global plan length l.

Meanwhile, given a plan length, queries to find the earliest lend times and the latest

borrow times take about the same time; in such cases, as also suggested by Trejo et al., it

is a good idea to apply binary search to find these optimal values.

Therefore, a better approach might be to use linear search to find the optimal value for

a global plan length l, and binary search to find optimal values for lending/borrowing

times.

We compared these two approaches experimentally over the six scenarios used in our

experiments (Section 6), using CCalc with manysat. Table A 2 shows the results of

these experiments. Results are averages over three runs.

The first section of the table shows the configuration which was already used in Table 1

and Table A 1: l is determined using linear search and within teams the earliest lend and

latest borrow times are determined using binary search. The second section of Table A 2

shows the strategy using binary search in both cases.

We can observe that these experimental results confirm Trejo et al. (Trejo et al. 2001)’s

results summarized above. For small scenarios, the overall time to find a solution (not

shown in the table) is smaller with two binary searches while for large scenarios using

linear search for l gives a better overall performance. For example, for Scenario 1, a total

of 1012 seconds is required to find the optimal value for l with binary search, while using

linear search requires 1670 seconds. On the other hand, finding the optimal value for l in

Scenario 4 requires 36737 seconds using binary search while linear search requires only

2114 seconds.

Nevertheless the overall time to find the optimal solution increases in all scenarios

either due to an increased effort for answering questions or due to a significantly increased

amount of queries.

Appendix B Proofs

Proof of Proposition 1

Let us denote by FindCollaborationD the decision version of FindCollaboration,

i.e., decide for an existence of a ml-collaboration. We prove that FindCollaborationD
is NP-complete in two parts: membership and hardness.

Membership: Let Σ = {0, 1,∧,∨, ·, ◦, •, ?} be the alphabet, and let Σ∗ denote the set of

all strings over Σ∗. We define a language L to be the set of all strings in Σ of the form

B1 ∧B2 ∧B3 ∧B4 ∧D ∧X ∧ Y where

• B1, B2, B3, B4 are binary representations of the number of Lenders |Lenders|, the

number of Borrowers |Borrowers|, the maximum number of steps l, and the maxi-

mum number of robots m, respectively.

• D has the form D1,1 ∧ D1,2 ∧ ... ∧ Da,b with each Di,j of the form (Id ∧ Jd) · D′
where Id and Jd are the binary representation of lender index i and borrower index

j, and D′ is the binary representation of the value Delay(i, j).

• X has the form Xm1,i1 ∧Xm1,i2 ∧ · · · with each Xm,i of the form (Mx ∧ Ix) ◦ Sx

4

where Mx and Ix are the binary representation of number m and lender index i,

and Sx is the binary representation of the value Lend earliestm(i).

• Y has the form Ym1,j1 ∧ Ym1,j2 ∧ · · · with each Ym,j of the form (My ∧ Jy) • Sy
where My and Jy are the binary representation of number m and borrower index j,

and Sy is the binary representation of the value Borrow latestm(j),

such that, given an input x ∈ Σ∗ then x ∈ L iff FindCollaborationD with input

corresponding to x returns yes.

Note that FindCollaborationD is a decision problem since FindCollaborationD
returns yes if and only if x∈L.

We will show that FindCollaborationD is in NP by showing that (A) the above

representation x∈Σ∗ is polynomial in the size of an input to FindCollaborationD,

(B) we can describe a guess y of polynomial size corresponding to a potential collaboration

function f , and (C) checking whether y satisfies all conditions of Def. 1 with respect to

input x can be done by a polynomial time algorithm.

(A) The input x∈Σ∗ consists of four numbers and at most 1+2·m functions (Delta

plus a maximum of m Lend earliest and Borrow latest functions), where Delta

has size O(|Lenders| · |Borrowers| · log(l)) and the other functions are below that.

Therefore, |x| has polynomial size in l·m.

(B) A guess y, corresponding to a collaboration function f , will be of the form F1∧· · ·∧Fw
with w = O(|Lenders| · |Borrowers| · l · log(m)) = O(|x|4) where each Fi is of the

form (Iu ∧ Ju) ? (Lu ∧Mu) with Iu, Ju, Lu,Mu the binary representations of lender

iu, borrower ju, time step lu and number of robots mu, for f(iu, ju) = (lu,mu).

Each Fi has linear size in |x| therefore |y| = O(|x|5) and therefore polynomial.

(C) We can check whether y conforms to all conditions in polynomial time: For condition

(a) and (b), we check at most m values of Borrow latest and Lend earliest functions

for each Borrower and Lender, respectively. Therefore, the checking algorithm

takes polynomial time in |x|.

Hence, FindCollaborationD is in NP.

Hardness: Take any 3-SAT instance F over signature σ of n variables x1, . . . , xn and p

clauses c1, ..., cp of the form cj = (tj,1, tj,2, tj,3), where tj,1, tj,2, tj,3 are literals. We can

reduce F to an instance of FindCollaborationD as follows.

First, we define the sets Lenders and Borrowers. The set of Lenders has n lenders

for each variable in F . We define a function ϕ : Lenders → σ such that ϕ(i) = xi, to

denote the relation between the lenders and the variables, Lenders = {1, ..., n}. The set

of Borrowers is defined for each clause in F , Borrowers = {n+1, ..., n+p}. So there is a

1-1 mapping between lenders and variables, and between borrowers and clauses.

We define l = 2 ∗ |σ| = 2n, and a mapping step(xi) from literal xi, (resp., ¬xi) to time

steps such that step(xi) = i, (resp., step(¬xi) = n+ i).

Given a literal t in F , we denote by occ(t) the number of clauses of F which contain

t. Without loss of generality, we assume that no literal is contained twice in any clause.

Using occ(t) we define a function rNum : {1, . . . , l}→{1, . . . ,m} where m is a positive

integer explained below; rNum associates each time step (i.e., each literal) with a number

of robots.

5

Intuitively, for each clause c∈F containing literal t, rNum(step(t)) robots must be

transferred to satisfy c. To achieve this, we define rNum such that for each time step u,

the number of robots that must be transferred is larger than the total number of robots

that can be transferred before u, i.e., larger than the number of robots in all previous

steps multiplied by their respective occurrence counts of associated literals:

rNum(1) = 1

rNum(u) = 1+
∑u−1
i=1 rNum(i) · occ(step−1(i)) for 1 < u ≤ l

The constant m is the maximum number of robots that can be given at the latest

time step, i.e., the largest value of rNum for a given 3-SAT instance. This value is

m= rNum(step(¬xn))·occ(¬xn); by eliminating the definition of rNum from the formula,

we obtain the following equation

m=
(
occ(x1)+1

)
· . . . ·

(
occ(xn)+1

)
·
(
occ(¬x1)+1

)
· . . . ·

(
occ(¬xn−1)+1

)
·occ(¬xn).

Since a literal may occur in at most p clauses, m = O(p2n) which is exponential in the

input size. This is not a problem as the value m can be computable in polynomial time and

represented in linear space, moreover our reduction never requires to explicitly represent

m functions: Lend earliest is defined on three intervals per lender and Borrow latest is

defined on four intervals per borrower, hence a polynomial time reduction.

We define Delay(i, j) = 0, for every i∈Lenders, j ∈Borrowers.
For each lender i, we define Lend earliestm(i) as follows:

Lend earliestm(i) =


step(ϕ(i)) if 1 ≤ m ≤ rNum(step(ϕ(i)))·occ(ϕ(i))

step(¬ϕ(i)) if rNum(step(ϕ(i)))·occ(ϕ(i)) < m and

m ≤ rNum(step(¬ϕ(i)))·occ(¬ϕ(i))

undefined otherwise

Intuitively, each lender i can lend up to rNum(step(ϕ(i)))·occ(ϕ(i)) robots with earliest

time step step(ϕ(i)) or it can lend up to rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) robots with

earliest time step step(¬ϕ(i)).

For each clause cj = (tj,1, tj,2, tj,3) in F , without loss of generality, we assume that

step(tj,1) ≤ step(tj,2) ≤ step(tj,3), and, for each borrower j+n, we defineBorrow latestm(j+n)

as follows:

Borrow latestm(j+n) =


undefined if 1 ≤ m < rNum(step(tj,1))

step(tj,1) if rNum(step(tj,1)) ≤ m < rNum(step(tj,2))

step(tj,2) if rNum(step(tj,2)) ≤ m < rNum(step(tj,3))

step(tj,3) if rNum(step(tj,3)) ≤ m ≤ m
Intuitively, each borrower j+n corresponding to clause cj needs to borrow at least the

number of robots associated with at least one literals in cj , at the latest time step that is

associated with that particular literal.

Example 1 Figure B 1 shows an example reduction from 3-SAT formula F1 = (a ∨ b ∨
¬c) ∧ (c ∨ ¬a ∨ ¬b). Bold lines indicate Lend earliest and Borrow latest functions, e.g.,

lender 2, corresponding to variable b has Lend earliest16(2) = 5. Numbers given next to

bold lines indicate values of rNum for the respective step, e.g., rNum(5) = 16. Note that

occ(t) = 1 for every literal t, hence rNum(step(t)) = 2step(t).

6

step 1 step 2 step 3 step 4 step 5 step 6

1 a

8 ¬ateam 1:

(lender)

a, ¬a

2
b

16 ¬bteam 2:

(lender)

b, ¬b

4 c

32 ¬c

team 3:

(lender)

c, ¬c

a
b

¬c

1
2

32

team 4:

(borrower)

a ∨ b ∨ ¬c

c

¬a
¬b

4

8

16

team 5:

(borrower)

c ∨ ¬a ∨ ¬b

Fig. B 1. Example hardness reduction for 3-SAT formula F1 = (a ∨ b ∨ ¬c) ∧ (c ∨ ¬a ∨ ¬b)

Note that the reduction from 3-SAT to FindCollaborationD can be done in time

polynomial in the size of the input formula. Let us prove that this is a correct reduction:

F is satisfiable iff there is an ml-collaboration between Lenders and Borrowers with at

most m robot transfers and at most in l steps defined above.

Hardness: SAT → collaboration Let I be an interpretation mapping σ to truth values

such that this assignment satisfies F . Here and in the following we denote an interpretation

I by the set of atoms in σ whose values are mapped to true.

We define the collaboration function

f : Lenders×Borrowers→ {0, ..., l} × {0, ...,m}

as follows:

• for every variable s∈ I and for every borrower j+n,

f(ϕ−1(s), j+n) = (step(s), rNum(step(s)))

where clause cj contains s;

• for every variable s /∈ I and for every borrower j + n,

f(ϕ−1(s), j+n) = (step(¬s), rNum(step(¬s)))

where clause cj contains ¬s.

7

Example 2 (ctd) Interpretation I1 = {a, c} satisfies F1 and induces the following col-

laboration f1: f1(1, 4) = (1, 1), f1(2, 5) = (5, 16), f1(3, 5) = (3, 4).

We can now show that f , as obtained above from I, indeed satisfies all conditions of

Def. 1, i.e., it is an ml-collaboration.

• Def. 1(a): I satisfies each clause in F . For every borrower j corresponding to clause

cj = (tj,1, tj,2, tj,3), let tj,k be a literal in cj satisfied by I. Take any borrower j+n. By

our construction of f , there is a lender ik = ϕ−1(var(tj,k)) such that f(ik, j + n) =

(step(tj,k), rNum(step(tj,k))) where step(tj,k)≤ l and rNum(step(tj,k))≤m. Take

m = rNum(step(tj,k))≤m. Then the following hold:

max{step(tj,k)}≤ step(tj,k) = Borrow latestm(j+n)

m≤ rNum(step(tj,k)).

Hence condition (a) holds.

• Def. 1(b): Take any lender i (corresponding to variable ϕ(i)). Consider two cases:

— Case 1: ϕ(i) ∈ I. Lender i has cooperations with borrowers n+j1, .., n+jq,

corresponding to clauses cj1 , ..., cjq which contain ϕ(i). Note that q≤ occ(ϕ(i))

and q= occ(ϕ(i)) if and only if ϕ(i) does not occur multiple times in any clause.

The construction of f is as follows:

f(i, n+j1) = (step(ϕ(i)), rNum(step(ϕ(i))))

...

f(i, n+jq) = (step(ϕ(i)), rNum(step(ϕ(i))))

where step(ϕ(i)) = l1 = · · · = ls≤ l, and rNum(step(ϕ(i))) =u1 = · · · = us≤m.
Take m = rNum(step(ϕ(i)))·occ(ϕ(i)) ≤ m. Then the following hold:

Lend earliestm(i) = step(ϕ(i))≤min{step(ϕ(i))}
m≥ rNum(step(ϕ(i))) · q.

— Case 2: ϕ(i) /∈ I. Lender i has cooperations with borrowers n+j1, .., n+jq,

corresponding to clauses cj1 , ..., cjq which contain ¬ϕ(i). Note that q= occ(¬ϕ(i))

and q= occ(¬ϕ(i)) if and only if ¬ϕ(i) does not occur multiple times in any

clause. The construction of f is as follows:

f(i, n+j1) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

...

f(i, n+jq) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

where step(¬ϕ(i)) = l1 = · · · = ls ≤ l and rNum(step(¬ϕ(i))) =u1 = · · · = us ≤
m. Take m = rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) ≤ m. Then the following hold:

Lend earliestm(i) = step(¬ϕ(i))≤min{step(¬ϕ(i))}
m≥ rNum(step(¬ϕ(i)))·q.

Hence condition (b) holds.

Therefore, a function f obtained as shown above from a satisfying assignment I of F is

a collaboration according to Def. 1.

8

Hardness: collaboration → SAT

Let f be a collaboration function defined via the reduction explained above. We need

to show that there is an interpretation that satisfies F . Without loss of generality, we

assume that Delay(i, j) = 0 for all i, j, and do not mention delay in the following.

Since f is a collaboration function, it satisfies the conditions in Def. 1.

Given f and a borrower j+n corresponding to clause cj , we say that borrower j+n

can complete its task with respect to a literal t∈ cj iff the borrower borrows at least

rNum(step(t)) robots up to time step step(t) (inclusive) and there is no t′ ∈ cj with

step(t)<step(t′) such that the borrower borrows rNum(step(t′)) or more robots at a step

after step(t).

Intuitively, a borrower can complete its task with respect to literal t∈ cj iff its task can

be completed by obtaining robots until step(t) and this is not true for another literal after

that step. Given a collaboration function f , per definition of collaboration each borrower

can complete its task with respect to exactly one literal.

Example 3 (ctd) In collaboration f1, borrower 4 can complete its task with respect to a

and with respect to no other literal, borrower 5 can complete its task with respect to ¬b,
and not with respect to c because step(c)<step(¬b).

Towards proving the result, we introduce two lemmas.

Lemma 1 If borrower j+n, corresponding to clause cj , can complete its task with respect

to literal tu ∈ cj, then borrower j+n borrows at least one robot from lender ϕ−1(var(tu))

at step step(tu) and that robot cannot be lent before step step(tu).

Intuitively, this lemma states that a borrower which can complete its task with respect

to a certain literal tu always borrows at least one robot from the lender corresponding

to var(tu), and that robot is exchanged at the step corresponding to tu, i.e., at the step

corresponding to the correct (with respect to polarity of the variable) literal.

Example 4 (ctd) Given f1 we saw that borrower 5 can complete with respect to ¬b.
According to Lemma 1, borrower 5 receives at least 1 robot at step(¬b) = 5 which is true

as f1(2, 5) = (5, 16). Intuitively, Lemma 1 holds because borrower 5 requires 16 robots to

complete its task with respect to ¬b whereas lenders can only lend 15 robots in total during

steps 1 . . . 4. Therefore, borrower 5 must receive at least 1 of the 16 robots that can be

given at step 5, and this robot is in addition to 2 robots that could potentially be given at

step 2. (See also Lemma 2 which shows that these 2 robots cannot be given in that case.)

Proof of Lemma 1

• Case 1: tu is a positive literal.

Borrower j+n can complete its task with respect to tu ∈ cj , so it borrows at least

rNum(step(tu)) robots with the latest time step step(tu).

Borrower j+n can cooperate with lenders ϕ−1(var(t1)), ..., ϕ−1(var(tu)).

Towards a contradiction, assume that borrower j+n does not borrow any robots

from lender ϕ−1(var(tu)) at step step(tu). Then there exists a collaboration function

9

f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ ,mβ)

where step(t1) ≤ lα ≤ lβ < step(tu) and rNum(step(tu)) ≤ (mα + · · · + mβ) and

max{lα, . . . , lβ} ≤ step(tu). Note that this function excludes borrowing at step

step(tu) hence it excludes

f(ϕ−1(var(tu)), j+n) = (step(tu),m) for every m.

Therefore, the maximum number of robots that borrower j+n can borrow with f is

rNum(step(t1))·occ(t1) + · · ·+ rNum(step(tu−1))·occ(tu−1) =

=
∑u−1
i=1 rNum(step(ti))·occ(ti) = rNum(step(tu))− 1

which is exactly one robot less than borrower j+n needs to be able to complete

with respect to tu.

We have reached a contradiction: there cannot be a collaboration function that

satisfies condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one

robot to borrower j at step step(tu).
• Case 2: tu is a negative literal.

If borrower j+n, corresponding to clause cj , can complete its task with respect to

literal ¬tu ∈ cj , then it borrows at least rNum(step(¬tu)) robots with the latest

time step step(¬tu).

Assume that borrower j+n borrows m robots from lender ϕ−1(var(tu)). Then,

Lend earliest(ϕ−1(var(tu)))m = step(tu).

By our construction of Lend earliest, we have m≤ rNum(step(tu))·occ(tu). With

this assumption, there exists a collaboration function f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ ,mβ)

f(ϕ−1(var(tu)), j+n) = (lγ ,m)

where step(t1) ≤ lα ≤ lβ ≤ lγ ≤ step(¬t) and rNum(step(¬t))≤ (mα+ · · ·+mβ+m)

and max{lα, . . . , lβ , lγ} ≤ step(¬t).
The maximum number of robots borrower j+n can borrow can be computed as

follows:

rNum(step(t1))·occ(t1)+ . . .+rNum(step(tu))·occ(tu)+ . . .

. . .+rNum(step(¬tu−1))·occ(¬tu−1) =

=
∑u−1
i=1 rNum(step(ti))·occ(ti) = rNum(step(¬tu))− 1

We have reached a contradiction: there cannot be a collaboration function that

satisfies condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one

robot to borrower j at the time step where the lender has the earliest possibility to

lend this robot, i.e., at step step(tu).

10

Lemma 2 If borrower j+n, corresponding to clause cj , can complete its task with respect

to positive literal t∈ cj (resp., with respect to negative literal ¬t∈ cj) then no borrower

can complete its task with respect to negative literal ¬t (resp., with respect to positive

literal t).

Intuitively, this lemma states that if a borrower can complete its task with respect to a

certain literal t, no other borrower can complete its task with respect to the negation

of literal t. In terms of truth values and clause satisfiability, Lemma 2 shows that a

collaboration corresponds to a consistent set of literals satisfying all clauses.

Example 5 (ctd) Given f1 borrower 5 can complete with respect to ¬b, Lemma 2 states

that no borrower can complete with respect to b. Intuitively, this holds because lender

2 provides at least one of 16 possible robots at step 5. Therefore, it cannot give robots

already at step 2.

Proof of Lemma 2

• Case 1: borrower j+n can complete its task with respect to positive literal t∈ cj .
By Lemma 1, borrower j+n borrows at least one robot from lender ϕ−1(var(t)) at

step step(t).

Since lender ϕ−1(var(t)) lends robots with earliest step step(t), by Lend earliest

function, the lender can lend at most rNum(step(t))·occ(t) robots.

Let borrower j′+n be a borrower corresponding to a clause cj′ which contains ¬t. To

complete its task by borrowing robots from lender ϕ−1(var(t)), it needs to borrow

at least rNum(step(¬t)) robots. However, rNum(step(¬t))>rNum(step(t))·occ(t).

Therefore, lender ϕ−1(var(t)) cannot be the lender that satisfies borrower j′+n. In

other words, clause cj′ cannot be satisfied by literal ¬t.
• Case 2: borrower j+n can complete with respect to negative literal t∈ cj .

By Lemma 1, borrower j′+n borrows m≥ 1 robots from lender ϕ−1(var(t)) at step

step(¬t), where

Lend earliest(ϕ−1(var(t))) = step(¬t).
Since lender ϕ−1(var(t)) lends a number of robots with earliest time step as above,

this lender cannot lend any robots before step(¬t). Therefore, lender ϕ−1(var(t))

cannot be the lender that satisfies a borrower j+n with respect to literal t∈ cj . In

other words, clause cj cannot be satisfied by literal t.

We can now prove that, if f is a ml-collaboration then F is satisfiable.

As f is a collaboration function it satisfies the conditions in Def. 1. By condition (a)

every borrower j+n can complete its task with respect to some literal t∈ cj . Given f , let

J be the set of all literals t s.t. some borrower can complete with respect to t. Due to

Lemma 2 no two borrowers complete their respective tasks with respect to complementary

literals x and ¬x for some variable x. Hence J does not contain both positive and negative

literals for any variable; it is a consistent set of literals.

Each borrower j+n corresponding to clause cj can complete its task with respect to

11

some literal t∈ J and t∈ c, therefore all clauses of F are satisfied by J . Therefore, given

a collaboration function f , the consistent set of literals J corresponds to a (unique)

satisfying truth assignment I for F .

References

Casolary, M. and Lee, J. 2011. Representing the language of the causal calculator in answer
set programming. In Proc. of ICLP (Technical Communications). 51–61.

Erol, K., Nau, D. S., and Subrahmanian, V. S. 1995. Complexity, decidability and undecid-
ability results for domain-independent planning. Artif. Intell. 76, 1–2, 75–88.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004. Nonmonotonic
causal theories. AIJ 153, 49–104.

Kautz, H. and Selman, B. 1992. Planning as satisfiability. In Proc. of ECAI. 359–363.

Trejo, R., Galloway, J., Sachar, C., Kreinovich, V., Baral, C., and Tuan, L.-C. 2001.
From planning to searching for the shortest plan: An optimal transition. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 9, 6, 827–837.

Turner, H. 2002. Polynomial-length planning spans the polynomial hierarchy. In Proc. of
JELIA. 111–124.

